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In this study, we used the fluorescence probe, Di-4-ANEPPDHQ, to map the distribution
of membrane lipid order in the apical region of Arabidopsis roots. The generalized
polarization (GP) value of Di-4-ANEPPDHQ-stained roots indicated the highest lipid
order in the root transition zone (RTZ). The cortical cells have higher lipid order than the
epidermal cells in same regions, while the developing root hairs show very prominent cell
polarity with high lipid order in apical region. Moreover, the endosomes had lower lipid
order than that of the plasma membrane (PM). Brefeldin A (BFA) treatment decreased
the lipid order in both the plasma and endosomal membranes of epidermal cells in the
RTZ. The lipid order of BFA-induced compartments became higher than that of the PM
after BFA treatment in epidermal cells. Meanwhile, the polarly growing tips of root hairs
did not show the same behavior. The lipid order of the PM remained unchanged, with
higher values than that of the endosomes. This suggests that the lipid ordering in the
PM was affected by recycling of endosomal vesicles in epidermal cells of the root apex
transition zone but not in the root hairs of Arabidopsis.

Keywords: root apex, Di-4-ANEPPDHQ, membrane order, membrane microdomains, root transition zone

INTRODUCTION

According to the classic Fluid Mosaic Model proposed by Singer and Nicolson (1972) in, the
plasma membrane (PM) consists of homogeneous lipid bilayers with embedded proteins arranged
as mosaic-like structures (Singer and Nicolson, 1972). The lipid bilayer is considered a structural
component, providing a hydrophobic barrier to water-soluble substances, while integrated proteins
have essential roles in physiological functions. In the original Fluid Mosaic Model, membrane
proteins insert into the membranes postulated with uniform lipid bilayers. Almost a decade later,
this model was challenged since multiple lines of evidence suggested that the PM consisted by
heterogeneously distributed components. Therefore, Karnovsky presented an advanced concept
of lipid membrane domains for the first time (Karnovsky et al., 1982; Pike, 2009). Simons and
Van Meer (1988) found that apical and basal PM of epithelia have different lipid compostion,
the sphingolipid-cholesterol-protein complexes must be delivered to the correct membrane
domains from trans-Golgi network (Simons and Van Meer, 1988). Later, Simons and Ikonen
(1997) proposed a lipid-raft concept and reviewed experimental evidences to link the lipid- raft
with signaling processes within cells (Simons and Toomre, 2000). In this so-called lipid-raft
model, membrane microdomains are regions enriched with sterol and sphingolipids components,
creating a highly ordered and tightly packed region than the surrounding regions enriched
with phosphoglycerides. Raft structures provide docking areas for functional proteins, forming
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sphingolipid-cholesterol-protein complexes that play essential
roles in signal transduction and membrane trafficking
(Simons and Toomre, 2000). Importantly, the distribution
of microdomains showed asymmetric patterns, especially in
polarized cells (Simons and Van Meer, 1988; Meer, 1989;
Mostov et al., 1992). For example, the polarized distribution
of microdomains was observed in nerve cells, polarized T
helper lymphocytes, and sperm cells (Tsui-Pierchala et al., 2002;
van Gestel et al., 2005a,b; Legembre et al., 2006). However,
non-polarized cells, such as lymphocytes and fibroblasts, do
not have an obvious polarized distribution of microdomains
(Tsui-Pierchala et al., 2002). Obviously, the polar distribution of
microdomains in specific cell types has a close relationship with
the establishment of cell polarities, which play essential roles
in physiological functions in these cells (Martin and Konopka,
2004; Fischer et al., 2008).

