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Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through
microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin
response factors (ARF3/-4), which are involved in the normal development of lateral
roots and flowers in plants. However, their roles in embryo development are still unclear.
Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first
time during somatic embryo development in Dimocarpus longan. We identified the
miR390 primary transcript and promoter. The promoter contained cis-acting elements
responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor,
circadian control, and heat stress. The longan TAS3 transcript, containing two miR390-
binding sites, was isolated; the miR390- guided cleavage site located near the 3′ end
of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotides phase
were found among longan small RNA data, further confirming that miR390-directed
TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5′D5+
and 5′D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying
that miR390-guided TAS3 cleavage with 21-nucleotides phase leading to the production
of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-
embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic
cultures, while miR390 showed its lowest expression in EC and highest expression
in torpedo-shaped embryos (TEs). DlTAS3 and DlARF4 both exhibited their lowest
expressions in EC, and reached their peaks in the globular embryos stage, which were
mainly inversely proportional to the expression of miR390, especially at the globular
embryos to cotyledonary embryos (CEs) stages. While DlARF3 showed little variation
from the EC to TEs stages, and exhibited its lowest expression in the CEs stage. There
was a general lack of correlation between the expressions of DlARF3 and miR390.
In addition, pri-miR390, DlTAS3, DlARF3 and -4 were up-regulated by 2,4-D in a
concentration-dependent manner. They were also preferentially expressed in roots, pulp,
and seeds of ‘Sijimi’ longan, implying their extended roles in the development of longan
roots and fruit. This study provided insights into a possible role of miR390-tasiRNAs-ARF
in plant somatic embryo development.
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INTRODUCTION

MicroRNAs and tasiRNAs are distinct classes of small RNAs,
which control many aspects of development in plants by
guiding silencing of target RNAs via cleavage or repression
mechanisms (Chapman and Carrington, 2007). MiRNAs arise
from endogenous transcripts that can form local fold-back
structures, whereas tasiRNAs are generated by primary TAS
transcripts that are initially targeted and sliced by miR173 (TAS1
and TAS2), miR828 (TAS4) or miR390 (TAS3) (Pullman et al.,
2003; Wilson et al., 2005; Axtell et al., 2006; Kikuchi et al.,
2006; Montgomery et al., 2008b). The TAS3 family is conserved
in plants and has two sites that are complementary to miR390
(Krasnikova et al., 2013; Xia et al., 2013), while the TAS1, TAS2,
and TAS4 families are found only in Arabidopsis thaliana or
close relatives, and each of them contain only a single site
complementary to miR173 or miR828 (Pullman et al., 2003;
Wilson et al., 2005; Axtell et al., 2006; Kikuchi et al., 2006;
Montgomery et al., 2008b).

TAS1 and TAS2 tasiRNAs target PPR proteins (Kikuchi
et al., 2006; Ruduś et al., 2006). TAS4 tasiRNAs target MYB
transcription factors (Rajagopalan et al., 2006). TAS3 tasiRNAs
target ARF3 and -4, which are involved in developmental timing
(Cho et al., 2012) and the normal development of aerial lateral
organs, such as lateral roots (Marin et al., 2010; Yoon et al., 2010)
and flowers (Matsui et al., 2014).

The roles of the pathway miR390-TAS3-ARF3/-4 in root and
flower development are conserved and clear in plants; however,
their functions in plant embryo development are unclear. For
example, miR390 peaked in mature embryos (Zhang et al.,
2012), and three detected tasiRNAs generated from TAS3, which
were triggered by miR390, peaked in mature embryos in larch
(Larix leptolepis; Zhang et al., 2013), suggesting that the miR390-
TAS3-tasiRNA pathway might play regulatory roles during CE
development. In Valencia sweet orange, miR390 is involved in
globular- shaped embryo formation (Wu et al., 2011), and over-
expression of Csi- MIR390 callus lines caused lost embryogenesis
capacity (Liu et al., 2013). During Gossypium hirsutum SE,
miR390 reached the highest expression level at the EC stage,
remained at moderate levels during embryo development, and
one TAS3 transcript was verified as the target of miR390 (Yang
et al., 2013). As mentioned above, notably, the roles of the
pathway miR390-TAS3-ARF3/-4 in embryo development are
somewhat confused in different plants, and their functions in
plant embryos remain unclear.

Dimocarpus longan (longan), a member of the Sapindaceae
family, is an exotic subtropical fruit mainly planted in Northern

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; ARF, auxin response
factor; EC, friable-embryogenic callus; cDNA, complementary DNA; CDS,
coding DNA sequence; CEs, cotyledonary embryos; GEs, globular embryos;
ICpECs, incomplete compact pro-embryogenic cultures; miRNAs, microRNAs;
PPRs, pentatricopeptide repeat proteins; pre-miRNA, precursor miRNA; pri-
miRNAs, primary miRNA transcripts; RLM-RACE, RNA ligase- mediated rapid
amplification of cDNA ends; RT-PCR, reverse transcription-polymerase chain
reaction; RT-qPCR, real-time quantitative reverse transcription PCR; SA, salicylic
acid; SE, somatic embryogenesis; Tail-PCR, thermal asymmetric interlaced PCR;
tasiRNAs, trans-acting short-interfering RNAs; TEs, torpedo-shaped embryos;
TSSs, transcription start sites; UTR, un-translated region.

Burma, and Northeast and Southern China. Longan fruit are
preferably eaten fresh because of their sweet flavor and beneficial
health effects, and usually contain a relatively large black or
brown seed at maturity, with a large quantity of polysaccharides
(Tseng et al., 2014). The seeds have also been used as bioactive
ingredients in many traditional Chinese medicines to improve
human health and increase the immunomodulatory capacity
(Rangkadilok et al., 2005). However, the molecular mechanism of
longan seed development remains unclear because of the extreme
genetic heterozygosity exhibited and the difficulty of sampling
the early embryos (Liu et al., 2010; Lai and Lin, 2013; Lin and
Lai, 2013a,b; Lin et al., 2015). To avoid these difficulties, longan
SE, which resembles zygotic embryogenesis, has previously been
used widely as a model system to investigate in vitro and in vivo
regulation of embryogenesis in plants (Lai et al., 2010; Lin and
Lai, 2010). Our previous work indicated that dlo-miR390 a.1
and -a∗.1 accumulated during heart- and TE stages (Lin and Lai,
2013b). However, howmiR390 directs the formation of tasiRNAs,
and down- regulates the expression of target ARF3 and -4 during
longan SE, remains unclear.

