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The plastid terminal oxidase (PTOX) is a non-heme diiron quinol oxidase that oxidizes
plastoquinol and reducedO2 to H2O. PTOXwas discovered in the so-called immutansmutant ofA.
thaliana showing a variegated phenotype (Wetzel et al., 1994; Carol et al., 1999). PTOX is localized
in the non-appressed regions of the thylakoid membrane (Lennon et al., 2003) and is involved in
carotenoid biosynthesis, plastid development, and chlororespiration. Reviews have focused on the
role of PTOX in chlororespiration (Bennoun, 2002; Rumeau et al., 2007), in chloroplast biogenesis
(Putarjunan et al., 2013) and in stress responses (McDonald et al., 2011; Sun and Wen, 2011). A
recent review by Nawrocki et al. (2015) has addressed the role of PTOX in poising the chloroplast
redox potential in darkness. However, its role and interplay with the photosynthetic electron flow
remains unclear.

Plants grown in moderate light under non-stress conditions have low PTOX concentrations
(about 1 PTOX protein per 100 PSII; Lennon et al., 2003). By contrast, elevated PTOX levels
have been found in plants exposed to abiotic stresses such as high temperatures, high light and
drought (Quiles, 2006), salinity (Stepien and Johnson, 2009), low temperatures and high intensities
of visible (Ivanov et al., 2012), and UV light (Laureau et al., 2013). PTOX has been proposed
to act as a safety valve by protecting the plastoquinone pool from overreduction under abiotic
stress. A highly reduced PQ pool hinders forward electron flow and triggers charge recombination
in photosystem II (PSII) leading to the generation of triplet chlorophyll and highly toxic singlet
oxygen. However, overexpression of PTOX in A. thaliana did not protect against light-induced
photodamage (Rosso et al., 2006) and even enhanced photo-oxidative stress in tobacco expressing,
in addition to its endogenous enzyme, either PTOX fromA. thaliana (Heyno et al., 2009) or PTOX1
from C. reinhardtii (Ahmad et al., 2012). Different to higher plants C. reinhardtii possesses two
isoforms, PTOX1 and PTOX2. PTOX1 is most likely responsible for regenerating PQ for phytoene
desaturation and shows a lower rate of plastoquinol oxidation during photosynthesis than PTOX2
(Houille-Vernes et al., 2011).

Using purified PTOX, Yu and coworkers have recently shown that depending on the quinol
concentration PTOX can act as an anti-oxidant or pro-oxidant (Feilke et al., 2014; Yu et al., 2014).
PTOX activity was found to be pH insensitive between pH 6.0–8.5 when as substrate decylPQH2

dissolved in methanol was used (Yu et al., 2014). During the catalysis, peroxide intermediates are
formed at the diiron center. Depending on the lifetime of these intermediates, reactive oxygen
species (ROS) can be generated as a side reaction. Isolated PTOX generates superoxide radicals
at both high, but physiologically relevant, quinol concentrations at pH 8.0 and substrate limiting
concentrations at pH 6.0–6.5 (Feilke et al., 2014; Yu et al., 2014). When substrate is limited, the
second quinol may not arrive in time leading to superoxide formation directly at the catalytic
center. Alternatively, since at pH 8.0 the semiquinone is more stable than at pH 6.0, it is conceivable
that the high pH stabilized semiquinone acts as a ROS generator. PTOX in overexpressors has
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FIGURE 1 | Hypothetical model of the regulation of PTOX activity by the proton gradient in higher plants. Under non-saturating light conditions linear

electron transport between PSII and PSI takes place and a moderate proton gradient is established across the thylakoid membrane. PTOX cannot operate since it has

no access to its substrate plastoquinol. At saturating light intensities linear electron transport is slowed down, the proton gradient and the plastoquinol concentration

increases. The stroma gets more alkaline allowing PTOX to associate to the membrane and to catalyze the oxidation of plastoquinol. Production of O2
•− in a side

reaction may trigger a ROS signaling pathway and thereby a stress acclimation response.

also been found to generate superoxide in the light (Heyno et al.,
2009).

By oxidizing plastoquinol PTOX reduces the number of
electrons available for photosynthetic electron flow. It is generally
accepted that PTOX has low activity compared to photosynthetic
electron flow. The maximum rate of PTOX was reported to
be 5 e− s−1 PSII−1 for PTOX2 in C. reinhardtii and 0.3 e−

s−1 PSII−1 in tomato while the maximal rate of photosynthesis
is approximately 150 e− s−1 PSII−1 (Nawrocki et al., 2015).
However in plants exposed to stress, PTOX activity can account
for 30% of the PSII activity (Stepien and Johnson, 2009).
The in vitro enzyme activity of PTOX is high when substrate
concentrations are saturating (up to 19.01 ± 1.1µmol O2mg
protein−1 min−1; Yu et al., 2014). This corresponds to a turnover
rate of 320 e− s−1 PTOX−1 at 35◦C, the optimum temperature for
PTOX from rice. The discrepancy between the reported PTOX
activities in planta and the Vmax measured with the purified
protein points to a mechanism that allows the regulation of
PTOX activity depending on the reduction state of the electron
transport chain.

Since PTOX can compete with linear and cyclic electron
flow (Feilke et al., 2015) and consequently lowers NADPH, ATP
production and CO2 fixation and potentially generates ROS, its
activity must be tightly controlled. High activity is beneficial
for the plant to protect the photosynthetic apparatus against
photoinhibition when the electron transport chain is in a highly
reduced state as it is the case under abiotic stress when the
stomata are closed due to water stress or when CO2 fixation
is limited by unfavorable temperatures. However, high PTOX
activity is detrimental to high photosynthetic activity when light
and CO2 are not limiting.

These observations have led us to postulate the following
hypothesis (Figure 1) that explains the discrepancies in the
literature about the safety valve function of PTOX.When stromal
pH is alkaline (in high light), PTOX may become associated
with the membrane giving it access to its substrate, lipophilic
plastoquinol, leading to efficient oxidation of the quinol and

reduction of O2 to H2O. By contrast when stroma pH becomes
less alkaline (under non-saturating light conditions) PTOX may
be soluble. Soluble PTOX cannot access its substrate plastoquinol
that is located in the thylakoid membrane and the enzyme is
effectively inactive. Activity of carotenoid biosynthesis enzymes
may be regulated in a similar manner. Phytoene desaturase,
which catalyzes the reaction of lipophilic phytoene to ζ-carotene,
is found in the stroma both as a tetrameric membrane-bound
form which has access to substrate and a soluble multi-
oligomeric form in the stroma that does not (Gemmecker et al.,
2015). Another example of an enzyme known to associate with
the membrane in a pH-dependent manner is the violaxanthin
de-epoxidase (Hager and Holocher, 1994). This enzyme
associates with the thylakoid membrane when the luminal pH
decreases.

The model of pH-dependent regulation of PTOX activity by
membrane association allows us to rationalize how PTOX could
act as a safety valve under conditions of stress such as drought,
high light and extreme temperatures when the stomata are closed
and the CO2 assimilation rate is low and the stromal pH is
alkaline. Its dissociation from the membrane at less alkaline pH
would hinder its competition with the photosynthetic electron
chain for its substrate plastoquinol. Chlororespiration in the dark
requires membrane associated PTOX. In our model, this can
only take place when a proton gradient is created in the dark
by hydrolysis of ATP that is either present in the chloroplast
or delivered to the chloroplast from mitochondria. Additionally,
when the plastoquinone pool is highly reduced, PTOX can
generate superoxide, a potential signaling mechanism that causes
the expression levels of responsive genes to change allowing the
plant to acclimate to changes in its environment.
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