The microdomain concept was introduced into plant
cytological studies several years later. In Mongrand et al.
(2004), purified and analyzed proteins in the detergent resistant
membrane (DRM) components, providing the first evidence
for the existence of microdomains in plant cells. Since then,
various functional proteins associated with the DRM have been
identified in different plant species (Morel et al., 2006; Lefebvre
et al., 2007; Srivastava et al., 2009). Considering that the DRM
fractions do not directly reflect membrane structures (Tanner
et al., 2011), further light microscopic and electron microscopic
studies were performed to support the existence of microdomains
in plant cells. Based on these results, functional proteins and
lipid components in microdomains were shown to play different
roles (Liu et al., 2009; Raffaele et al., 2009; Furt et al., 2010;
Ovečka et al., 2010; Simon-Plas et al., 2011; Li et al., 2012;
Malinsky et al., 2013). Polar localization of an auxin efflux
carrier, the PIN-formed proteins, was shown to have a close
relationship with sterols. Willemsen et al. (2003) suggested that
sterol methyltransferase 1 (SMT1) is essential in maintaining the
polar localization of PIN1 and PIN3. PIN2 polarity via endosomal
recycling is also sterol dependent. Polar PIN2 localization on
the microdomains is mediated by the auxin ABC transporter
ABCB 19 (Men et al., 2008; Titapiwatanakun et al., 2009). The
sterol components maintain the polarity of tip growing cells. Liu
et al. (2009) found that the pollen tube tips of Picea meyri are
enriched in sterol microdomains, providing docking domains for
NADPH oxidase. Ovečka et al. (2010) revealed that structural
sterols are essential in the initiation and tip growing of root
hairs of Arabidopsis. Polyphosphoinositides are also enriched
in DRM fractions, forming signaling microdomains in plant
cells (Furt et al., 2010). In non-polarized cells, sterol-enriched
components may play a role in the formation of cell plates
(Frescatada-Rosa et al., 2014). However, these studies examined
the lipid distribution in specific cells. Importantly, an overview of
microdomain distribution throughout whole plant organs is not
available.

Two fluorescence probes were used in previous studies to
visualize the distribution of lipid components in plant cells.
Filipin is a sterol-specific dye and di-4-ANEPPDHQ a phase-
sensitive fluorescence probe, which can quantitatively image
the lipid order in living cells (Boutté et al., 2011). Since the

emission peak of di-4-ANEPPDHQ has a blue shift in ordered
phase, quantitative measurement of the membrane order can be
achieved by ratiometric calculation between images taken from
two channels. With this principle, Owen et al. (2011) provided
an algorithm for quantitative imaging of lipid order in live cells.
The quantified lipid order in the PM reflects the distribution of
liquid ordered phase in cells of different tissues or in the different
region on the PM (Owen et al., 2010; Kress et al., 2013). Namely,
concentrated membrane microdomains can increase lipid order,
resulting in the high GP values. In consideration of the relative
high cytotoxity of filipin to plant cells (Ovečka et al., 2010; Boutté
et al., 2011), we have used di-4-ANEPPDHQ as an optimal probe
to visualize and quantify the lipid order in membranes of living
plant cells (Zhao et al., 2015). Moreover, di-4-ANEPPDHQ was
used for imaging pf polarly growing pollen tubes as well, and it
was clearly reported that the apical regions ofNicotiana tabacum,
Picea meyeri have significant higher GP values than other regions
(Liu et al., 2009; Moscatelli et al., 2015).

Our present results provide a map of lipid raft distribution
in cells of the root apex zones, indicative of the structural and
functional roles of lipid rafts in the determination of cell polarities
in root cells. In this map, we show that the root transition
zone (RTZ) showed the highest lipid order along the whole
root region, the cortical cells showed higher order than those of
epidermal cells, and endosomes contained lower lipid order than
the PM. Moreover, treatment with brefeldin A (BFA) alters this
distribution of lipid order between PM and endosomes.