In this study, the conserved pathway miR390-TAS3-ARF3/-4
was identified in longan using an integrated strategy including
RT-PCR/RACE, computational, genome-wide expression
profiling and experimental validation. First, the primary miR390
and TAS3 transcripts were cloned by RT-PCR and RACE.
The promoter of primary miR390 was isolated by Tail-PCR
and its cis-acting elements were predicted using bioinformatic
methods. The TAS3 tasiRNAs triggered by miR390 were
detected from a longan small RNA database (Lin and Lai,
2013b). TasiRNA-ARF targets were identified by a modified
RLM-RACE. The expressions of primary miR390, DlTAS3,
DlARF3 and -4 were analyzed in D. longan ‘Honghezi’ SE
and in ‘Sijimi’s tissues. Their responses to 2,4-D stimuli were
also determined. These results revealed a possible role for the
conserved pathway miR390- TAS3-ARF3/-4 in longan somatic
embryo development.

MATERIALS AND METHODS

Plant Materials and Treatments
The synchronized embryogenic cultures from D. longan
‘Honghezi’ used in this study were friable-EC, ICpECs, GEs,
TEs, and CEs; Lai and Chen, 1997). For RT-qPCR analysis,
the EC were cultured on Murashige and Skoog medium (MS;
Murashige and Skoog, 1962) supplemented with 1.0 mg/L
2,4-D and 2% sucrose (pH 5.8), for 20 days, then transferred
to MS liquid medium containing 2,4-D (0, 0.5, 1.0, 1.5, and
2 mg/L) in a rotary shaker at 150 rpm for 24 h, respectively.
All samples were collected and stored at −80◦C for subsequent
analyses.

Samples of roots (R), leaves (L), floral buds (FB), flowers
(F), young fruits (YF), mature fruits (MF), pericarp (P1), pulp
(P2), and seeds (S) collected from at least six rootstock plants
of the same cultivar, D. longan ‘Sijimi,’ were provided by the
experimental fields of the Fujian Academy of Agricultural Science
in Putian, and used for RNA extraction.
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Isolation of the miR390 Gene from
D. longan
To gain a more complete understanding of the miR390 gene
and its evolution in plants, based on the previously published
small RNA data (BioSample accession SAMN04120614, Bio-
Project ID PRJNA297248; Lin and Lai, 2013b) and the longan
EC transcriptome data (SRA050205; Lai and Lin, 2013), the
longan primarymiR390 gene was obtained from longan EC DNA
using PCR with sense (390F) and anti-sense (390R) primers. To
determine the 5′-end, a GeneRacer Kit (Invitrogen, Carlsbad,
CA, USA) was used for full-length cDNAs synthesis from a
mixture of total RNAs (EC, ICpEC, GE, and HE), following
the manufacturer’s instructions. 5′ RACE PCR was carried out
using two nested PCR reactions and a combination of GeneRacer
forward primers (5′ Primer and 5′ Nested Primer) and specific
reverse primers (390-5RACE1 and 390-5RACE2). To obtain the
gene regulatory sequence for the longan miR390 gene, genome
walking was performed to obtain flanking genomic DNA using
TAIL-PCR (Takara, Japan). Its promoter was cloned by three
nested PCR amplifications from a longan EC DNA template with
the same forward primer, AP2, and specific reverse primers (390-
SP1-SP5). The list of primers for PCR amplification is shown in
Table 1.

MiR390-Targeted TAS3 Gene Cloning
In Arabidopsis, miR390 has been shown to target TAS3
(Montgomery et al., 2008a), but there is no evidence for the
existence of TAS3 in D. longan. To verify its existence and
determine the structure of the TAS3 transcript, the conserved
region of the TAS3 transcript was first obtained using RT-PCR
with sense (TAS3-F) and anti-sense (TAS3-R) primers designed
from known TAS3 sequences. To determine the 5′- and 3′-ends,
5′ and 3′ RACE PCR were carried out by nested PCR reactions
using a combination of GeneRacer primers and the specific
primer pairs TAS3-5P1/5P2 and TAS3-3P1/TAS3-3P2. The list of
primers for PCR amplification is shown in Table 1.

TABLE 1 | Primers used in pri-miR390 and TAS3 cloning.

Primer name Primer sequence(5′–3′ ) Tm/◦C Description

390-F CTGTGTATAGAGACATACATGATGAG 55 RT-PCR

390-R ACCCATCAAAGATATATGATCTAGTAG

390-5RACE1 CATGAAACTCAGGATAGATAGCGCC 55.6 5′-RACE

390-5RACE2 GTGGCGCTATCCCTGCTGAG 56.6

390-SP1 CATGAAACTCAGGATAGATAGCGCC 55.6 Tail-PCR

390-SP2 CAACAGCTCATCATCATCATCATC 52

390-SP3 GTGGCGCTATCCCTGCTGAG 56.6

390-SP4 GAGCTCTCATGGTGAAGGTGG 54.8

390-SP5 GTGGTGGAGACGGTCTTGTTG 54.8

TAS3-F TTCTTGACCTTGTAAGGCCTT 55 RT-PCR

TAS3-R AGCTCAGGAGGGATAGAAG

TAS3-3P1 TTCTTGACCTTGTAAGGCCTT 53 3′-RACE

TAS3-3P2 TTCCGTCCAACTCATCTTCTC 56

TAS3-5P1 AAGATGAGTTGGACGGAAAC 54 5′-RACE

TAS3-5P2 TTCTTAACGCGGGATCTTAC 56

Bioinformatics Analysis
The miR390 and TAS3 genes were compared against the
miRBase server (Release 21: June 2014) and NCBI using BLAST.
Multiple alignment analysis and secondary structure analysis
were performed using DNAMAN ver. 6.0 (Lynnon Biosoft,
Pointe-Claire, QC, Canada). Cis-acting elements analysis was
carried out using the PlantCARE database (Lescot et al., 2002).
For phylogenetic analysis, MEGA 5.02 (Kumar et al., 2004) was
performed according to the neighbor-joining method (Saitou
and Nei, 1987) with 1000 bootstrap replicates. The psRNATarget
analysis (Dai and Zhao, 2011) was carried out for miRNA and
tasiRNA target prediction.

Cleaved Target mRNA Identification with
5′ RLM-RACE
TasiRNA produced from the TAS3 transcript has been shown
to target ARF3 and -4 (Marin et al., 2010). To discover the
target transcripts of TAS3 tasiRNA in longan, a modified 5′
RLM-RACE experiment was set up. Here, the transcripts of
ARF3 (GenBank accession No. KJ200347.1) and -4 (GenBank
accession No. KJ200347.1) were used to designed RACE primers.
The cDNA was synthesized using a GeneRacer Kit using RNA
extracted from friable-EC, ICpECs, GEs, and HEs of longan
embryogenic cultures. PCR amplification of cDNA fragments
using 5′ RACE outer primers and gene-specific reverse primers
was performed. PCR fragments were cloned and sequenced to
identify the 5′-end of the amplified target genes.

RNA Extraction and RT-qPCR
For RT-qPCR analysis, total RNAs were extracted from the
above-mentioned samples using a TRIzol Reagent kit (Life
Technologies, Grand Island, NY, USA). cDNA for mRNA
quantification was subsequently synthesized using PrimeScript
TM RT Reagent Kit Perfect Real Time (Takara Code, DR037A,
Japan). For RT-qPCR amplification, cDNA was diluted 15
times before use. RT-qPCR was performed using LightCycler
480 equipment (Roche Applied Science, Switzerland) using the
manufacturer’s instructions. Three reference genes DlFSD1a, EF-
1a, and eIF-4a (Lin and Lai, 2010) were used to normalize
our signal. All reactions were performed in triplicate. Statistical
analysis was performed using SPSS 19. The gene names and
primer sequences are provided in Table 2.

RESULTS

Cloning and Analysis of the D. longan
miR390 Gene Sequence
To determine miR390s structure and the length of the gene
in the D. longan genome, the full-length cDNA sequence of
the primary miR390 transcript was obtained by RT-PCR and
5′-RACE. According to previous studies, the longan mature
miR390 (Lin and Lai, 2013b) was predicted to derive from the
transcript Contig648826, which was retrieved from longan EC
transcriptome data (SRA050205; Lai and Lin, 2013). To verify
the existence of the transcript, it was cloned from longan EC
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TABLE 2 | Real-time quantitative reverse transcription PCR (RT-qPCR)
primers.

Primer name Primer sequence 5′–3′) Product size/bp Tm/◦C

miR390 TCGCTATCCATCCTGAGTTTC — 60

pri-miR390-QF GATGATGATGATGATGAGCT 125 56

pri-miR390-QR GCCTAGAAGAGACAAGTCGTT

TAS3-QF TCCATCGTCAAAAACTAGAAGG 123 56

TAS3-QR ATGCTTGTGTCCTCCTTCATAC

ARF3-QF AGATTCCGACACATCTACCG 189 58

ARF3-QR AGGTGGAAATGTAGCAGCAC

ARF4-QF TCAAGATCCCACAATGCG 101 58

ARF4-QR TAACTTCATCCCCAACAGCC

using RT-PCR and 5′ RACE. Sequence analysis showed that the
transcript was 845 bp in length and had no introns (GenBank
accession No. KJ372216), and the first nucleotide (transcription
initiation site, TTS) of the full-length cDNA was A (Figure 1A);
the mature sequences dlo-miR390a-5p and dlo-miR390-3p were
found to exactly match the 5′ arms of the transcript (Figure 1A).
A sequence of 117 bp extracted from between the positions of
dlo-miR390-5p and -390-3p in the transcript was further used to
predict the secondary structure using DNAMan6.0 software. The
analysis showed that the sequence could form the classic stem-
loop structure and the minimum free energy of the structure
was −44.7 kcal/mole (Figure 1B). The sequence has similarities
with existing precursor miR390s inMalus domestica,G. hirsutum,
Glycine max, and Cucumis melo using BLAST analysis, and
is phylogenetically closely related to pre-miR390 transcripts of
Arabidopsis lyrata, Populus trichocarpa, andVitis vinifera, but was
distant from pre-miR390s of C. melo, M. domestica, and Prunus
persica (Figure 1C).

Isolation of the Longan miR390 Promoter
and Analysis of its Structural Features
Promoter analysis is an essential step in the identification of
regulatory networks. Here, the partial 5′-flanking region of
miR390 (927 bp) upstream of the TTS was isolated from longan
friable-EC genomic DNA (GenBank accession No. KJ372219),
and a promoter motif search was performed by PlantCARE
(Lescot et al., 2002). The analysis indicated that the classical
promoter elements, such as a TATA box and a number of CAAT
boxes, were located in the expected position of the miR390
promoter (i.e., within −30 to −90 nucleotides upstream of the
TTS). Potential cis-regulatory elements associated with light,
including an ACE motif, an AE-box, an AT1-motif, three Box
4 sites, a CATT-motif, an Sp1 motif and a chs-CMA2b motif,
and the cis-acting elements related to stress-related responses
containing a HSE motif (involved in heat stress responses)
and TC-rich repeats (involved in defense and stress responses),
were also detected in the promoter region. In addition, a
TCA-element involved in SA responsiveness; an ARE cis-acting
regulatory element that is essential for anaerobic induction;
two AT-rich sequence elements for maximal elicitor-mediated
activation (two copies); a Box-W1 element involved in fungal
elicitor responsiveness; a Skn-1 motif and a GCN4 motif, which

are involved in endosperm expression; a circadian element
involved in circadian control; a cis-acting element that confers
high transcription levels (5′ UTR Py-rich stretch); and four
elements of unknown function were also present in the promoter
(Figure 1A). These results indicated that the miR390 gene could
be regulated by environmental (light and stress) factors and
hormones (SA).