RESULTS

Lipid Order in Root Functional Zones
In this study, we used the a method established by Owen et al.
(2011) to calculate the GP value of the PM in root apical regions.
Pseudo-colored images, named HSB (hue-saturation-brightness)
were created by multiplying the GP values by the intensity
values in each pixel (Figure 1, Supplementary Figure S1). In
these images, GP values were indicated by color information,
the minimum GP value was set to −0.42 (dark blue) and the
maximum value to 0.79 (red to white). The original GP images
are shown in supplementary images (Supplementary Figure S1)
and the statistical calculation on GP values are presented in
Figure 2.

From this overview image of the epidermal cells along
the whole root apical region, we observed an asymmetric
distribution of GP values in different root functional regions
(Figures 1A,B). From the quiescent center (QC), four functional
zones be recognized in root: the root apical meristem (RAM,
100 μm from QC) and root apex transition zone (RTZ, 100–
250 μm from QC) regions have obviously higher GP values
(red) than those of the elongation zone (EZ, 250–550 μm
from QC) and growth termination zone (GTZ) (green to
yellow, more than 550 μm from QC). In the overview image
of the cortical layer, similar trends of changes in GP values
were observed, with the RTZ showing the highest GP value
(Figures 1C,D). Moreover, the cortical cells showed as a red-
and purple-colored boundary, while the epidermal cells in this

Frontiers in Plant Science | www.frontiersin.org 2 December 2015 | Volume 6 | Article 1151

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Zhao et al. Lipid Order Map in Roots

FIGURE 1 | Distribution of lipid order based on Di-4-ANEPPDHQ staining. Four-day-old Arabidopsis seedlings were stained using Di-4-ANEPPDHQ.
Dual-channel images were taken using the confocal laser scanning microscope (CLSM) with the z-series functions. Optical sections from the epidermal and cortical
layers were chosen for GP-imaging, the hue, saturation, and brightness (HSB) images were calculated and shown here. (A,B): epidermis; (C,D): cortex + epidermis.
(C,D) Are magnified from (A,B). The spectral bar indicates the GP values from the images; purple color represents high GP values and blue color represents low
values. Twelve roots were analyzed, all of them showed the same pattern. HSB and GP image of another roots were shown in Supplementary Figure S1. GTZ,
growth differentiation zone; EZ, elongation zone; RTZ, root transition zone; RAM, root apical meristem. Bar = 100 μm (A,B); Bar = 25 μm (C,D).

region were converted into a yellow color, suggesting that the
cortical cells have higher lipid order than do the epidermal cells
(Figure 1).

Since the colorful image provide an intuitive but not precise
view on the GP distribution, we further quantified GP values
(GP/pixel) in epidermal and cortical cells along whole root apical
regions in four distinct functional zones. Among them, cortical
cells in the RTZ had the highest GP values (GP = 0.58 ± 0.01)
(Figure 2A). Behind the RTZ, the GP value continued to decrease
until reaching the GTZ, in which cortical and epidermal cells have
relative low GP values (GP/pixel < 0.25). Furthermore, when
cells differentiated into epidermal and cortical cells behind the
meristem, different GP values were clearly represented between
these two cell layers (see magnified regions in Figures 1B,D). The
GP values of the PM in cortical cells were higher (0.58 ± 0.01)
than those scored in epidermal cells (0.58± 0.02) (Figures 2A,B).
Similar phenomenon was observed in RAM, RTZ and EZ
(Figure 2). However, the cortical and epidermal cells from GTZ

showed no significant differences according statistic analysis
(Figure 2).