Cloning and Analysis of miR390-Targeted
TAS3 Gene in Longan
In this study, based on the sequences of TAS3 in other
plants, the full-length cDNA of TAS3 was obtained through
RT-PCR and 5′/3′ RACE using longan EC cDNA as the
template. Sequence analysis showed that the TAS3 transcript,
named DlTAS3, comprised 579 bp, with a 23-bp poly A tail
(GenBank accession No. KJ372220). Sequence alignment analysis
indicated thatDlTAS3 has high similarities withArabidopsis TAS3
(AT3G17185.1). The mature miRNA sequence, dlo-miR390a-5p,
was predicted to bind exactly to the DlTAS3 transcript at two
sites, located at positions 292–312 and 472–491 bp, respectively
(Figure 2A). The phylogenetic analysis (Figure 2B) suggested
that DlTAS3 in D. longan is closely related to TAS3 in Citrus
sinensis, Lotus japonicus, and Solanum lycopersicum, but was
distant from TAS3 in A. thaliana and Oryza barthii.

MiR390 Guides In-phase Processing of
DlTAS3 Transcripts
TAS3 tasiRNAs originate from sequences between the two
miR390 target sites (Kikuchi et al., 2006; Montgomery et al.,
2008a). Here, the sequence of DlTAS3 between the two binding
sites was 158 bp, and the dlo-miR390-guided cleavage site was
predicted to be located near the 3′ end of the DlTAS3 transcript,
while dlo-miR390 interacts in a non-cleavage mode with a second
site near the 5′ end, which was found to have a conserved
mismatch at the center of the binding region (Figure 2A).

MicroRNAs direct tasiRNA biogenesis in plants, and miR390-
guided cleavage was shown to set the 21-nucleotides phase
for tasiRNA precursor processing (Kikuchi et al., 2006). Here,
according to the dlo-miR390-guided cleavage site, eight potential
tasiRNAs with the 21-nucleotides phase were predicted to be
produced from miR390-guided DlTAS3 cleavage (Figure 2A;
Table 3). In-phase, the 21-nucleotides positions on the 5′ side
of the miR390 cleavage site were named 5′D1+, 5′D2+, and so
on. Among these tasiRNAs, the TAS3_ 5′D5+ and 5′D6+ have
a high similarity, with only four nucleotides differences at the 3′
end of the tasiRNAs (Figure 2C), and they are also very similar to
the 5′D7+ and 5′D8+ of the TAS3 in A. thaliana (Kikuchi et al.,
2006), G. max (Hu et al., 2013), M. domestica, C. sinensis, and
P. trichocarpa (Figure 3). These results suggested that miR390-
directed TAS3 cleavage leading to the production of tasiRNA is
conserved in plants.

Longan tasiRNA Abundance Analysis
and their Target Prediction
To verify the existence of DlTAS3 tasiRNAs in longan,
the tasiRNAs predicted in Section “MiR390 Guides In-phase
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FIGURE 1 | Continued
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FIGURE 1 | Continued

MiR390 transcript in D. longan. (A) The primary miR390 sequence and its 5′ flanking sequence. Mature miR390 sequences are underlined, and the names are
given under the sequences. The transcription start site (TSS) is Bold and underlined; cis-acting regulatory elements are underlined, gray shaded, and the names are
given under the elements. (B) Hairpin structure of the longan miR390 precursor. (C) Bootstrapped neighbor joining phylogenetic tree of precursor miR390 in plant
species. Bootstrap values are in percentages. dlo, Dimocarpus longan; ptc, Populus trichocarpa; ghr, Gossypium hirsutum; vvi, Vitis vinifera; ath, Arabidopsis
thaliana; osa, Oryza sativa; cis, Citrus sinensis.

Processing of DlTAS3 Transcripts” were searched for in a longan
small RNA dataset using local BLAST (Lin and Lai, 2013b).
Among the eight tasiRNAs, the reads of TAS3_5′D5+ and 5′D6+
siRNAs were more abundant, with 284 and 478 reads. This
result was similar to previous findings in which the reads of
TAS3 5′D7+/5′D8+ tasiRNAs were also high in G. max (Hu
et al., 2013). The signatures of 5′D2- and 5′D4+ siRNAs were
14 and 44 reads, respectively, while the expressions of other
tasiRNAs were very low, and the 5′D3+ siRNA was not detected
in longan SE (Figure 2A). These results further proved that dlo-
miR390 was sufficient to trigger secondary tasiRNA biogenesis,
and miR390-guided TAS3 cleavage with the 21-nucleotides phase
was conserved in plants.

TasiRNAs interact with target homologous mRNAs and
guide cleavage by the same mechanism as plant miRNAs (Hao
et al., 2006; Ruduś et al., 2006). Here, to identify the targets
of DlTAS3_tasiRNAs, the three with the highest abundances,
TAS3_5′D4+, 5′D5+, and 5′D6+ siRNAs, were matched against
nucleic acid sequences of the longan ARF gene families and
the transcripts library removed the miRNA gene of A. thaliana
(TAIR, version 10, released on 2010.12.14). The psRNATarget
analysis indicated that 10 mRNAs were predicted to be targets
of TAS3_5′D4+, 5′D5+ and 5′D6+ (Table 4). The TAS3_5′D4+
targets RNA-dependent RNA polymerase 6 (RDR6) and TRS120
mRNAs for cleavage. The 5′D5+ and 5′D6+ tasiRNAs both
target ARF3/-4 from A. thaliana or D. longan, indicating that
these tasiRNA binding sites are highly conserved among different
plants. In addition,DlARF3 and -4 contained two complementary
sites to the TAS3_5′D5+/5′D6+ tasiRNAs, which result was
consistent with previous studies in A. thaliana (Kikuchi et al.,
2006) and G. max (Hu et al., 2013). Moreover, TAS3_5′D5+
also targets PXA1 (peroxisomal ABC transporter 1), NAC (No
Apical Meristem, domain transcriptional regulator super family
protein), SPL5 (squamosa promoter binding protein-like 5),
and UPL2 (ubiquitin-protein ligase 2); and TAS3_5′D6+ also
targets MEI1 (transcription coactivators), Core-2/I-branching
beta-1, and 6-N-acetylglucosaminyltransferase family protein.
These results suggested that tasiRNAs are broadly involved in
plant development by guiding the cleavage of different targets,
similar to plant miRNAs.