Polarity of Lipid Order Distribution in
Root Hairs
We further measured the lipid order in root hairs, which are
typical polar growing cells in roots, to understand the distribution
of lipid order in polar growing cells. In Figure 3A, the polar
distribution of the highly ordered PM was not observed during
the initiation stage of root hairs (length < 10 μm). The root
hair tip region is shown in green, similar to the outer periclinal
membranes of epidermal cells (Figure 3A). The inner periclinal
membranes showed yellow- to orange-colored borders between
cortical and epidermal cells, indicating higher membrane orders
in this neighbor cortical cell (Figure 3A). Meanwhile, the quickly
growing root hairs (length between 10 and 50 μm) showed
orange- to red-colored apical regions in the HSB image, indicative
of a polar distribution of high-ordered membrane domains in the
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FIGURE 2 | Distribution of the lipid order along the different cell layers
of the root apical region. (A) Different distribution of GP values in cortical
and epidermal cells in root apical functional regions. Blue: GP/pixel measured
from the root cortex; red: GP/pixel measured from the epidermis. Statistical
significance between the cortical and epidermal layers, according to the
Mann–Whitney u-test: (n = 12, significant difference: p < 0.05; no significant
difference: p > 0.05; p-values were presented). (B) Mean GP values (GP per
pixcel) and standard deviation measured from different regions, the mean
values were calculated from 12 roots. RAM, root apical meristem (100 μm
from QC); RTZ, root transition zone; 100–250 μm from QC, EZ, elongation
zon, 250–550 μm from QC; GTZ, growth differentiation zone, 550–750 μm.

tips of rapidly growing root hair tips. This observation can also
be supported based on quantitative measurements (Figure 3B).
The initiation region of root hairs has similar GP values as those
of the attached PM of epidermal cells (GP/pixel = 0.23 ± 0.04
and 0.22 ± 0.04 respectively), while the quickly growing root
hairs show significantly increased GP values in the tip region
(GP/pixel = 0.31 ± 0.02). The mean GP values and standard
deviations were listed in Figure 3C, the original GP images of
three different root hairs are shown in Supplementary Figure S2.

Lipid Order of PM and Endosomes
Since endocytosis may be mediated by specific lipid components,
we analyzed the Di-4-ANEPPDHQ-stained plant cells to
investigate the lipid order of PM and endomembrane
components in root cells. The results suggested that the
lipid order measured from the PM region were higher than those
from the cytosol in both the root hairs and epidermal cells in
RTZ (Figures 4A,B). After treatment with BFA, an inhibitor of
vesicle trafficking and secretion, the endosomal vesicles fused
and aggregated into BFA-induced compartments, which were
labeled with Di-4-ANEPPDHQ. Meanwhile, the membrane
lipid order of measured cells was decreased in both the PM and
endosomal compartments of epidermal cells and root hairs.

FIGURE 3 | Distribution of the lipid order in the tip region of growing
root hairs. (A) The 4-day-old Arabidopsis seedlings were stained with
Di-4-ANEPPDHQ. Dual-channel images were taken using CLSM as
longitudinal optical sections, GP images were calculated, and the lipid order
were shown in HSB images. Left: a root hair in an early development stage,
right: a developing root hair. The color bar indicates the lipid order. The scale
bar is 25 μm. (B) Different distributions of GP values in early root hairs and
developed root hairs. In the initiation stage hairs (<10 μm), whole hair region
was measure as tip region, attached epidermal cell was measure as base
region. In the tip growing hairs (10–50 μm), the tip region (10 μm from tip) and
base region (rest part of hairs) were measured and mean values calculated.
(C) Mean GP values (GP per pixcel) and standard deviation in different
regions. Statistical significance between the cortical and epidermal layers,
according to the Mann–Whitney u-test. (n = 30, significant difference:
p < 0.05; no significant difference: p > 0.05; p-values were presented).