Validation of tasiRNA-Guided Cleavage
of Target Gene DlARF3 and -4 mRNAs in
Longan
Four ARF genes have been validated as the target of TAS3
5_D7+/5_D8+ siRNAs in Arabidopsis (Kumria et al., 2003). In
our study, only DlARF3 and -4 were predicted to be targets
of TAS3_5′D5+/5′D6+ tasiRNAs, which are similar to TAS3

5_D7+/5_D8+ siRNAs in Arabidopsis. Therefore, to further
verify the cleavage of DlARF3 and -4 by the TAS3_5′D5+/5′D6+
tasiRNAs, a modified RLM-RACE analysis was performed, which
resulted in the detection of fragments of DlARF3 and -4
mRNAs from longan embryogenic tissues (Figure 4). Fragment
sequence analysis showed that the cleavage sites in DlARF3
and -4 mRNAs are located at positions corresponding to the
amino acid sequences KVLQGQE; in addition, DlARF3 was
cleaved between the 10th and 11th nucleotides complementary
to miR390, while DlARF4 was cleaved between the 9th and 10th
nucleotides of miR390 (Figure 4). These results clearly indicated
that TAS3_5′D5+/5′D6+ tasiRNAs cleaved the DlARF3 and -
4 mRNAs during longan SE, which further proved that the
tasiRNA-directed ARF mRNA cleavage was conserved in plants.

Expression Profiling of
miR390-DlTAS3-DlARF3/-4 during
Longan SE
To systematically analyze the function of miR390-TAS3-ARF3/-
4 during longan SE, expression profiling was performed using
five embryogenic cultures. RT-qPCR analysis showed that the
pri-miR390, miR390, DlTAS3, DlARF3 and -4 exhibited different
temporal and spatial expressions (Figure 5A). Pri-miR390 was
highly expressed in EC, and less expressed in ICpECs, while it
had a stable expression level with no fluctuations from GEs to
CEs, suggesting that the accumulated pri-miR390 in the EC stage
may be necessary for the maintenance of embryonic callus in
an undifferentiated state in longan. miR390 showed its lowest
expression in EC and highest expression in TEs, with a general
lack of correlation of pri-miRNAs at the transcription level. It
is worth noting that DlTAS3 and -4 showed similar expression
patterns. They both exhibited their lowest expressions in EC, and
reached their peaks in the GEs stage, which were mainly inversely
proportional to the expression of miR390, especially at the GEs
to CEs stages. DlARF3 showed little variation from the EC to
TEs stages, and exhibited its lowest expression in the CEs stage.
There was a general lack of correlation between the expressions of
DlARF3 and TAS3. We concluded that miR390 down-regulation
of TAS3 leading to the production of tasiRNAs via cleavage
of DlARF3/-4 mRNAs during somatic embryo development in
longan.

MiR390-DlTAS3-DlARF3/-4 Expressions
in Response to Auxin in Longan EC
A previous study showed that miR390 and tasiRNA ARF are
regulated by auxin concentration (IAA; Yoon et al., 2010).
Embryogenesis is inhibited by exogenously supplied 2,4-D
(>10−9 M) or indoleacetic acid (IAA; >10−10 M) in plants
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FIGURE 2 | Continued
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FIGURE 2 | Continued

Longan TAS3 transcript. (A) Sequence alignment of DlTAS3 in D. longan and AT3G17185.1 (TAS3) in A. thaliana. Asterisk represents the consensus nucleotide;
TAS3- tasiRNAs named as 5’D1+ (reads), 5’D2+ (reads), and so on, are highlighted in different colors. The miR390 cleavage site in TAS3 transcript is showed by
red arrow. (B) Phylogenetic relationships among plant TAS3 sequences using the neighbor-joining method. Bootstrap values are in percentages. GenBank accession
numbers for each sequence represented in the tree are as follows: A. thaliana (AtTAS3a, At3g17185; AtTAS3b, At5g49615; AtTAS3c, At5g57735), V. vinifera
(FQ386573); Lotus japonicus (AK338955); Malus domestica (XR_524192); C. sinensis (XR_371831); Solanum lycopersicum (JX047545); O. barthii (GQ420228);
Nicotiana tabacum (FJ804751); Prunus mume (XR_513520); P. trichocarpa (XM_006378492). (C) Sequence alignment between 5’D5+ (284) and 5’D6+ (478).

TABLE 3 | The sequence abundance of longan TAS3 tasiRNA.

No. tasiRNA sequence and color Reads in smallRNA database

D1+ TTCTCCTTCCTTGTCTATCCC 8

D2+ CCCGTTTCCGTCCAACTCATC 1

D2− CTACTCAACCTGCCTTTGCCC 26

D3+ TTCTAGTTTTTTTAAAGACTC No hits found

D4+ CGTTAAGAATTGGTCGCTTAT 80

D5+ TCTTGACCTTGTAAGATCCCG 284

D6+ TCTTGACCTTGTAAGACCTTT 478

D7+ TTTTATTTCTATTTTTAGTCT 1

D8+ TTCTACCACCCTCTCCTTTAT 1

(Ruduś et al., 2002). Here, to examine how the pathway of
miR390-TAS3- ARF3/-4 expression is regulated by 2,4-D, their
expression levels were monitored in longan EC exposed to
different 2,4-D concentrations (Figure 5B). The results showed
that their levels all accumulated at 1.0 mg/L 2,4-D compared with
auxin-free medium under the same conditions, but decreased at
higher concentrations, except for DlTAS3. In contrast to miR390-
ARF3/-4,DlTAS3was expressed at its lowest level at 0.5 mg/L 2,4-
D compared with auxin-free, increased at 1.0 mg/L, but decreased
at 1.5 mg/L, and reached its peak at 2.0 mg/L (Figure 5B). This
result demonstrated that the presence of auxin in the medium
controlled the level of miR390-TAS3-ARF3/-4, which is similar to
the results of a previous study (Yoon et al., 2010).

MiR390-DlTAS3-DlARF3/-4 Expressions
in ‘Sijimi’ Longan Tissue Types
To more precisely pinpoint the locations of miR390-TAS3-
ARF3/-4 expressions, the tissues of the cultivar ‘Sijimi’ longan at
nine stages of development, roots (R), leaves (L), floral buds (FB),
flowers (F), young fruits (YF), mature fruits (MF), pericarp (P1),
pulp (P2), and seeds (S) were used to assay RNA accumulation.

The results showed that primary transcripts of miR390,
DlTAS3, DlARF3 and -4 exhibited more or less expression
in vegetative and reproductive organs, and were preferentially
expressed in roots (Figure 5C), suggesting they might affect
‘Sijimi’ root development. In addition, DlTAS3, DlARF3 and -
4 were also expressed at relatively high levels in pulp (P2) and
seeds (S), while the primary miR390 transcript expression was an
exception, implying that TAS3-ARF3/-4 may also be involved in
the fruit development of longan. Furthermore, the expressions
of pri-miR390 in young fruits (YF), mature fruits (MF), and
pericarp (P1), DlTAS3 in pericarp (P1), and DlARF4 in leaves
(L) and flower buds (FB) in mature fruits were low. These data
revealed extensive regulation roles of miR390-TAS3-ARF3/-4

signal in the developmental stages of vegetative and reproductive
growth in ‘Sijimi’ longan.

DISCUSSION

MiRNAs and tasiRNAs are small RNAs of ∼21 nucleotides
in length that have various roles as negative regulators of
mRNA targets in plant physiology and development (Chuck
et al., 2009). TasiRNAs originate from TAS3 families through
miR390-guided initiation-cleavage of primary transcripts and
targetARF2/-3/-4, which are involved in the normal development
of lateral roots (Marin et al., 2010;Yoon et al., 2010) and
flowers in plants (Matsui et al., 2014); however, their roles
in embryo development are still unclear. Here, we cloned,
identified and examined the expressions of primary miR390 and
its promoter, DlTAS3, tasiRNA, and its targets DlARF3/-4 in
longan. This study was the first systematic investigation of the
conserved pathwaymiR390-TAS3-ARF3/-4 in longan SE, thereby
providing insights into a possible role in plant somatic embryo
development.

Characteristics of Longan Primary
miR390 and its Promoter
MicroRNAs and tasiRNAs are both produced from larger capped
and polyadenylated precursor non-coding transcripts of a few
hundred base pairs in size (Krasnikova et al., 2009). However,
the precursors of miRNAs or tasiRNAs are little studied and
cloned, and have only been reported in some genome-sequenced
or model plants, such as Arabidopsis (Xie et al., 2005) and
G. max (Han et al., 2014). In non-genome- sequenced or non-
model plants, it is hard to clone the precursors of small RNA.
Here, based on the transcriptome data and RT-PCR/RACE, we
successfully cloned the primary transcripts of miR390 and TAS3,
and identified their TTS without genome data. These results laid
the foundation for further experiments to identify the functions
of longan miR390 and TAS3.

MiR390 has two genomic loci, on chromosome 2 (MIR390a)
and 5 (MIR390b) in Arabidopsis (Montgomery et al., 2008a);
the mature miR390 mostly originates from the MIR390a and
not from the MIR390b locus in roots (Marin et al., 2010).
MIR390a exhibited higher processing accuracy and efficiency of
miR390 than theMIR390b (Cuperus et al., 2010). In longan, only
one primary miR390 was cloned and its precursor was closest
to pre-miR390s identified from C. sinensis and O. sativa, but
closer to pre-miR390a and close to pre-miR390b in Arabidopsis,
suggesting that the longan pre-miR390 cloned in our study
perhaps has a similar function to the Arabidopsis MIR390a.
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TABLE 4 | Identified potential target genes of longan TAS3-tasiRNA.

tasiRNA Target
accession No.

Target description Target_end

D4+ AT5G11040 RDR6, RNA-dependent RNA polymerase 6 miRNA 21 UAUUCGCUGGUUAAGAAUUGC 1
Target 1284 AUAAACGACCAGUUUUUGAUG 1304

AT5G11040 TRS120 miRNA 20 AUUCGCUGGUUAAGAAUUGC 1
Target 2904 UAAGCUACCGGUUCUUGAUG 2923

D5+ AT2G33860 ARF3, Transcriptional factor B3 family protein / auxin-
responsive factor AUX/ IAA- relate

miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 1674 AGGGUCUUGCAAGGUCAAGA 1693

KJ200347 ARF3, auxin-responsive factor AUX/IAA- relate miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 1470 AAGGUCUUGCAAGGUCAAGA 1489
miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 1680 AAGGUCUUGCAAGGUCAAGA 1699

AT5G60450 ARF4, auxin response factor 4 miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 2084 AGGGUCUUGCAAGGUCAAGA 2103

KJ200347 ARF4, auxin response factor 4 miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 1462 AAGGUCUUGCAAGGUCAAGA 1481
miRNA 20 CCCUAGAAUGUUCCAGUUCU 1
Target 1663 AAGGUCUUGCAAGGUCAAGA 1682

AT3G12910 NAC (no apical meristem) domain transcriptional regulator
superfamily protein

miRNA 21 GCCCUAGAAUGUUCCAGUUCU 1
Target 238 UGGGAUCUUCCAAGGUCGAGG 258

AT4G39850 Peroxisomal ABC transporter 1 miRNA 21 GCCCUAGAAUGUUCCAGUUCU 1
Target 374 CGGGGUCUUGUAGCGUCAAGA 394

AT3G15270 SPL5, squamosa promoter binding protein-like 5 miRNA 21 GCCCUAGAAUGUUCCAGUUCU 1
Target 704 UGGCAUCUAACAAUGUCAAGA 724

AT1G70320 UPL2 | ubiquitin-protein ligase 2 miRNA 21 GCCCUAGAAUGUUCCAGUUCU 1
Target 3848 UGGGAUUUU-CAAGGUCAAGG 3867