The BFA-treated root hairs remained orange in color in the PM
region in the pseudo-color GP images, showing higher lipid
order than those in endosomal compartments (Figure 4C). The
RTZ epidermal cells did not show the same phenomenon after
BFA treatment. We found that the BFA-induced compartments
were faintly orange; while the PM region becasme green in the
pseudo-color GP images (Figure 4D). Quantitative analysis
confirmed these results (Figures 4E,F). In the roots treated
in mock control, GP values obtained from PM were always
significantly greater than that obtained from cytosol region. The
BFA treatment did not change the GP values in PM of root hairs
significantly, while that in all other three regions we focused was
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FIGURE 4 | Asymmetrical distribution of lipid order in the PM and
endosomes. (A,B) Quantitative visualization of lipid order in root hairs (A) and
epidermal cells in the RTZ (B) treated in mock solution (1:1000 DMS for
30 min at room temperature). Scale bar = 25 μm. (C,D) Quantitative
visualization of lipid order in a root hair (C) and epidermal cells (D) from an
Arabidopsis seedling incubated in medium containing BFA (33 μM for 30 min
at room temperature). Scale bar = 25 μm. (E,F) Distribution of GP values in
the PM and endosomes in root hairs (E) and epidermal cells (F) in mock
control (ck) and in BFA sulution. Error bars indicated the standard deviation.
Six roots were selected for statistical analysis. Five different RTZ epidermal
cells (n = 30) and three tip growing root hairs (n = 18) in each roots were
analyzed. Statistical significance between sample was determined by the
Mann–Whitney u-test (significant difference: p < 0.05; no significant
difference: p > 0.05; p-values were presented). (G) Mean GP values and
standard deviation between different regions and treatments.

significantly decreased. Moreover, the BFA-induced endosomal
compartments have higher GP values than PM region in RTZ
epidermal cells, while root hairs have opposite responses. The
mean values and standard deviations were listed in Figure 4G.
Original GP images of three images from each experiments are
shown in Supplementary Figure S3.

DISCUSSION

Root, the underground part of plants, is not only the anchor of the
plant body, but also an active organ in perception, transduction,
and reaction to environmental signals, including organic and
inorganic factors in the soil. In the growing apex of Arabidopsis
thaliana primary roots, cells originate in the RAM and pass
from the apical meristem to the maturation region. In the

Arabidopsis root apex, Verbelen et al. (2006) defined four distinct
functional zones based on the cellular activities: RAM, RTZ, EZ,
and GTZ. After leaving the RAM, cells enter the RTZ, which
has a similar size as the RAM. At the basal limit of the RTZ,
cells initiate rapid elongation, showing a highly polarized growth
pattern along the apical-basal axis (Verbelen et al., 2006). In this
study, we revealed that the cortex in RTZ has the highest GP
values throughout the root, indicating the PM in this region is
highly ordered. This phenomenon might be attributed to the
enrichment of various membrane- and cytoskeleton-associated
proteins, including auxin transporters, receptors, ion channels,
and transporters, as well as NADPH oxidases (Kleine-Vehn and
Friml, 2008; Wan et al., 2008; Baluška et al., 2010; Baluška and
Mancuso, 2013). Moreover, the RTZ is very active in the flux of
auxin, oxygen molecules, nitric oxide, reactive oxygen species,
and calcium ions, all showing peak values in the RTZ (Mancuso
et al., 2005; Illés et al., 2006; Mancuso et al., 2007; Mugnai
et al., 2012). Therefore, it is logic to suppose that the highly
ordered membrane domains may provide lipid platforms for
protein localization and assembly of protein complexes in signal
transduction.

Root hairs are lateral extensions of root epidermal cells
characterized by rapid polar growth in GTZ. Here, we found
that the rapidly growing root hairs have a peak lipid order
at the root hair tips. Importantly, emerging root hairs in the
early developmental stages did not show such patterns. This
phenomenon is partially in agreement with previous reports.
Ovečka et al. (2010) showed that sterol components were
concentrated in the root hair tips during both the initiation and
tip growing stages. In this early study, filipin-staining methods
showed high concentrations of sterol components, a primary
component in the construction of lipid microdomains (Ovečka
et al., 2010). Moreover, we did not found a clear polar distribution
of lipid order in the epidermal and cortical cells in root either. The
membrane lipid order can be altered by environmental factors
and membrane components, such as the sterol, sphingolipid and
functional protein complexes and other environmental factors
(Meer, 1989; Mostov et al., 1992; Simons and Toomre, 2000).
The GP value method, based on Di-4-ANEPPDHQ staining,
scores lipid order quantitatively, but cannot label specific lipid
components. This may explain the differences between these two
studies. In the future, it is important to verify the contribution of
different lipid components to lipid order in small regions of the
PM.