D6+ AT2G33860 ARF3, transcriptional factor B3 family protein/auxin-
responsive factor AUX/IAA- relate

miRNA 20 UUCCAGAAUGUUCCAGUUCU 1
Target 1794 AAGGUCUUGCAAGGUCAAGA 1813

KJ200347 ARF3, transcriptional factor B3 family protein/auxin-
responsive factor AUX/ IAA- relate

miRNA 21 UUUCCAGAAUGUUCCAGUUCU 1
Target 1469 GAAGGUCUUGCAAGGUCAAGA 1489
miRNA 20 UUCCAGAAUGUUCCAGUUCU 1
Target 1680 AAGGUCUUGCAAGGUCAAGA 1699

AT5G60450 ARF4, auxin response factor 4 miRNA 21 UUUCCAGAAUGUUCCAGUUCU 1
Target 2083 AAGGGUCUUGCAAGGUCAAGA 2103

KJ200347 ARF4, auxin response factor 4 miRNA 21 UUUCCAGAAUGUUCCAGUUCU 1
Target 1662 GAAGGUCUUGCAAGGUCAAGA 1682
miRNA 20 UUCCAGAAUGUUCCAGUUCU 1
Target 1462 AAGGUCUUGCAAGGUCAAGA 1481

AT1G77320 MEI1, transcription coactivators miRNA 21 UUUCCAGAAUGUUCCAGUUCU 1
Target 66 GAAGCUCUUACAAAGUCGAGA 86

AT5G57270 Core-2/I-branching beta-1,6- N-
acetylglucosaminyltransferase family protein

miRNA 20 UUCCAGAAUGUUCCAGUUCU 1
Target 516 AAGUUUUUCCAGGGUCAAGA 535

Previously, miR390, which has been reported to respond to
UV-B in Populus tremula (Jia et al., 2009), Cd (Ding et al., 2011)
and As (Srivastava et al., 2013) stress in rice, was down-regulated
in response to Al (Chen et al., 2012) and Hg-toxicity (Zhou et al.,

2012) in Medicago truncatula, and up-regulated under drought
stress in Vigna unguiculata (Barrera-Figueroa et al., 2011) and
Brachypodium distachyon (Budak and Akpinar, 2011). In our
study, the cis-acting elements of miR390 promoter related to
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FIGURE 3 | Alignment of TAS3 sequences corresponding to the TAS3 tasiRNAs in orthologs of 11 species. GenBank accession numbers are as follows:
V. vinifera (FQ386573), P. trichocarpa (XM_006378492), M. domestica (XR_ 524192), C. sinensis (XR_371831), Prunus mume (XR_513520), S. lycopersicum
(JX047545), L. japonicus (AK338955), Nicotiana tabacum (FJ804751), A. thaliana (At3g17185), O. barthii (GQ420228).

FIGURE 4 | Validation of tasiRNA guided cleavage of target genes DlARF3, -4 and mapping of the cleavage sites in target gene mRNAs. Numbers
indicate the fraction of cloned PCR products. The B3 DNA binding domain (B3), Auxin_resp, and AUX_IAA, are highlighted in green, red, and blue in the ARF3 and
-4 proteins, respectively. The tasiRNA complementary sequence in the DlARF3 and -4 mRNA and the corresponding amino acid sequences are shown.

TC-rich repeats (defense and stress responses), and a Box-W1
element, which is a binding site for the WRKY transcriptional
regulators that control pathogen defense, wound response, and
senescence (Eulgem et al., 2000), were also identified, indicating
the potential role of miR390 in stress responses in longan.
In addition, miR390 was differentially regulated under heat
conditions in switchgrass (Hivrale et al., 2015) and Brassica
rapa (Yu et al., 2012). In longan, a cis-acting element related
to heat stress responses (HSE motif) was identified, which was

also present in miR390 promoter in strawberry (Li et al., 2014),
indicating a potential role for heat in the control of miR390
accumulation in plants.

Previous studies showed that miR390 and tasiRNA ARF were
positively regulated by auxin (IAA) concentration, but were
not sensitive to abscisic acid, gibberellins, and cytokinin (Yoon
et al., 2010; Li et al., 2013). Here, although no auxin-related
cis-elements were identified in the longan miR390 promoter,
pri-miR390 was up-regulated by 2,4-D treatment, suggesting that
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FIGURE 5 | Continued
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FIGURE 5 | Continued

Expression profiles of miR390, pri-miR390, DlTAS3, DlARF3 and -4 in D. longan. (A) Relative expressions of miR390, pri-miR390, DlTAS3, DlARF3 and -4
during longan SE. Samples: EC, friable- embryogenic callus; ICpEC, incomplete compact pro-embryogenic cultures; GE, globular embryos; TE, torpedo-shaped
embryos; CE, cotyledonary embryos. Expression level was normalized to the reference genes DlFSD1a, EF-1a, and eIF-4a. (B) Auxin control of primary miR390,
DlTAS3, DlARF3 and -4 expression levels. The expression levels were normalized to the reference gene EF-1a. (C) Differential expression analysis of primary miR390,
DlTAS3, DlARF3 and -4 in vegetative and reproductive tissues of ‘Sijimi’ longan. Samples: R, roots; L, leaves; FB, floral buds; F, flowers; YF, young fruit; MF, mature
fruit; P1, pericarp; P2, pulp; S, seeds. The expression level was normalized to the reference genes DlFSD1a, EF-1a, and eIF-4a; The y-axes represent the relative
expression values; the x-axes represent the vegetative and reproductive samples of ‘Sijimi’ longan. Different lowercase letters above the bars indicate a statistically
significant difference, and identical lowercase letters denote no significant difference among different samples (P < 0.05).

ARF elements may be present outside of the 927 bp promoter
region; in addition,DlTAS3,DlARF3 and -4 expressions were also
up-regulated by 2,4-D in a concentration-dependent manner,
implying that 2,4-D may influence the activity of the tasiRNA-
ARF pathway through its concentration-dependent regulation
of miR390 expression. However, the negative regulatory
relationship was not observed among miR390, DlTAS3, DlARF3
and -4 under 2,4-D treatment, suggesting that the molecular
mechanism of these genes response to 2,4-D is more complicated
than expected, this needs further experimental verify. It is worth
noting that the primary miR390, whose promoter contains a
SA- responsive element (TCA element), was not sensitive to SA
treatment (50, 75, and 100 mg/L) compared with hormone free
(data not shown). A previous study showed that the mature
miR390s response to auxin was significantly broader than that
of the miR390 promoter GUS expression (Yoon et al., 2010),
leading to a possible interpretation that SA affects the expression
of mature miR390 but does not affect the expression of primary
miR390 in longan.