Moreover, the RTZ is also very active in endocytosis and
endocytic vesicle recycling. Similar to animal and yeast cells,
flotilins and remorins were believed to mediate endocytic
pathways associated with lipid raft microdomains (Raffaele et al.,
2009; Jarsch and Ott, 2011; Li et al., 2012; Bozkurt et al., 2014).
Here, we observed changes in lipid order in the endosomal and
PM compartments. Quantitative images showed that endosomes
have lower GP values than those of the PM in all of the cell
types we analyzed, in agree with the early reports (Frescatada-
Rosa et al., 2014; Zhao et al., 2015). Frescatada-Rosa used the
di-4-ANEPPDHQ to quantify the lipid orders in Arabidopsis
as well, however, the GP values in this report is much lower
than the values we got. In consideration of that the calibration
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of the G-values may affect the GP values in final calculation,
the difference might be caused by different concentration of the
dye or the setting of microscopes. To maintain constant GP
values along this study, we have calibrated the G-value as 0.5
according to Owen’s protocol (Owen et al., 2011) and have kept
all the experimental procedure in identical conditions in our
experiments.

Since COPI-coated vesicles were involved in the secretion
of sphingomyelin and cholesterol (Brügger et al., 2000), we
applied BFA, a powerful inhibitor of secretion in root cells.
We found that the total lipid order of the PM and endosomes
were significantly decreased in the root epidermal cells after BFA
treatment. In plant cells, BFA targets GNOM, a homologue of
guanine-nucleotide exchange factors on ADP-ribosylation factor
(ARF-GEF), inhibiting vesicular trafficking from endosomes to
the PM (Brügger et al., 2000; Richter et al., 2007; Teh and
Moore, 2007; Bozkurt et al., 2014). Our results showed treatment
with BFA decreased the total lipid order in RTZ epidermal
cells and root hairs, implying that the BFA could inhibit PM-
endosome trafficking of protein and lipid components, which
have roles in maintaining of lipid order. However, more precise
experiments are needed in future to investigate the molecular
mechanisms of this phenomenon in the different mutant
backgrounds relevant for endocytic and exocytic vesicular
traffickings.

Interestingly, the polar growing root hairs and epidermal
cells in the RTZ showed different distribution patterns of lipid
order after BFA treatment. In the RTZ epidermal cells, the lipid
order in endosomal vesicles was lower than that in the PM
before BFA treatment. BFA reversed this phenomenon when the
GP values in the BFA-induced endosomal compartments were
higher than those in the PM, even when the GP values in both
regions decreased. Since the polar PM of root epidermal cells
has highly active endocytosis and endocytic vesicle recycling
between the PM and endosomes in the RTZ (Verbelen et al.,
2006), inhibition of endosome recycling may enrich ordered PM
in recycling vesicles. Thus, the lipid order in the endosomes
were higher than those in the PM region. Meanwhile, the polarly
growing root hairs did not show changes in PM lipid order
after BFA treatment. The GP values of the BFA-compartments
scored lower than those of the PM, suggesting they may
have involved specific endocytic pathways with different PM
components.

CONCLUSION

We provided a rough map of zone-specific lipid order in cells
of root apical regions of Arabidopsis thaliana at the microscopic
level. The RTZ showed the highest lipid order along the whole
root region, the cortical cells showed higher order than those of
epidermal cells, and endosomes contained lower lipid order than
the PM. The polar distribution of lipid order was also observed
in polarly growing root hairs, but not in non-polarized cells.
BFA treatment decreased the total lipid order, showing different
effects in different cell types. Considering that the lipid order
affected by complicate factors, our results provided elementary

clues for investigate microdomain related functions in plant root
tissues.

MATERIALS AND METHODS

Plant Materials
Weused 4-day-oldArabidopsis thaliana (Col 0 ecotype) seedlings
in this study. After sterilization with 75% EtOH for 30 s
and 1.5% NaClO solution for 1 min, the seeds were washed
in sterilized H2O (5 × 1 min) and planted in medium
containing petri-dishes (1/2 MS medium with 1% sucrose
and 0.4% phytagel). The plates were incubated in culture
chambers for 4 days before the experiments (22◦C, 12000 lux,
light/dark = 16 h/8 h).

Staining Process and Treatments
Di-4-ANEPPDHQ was purchased from Invitrogen-Life
Technologies. The stock solution of di-4-ANEPPDHQ (5 mM in
DMSO) was stored in a 200-μl microcentrifuge tube wrapped in
aluminum foil at −20◦C. Arabidopsis seedlings were incubated in
staining solution (5 μM Di-4-ANEPPDHQ in 1/2 MS medium)
for 5 min on ice and washed with cold 1/2 MS for 1 min. Finally,
the seedlings were transferred onto a glass slide in 100 μl 1/2 MS
medium for microscopic analysis using a laser confocal scanning
microscope (Leica SP5, Germany). BFA was purchased from
Sigma-Aldrich R©. The stock solution of BFA (33 mM in DMSO)
was stored in 1 ml microcentrifuge tubes at −20◦C. Before
treatment, 1/2 MS medium (1 ml) was added into each tube to
get 33 μM working solution. Therefore, 1:1000 DMSO solution
was used as mock control.

Confocal Laser Scanning Microscopic
Observations and GP Processing
We used the Leica SP5 confocal laser scanning microscope
(CLSM) for the imaging of di-4-ANEPPDHQ-labeled seedlings.
A ×63 oil immersion objective (NA = 1.3) was used with an
excitation of 488 nm, and the detection ranges of the two channels
were set to 500–580 nm and 620–750 nm. Identical microscope
settings were maintained for quantitative imaging of membrane
components, including the laser power, PMT voltage, and the
offset values. After the CLSM imaging process, we followed
the early published protocol to generate the GP-images (Owen
et al., 2011). The image J macro provided by Owen et al. was
downloaded and applied. The GP values were calculated based
on the following formula:

GP = (I500−580 − GI620−750)/(I500−580 + GI620−750) (1)

G = (GPref + GPref GPmes − GPmes − 1)/

(GPmes + GPref GPmes − GPref − 1) (2)

I500−580, I620−750: Fluorescence Intensity collected by two
channels of CLSM, 500–580 nm and 620–750 nm; G: calibration
factor, calculated using formula 2; GPmes: measured GP value of
the dye in DMSO solution with the constant microscopy setup;
GPref: reference value of the dye in DMSO.
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To calibrate the G value, we used the Gref = −0.85 as a
suggested value (Owen et al., 2011). The G factor was calibrated
before each experiment if the microscope setting was changed.
To provide an intuitive view, we showed the hue-saturation-
brightness (HSB) image in Figures 1, 3, 4. Since the HSB image
represent information of GP values with pixel intensities, we
also showed the original GP images in Supplementary Figures
S1–S3.

Quantification of the GP Values in
Different Root Apical Regions
Based on the GP images generated by the above described
methods, we calculated the different GP value distributions
in the root apical regions. Four-day-old Arabidopsis seedlings
with similar root length were chosen for analysis. We
used the ROI manager (Image J/Analyze/Tools/ROI manager)
to select the region of interest (ROI) and measured the
distribution of pixels in each GP value based on histogram
analysis in original GP images (Image J/Analyze/Histogram).
From the listed results, pixels with a gray value of 0 were
excluded during the calculation of GP values to eliminate
regions without fluorescence signals. GP value/pixel was then
calculated for each ROI. The G factor was separately calibrated
before each run. The Mann–Whitney u-test built in the
SPSS version 19 was used to determine significance between
experiments.
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