TAS3 and tasiRNA Expressed in
Longan SE
MiR390 targets TAS3. Here, a 579-bp cDNA was cloned from
longan EC cDNA, which was homologous to TAS3 in plants. The
data presented here provide further evidence for the existence
of TAS3 in D. longan. Three TAS3 loci have been identified in
Arabidopsis: TAS3a (At3g17185), TAS3b (At5g49615), and TAS3c
(At5g57735; Howell et al., 2007). In our study, the DlTAS3 is
phylogenetically closer to AtTAS3a than AtTAS3b/c, suggesting
that DlTAS3 may have a similar function to AtTAS3a. TAS3
tasiRNAs arise from the TAS3 family, all members of which have
conserved two miR390-guided target sites; for each member, the
3′ miR390 target site, but not the 5′ target site, was cleaved
(Howell et al., 2007). Recently, however, the 5′ miR390 binding
site in TAS transcripts was demonstrated to undergo cleavage for
the initiation of processing in dicots (Krasnikova et al., 2009).
In this study, two miR390 target sites also existed in DlTAS3,
and the cleaved site was predicted to be located near the 3′ end
of the DlTAS3. Moreover, the longan small RNA data analysis
showed that tasiRNAs of 21 nucleotides formed by miR390-
guided cleavage on the 3′ side of DlTAS3 were also found in
longan SE, which further proved that the roles of miR390-cleaved
TAS3 in the production of tasiRNAs are also functional and
conserved in longan.

In the longan small RNA data, eight DlTAS3 tasiRNAs were
found, and the reads of TAS3_5′D5+ and 5′D6+ tasiRNAs,

which are similar to the tasiRNAs of TAS3 5′D7+/5′D8+
identified from G. max (Hu et al., 2013) and L. leptolepis (Zhang
et al., 2013), were more abundant during longan SE, suggesting
that their roles might be related to the development of longan
SE. TasiRNAs guide homologous mRNAs cleavage, as do plant
miRNAs (Hao et al., 2006; Ruduś et al., 2006). Plants TAS3
5′D7+/5′D8+ both target ARF3 and -4 (Kikuchi et al., 2006). The
longan 5′D5+ and 5′D6+ tasiRNAs, which target ARF3 and -4,
were also verified, suggesting that the miR390-tasiRNA-ARF3/-4
pathway is conserved in different plants. It is worth mentioning
that the longan TAS3_5′ D4+ targets RNA-dependent RNA
polymerase 6 (RDR6), which is required for the production
of tasiRNAs in Arabidopsis (Hao et al., 2006), suggesting the
existence of an interactive relationship between tasiRNA and
RDR6 during longan SE.

MiR390, DlTAS3, DlARF3 and -4 Define
an Auto-regulatory Network in Longan
Somatic Embryo Development
We established that the pathway miR390-TAS3-ARF3/-4 operates
in longan, like other plants, but its roles during plant SE remained
unclear. In our study, primary miR390 reached a peak in EC,
which is consistent with the mature miR390 expression in
G. hirsutum (Yang et al., 2013). The mature miR390 showed its
lowest expression in EC and highest expression in TEs in longan,
and reached a peak in globular-shaped embryo in Valencia
sweet orange (Wu et al., 2011). This implied that miR390 has
different expression patterns during SE, suggesting that miR390
has different roles during SE in different plants. In addition,
there was a general lack of correlation between the expression of
pri-miRNAs and the corresponding mature miR390s in longan,
which is a common phenomenon in eukaryotes (Lee et al., 2008),
suggesting that unknown mechanisms that control processing
play a critical role in regulating the mature miRNA expression.

Previous studies showed that the miR390-TAS3 tasiRNA
pathway might play regulatory roles in the development of
mature embryos in larch (Zhang et al., 2012, 2013). Here,
DlTAS3 exhibited the lowest expressions in EC, and reached
its peaks in the GEs stage, which was mostly the reverse of
the expression of miR390, further confirming that miR390
cleaved DlTAS3, leading to the production of tasiRNAs in
longan. A previous study observed that the expression pattern
of TAS3_5′D7+ was identical to that of miR390 during SE in
B. napus (Zhao et al., 2012), suggesting that the expression
of TAS3 tasiRNA was induced by miR390. In addition, TAS3
mRNA reached its peak at EC after 1–5 days of sub-culture
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in larch (Zhang et al., 2012), which was distinct from that of
longan SE, implying that the roles of the miR390-TAS3 signal
are not conserved between angiosperm and gymnosperm species.
Moreover, parallel expression of DlTAS3 and DlARF4 during
longan SE was observed, while DlARF3 showed little variation
among the tissues. Obviously, the expression levels between
DlTAS3 and DlARF3 were largely not correlated at the transcript
levels, which was also found between TAS3a-5′D6+ and its
target ARFs in Triticum aestivum (Tang et al., 2012). Taken
together, we propose that the pathway of miR390-TAS3-tasiRNA-
ARF3/-4 operates in the development of longan embryo. MiR390-
TAS3 tasiRNAs and ARFs define an autoregulatory network
quantitatively by regulating lateral root growth (Marin et al.,
2010). Here, the primary transcripts of miR390, DlTAS3, DlARF3
and -4 were all preferentially expressed in ‘Sijimi’ longan
roots; therefore, we propose that their roles in roots are
also conserved in longan. Besides, DlTAS3, DlARF3 and -4
were also expressed at relatively high levels in the pulp and
seeds, implying extended roles in the development of longan
fruit.

In summary, this study was the first to identify the longan
miR390-TAS3 tasiRNA- ARF3/-4 axis, using a RACE strategy
and the expression profiles of small RNA and their targets in
longan SE.We demonstrated thatMiR390,DlTAS3,DlARF3 and -
4 define an autoregulatory network duing longan somatic embryo
development.
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