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New approaches for identifying disease resistant trees are needed as the incidence of
diseases caused by non-native and invasive pathogens increases. These approaches
must be rapid, reliable, cost-effective, and should have the potential to be adapted for
high-throughput screening or phenotyping. Within the context of trees and tree diseases,
we summarize vibrational spectroscopic and chemometric methods that have been used
to distinguish between groups of trees which vary in disease susceptibility or other
important characteristics based on chemical fingerprint data. We also provide specific
examples from the literature of where these approaches have been used successfully.
Finally, we discuss future application of these approaches for wide-scale screening and
phenotyping efforts aimed at identifying disease resistant trees and managing forest
diseases.
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INTRODUCTION

Forest tree species are increasingly being threatened by native and introduced pathogens as a result
of globalization and climate change, which can alter the life cycles of pathogens that have co-evolved
with tree hosts and facilitate the spread of non-native and invasive pathogens to areas where native
tree species lack specific defenses against them. Because non-native and invasive species continue to
be introduced, regulations have been imposed by government organizations to curtail the spread of
pathogens capable of causing disease in naive habitats (Frankel, 2008; Potter et al., 2011). However,
these efforts have had no real impact on our ability to contain pathogens due to failure to sever
the pathways by which non-native and invasive species enter naive areas (Liebhold et al., 2012),
uncontrollable pathogen dispersal patterns and potential, and the effects of global change, which
has made many areas more suitable to invasion by destructive agents (Rustad et al., 2012; reviewed
in Sturrock et al., 2011).

In general, few options exist for managing forest diseases, with preventative management (e.g.,
pathogen exclusion) likely to be the most effective. Other options such as chemical control, either
before or after infection, may be effective on individual trees, e.g., in the urban landscape, but are
logistically and economically impossible, and environmentally unacceptable, on large spatial scales,
e.g., in a forest stand or at a landscape level. For these reasons, the identification and utilization
of resistant trees for disease management and restoration of disturbed habitats should be a top
priority (Telford et al., 2015; Wingfield et al., 2015). In many instances, intensive artificial selection
of resistant trees is required since there is an insufficient amount of quantitative genetic variation
to allow for natural recovery in forest populations (Ennos, 2015). Examples of where resistant trees
have been identified and bred using intensive artificial selection include: inter-specific chestnut
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hybrids resistant to Cryphonectria parasitica (causal agent of
chestnut blight) (Burnham, 1988), Port-Orford-cedar resistant
to Phytophthora lateralis (causal agent of Port-Orford-cedar root
rot) (Sniezko et al., 2012), and elm tolerant to Ophiostoma novo-
ulmi (causal agent of Dutch elm disease) (Martin et al., 2015).
However, even successful breeding programs face many
challenges, including dealing with long lifespans and generation
times of most tree species (Telford et al., 2015). For example,
breeding programs for chestnut, Port-Orford-cedar, and elm
have taken decades to produce any resistant or tolerant
germplasm (Burnham, 1988; Oh et al, 2006; Martin et al.,
2015). In addition, methods for screening and phenotyping trees
for disease resistance typically rely on artificial inoculation or
natural infection of individual trees. This approach is labor and
time intensive, and is not suitable for rapid, high-throughput
screening, or phenotyping (Neale and Kremer, 2011). Finally, in
instances where intensive artificial selection is not feasible, high-
throughput methods, not reliant on artificial or natural infection,
are needed to assess the proportion of resistant trees within a
population. This type of information can be used to facilitate and
dictate what, if any management practices are implemented.

KEY CONCEPT 1 | Resistance

Trees are classified as resistant based on qualitative and/or quantitative
attributes. For example, a tree with a lesion length, caused by pathogen
infection, at or below some critical threshold, could be defined as resistant.
A tree that no longer shows active symptoms of disease, after an initial display
of those symptoms, i.e., a tree that is in remission, could also be considered
resistant.

Genetic and genomic approaches, including genomic
selection for quantitative traits, like disease resistance, are
being developed and are currently used in some high value tree
crops such as Pinus taeda (loblolly pine) (Resende et al., 2012).
However, these approaches have not been widely implemented
because the genetic basis of host resistance is still unknown for
many forest pathosystems (Neale and Kremer, 2011; Muranty
etal., 2014). Therefore, more rapid and less expensive alternative
approaches are needed for screening and phenotyping trees,
especially non-model tree species.

One such approach, which has the potential to overcome
current screening and phenotyping limitations, utilizes infrared
(IR) or Raman spectroscopy to generate chemical fingerprints of
biological samples. Chemical fingerprinting can be combined
with chemometrics—multivariate analysis of chemical data—to
identify spectral features that differentiate two or more groups
(Fiehn, 2001, 2002; Goodacre et al., 2004; Xia and Wishart, 2011).

KEY CONCEPT 2 | Chemical fingerprinting
A comprehensive analysis of all the chemicals (metabolites) present within a
given sample; individual chemicals are not separated, identified, or quantified.

KEY CONCEPT 3 | Chemometrics

Multivariate statistical analysis of chemical data that is aimed at identifying
differences between two or more groups. In the context of tree disease
resistance, chemometrics is used to identify spectral signatures that are
capable of distinguishing between resistant and susceptible trees.

Vibrational spectroscopy-based approaches, like Fourier-
transform mid-infrared (FT-IR) spectroscopy, near-infrared
(NIR) reflectance spectroscopy, and Raman spectroscopy
typically are more rapid, reproducible, and reliable than
traditional metabolomic methods, like high performance liquid
chromatography (Fiehn, 2001, 2002). Chemical fingerprint data
generated from IR and Raman spectrometers can be analyzed
using various chemometric methods, like principal components
analysis (PCA), soft independent modeling of class analogy
(SIMCA), or partial least squares regression (PLSR) (Goodacre
et al., 2004; Allwood et al., 2008; Cozzolino, 2014).

Although spectroscopic approaches have been widely used to
assess the physiological status of trees, particularly in relation to
water stress, there are relatively few examples of where vibrational
spectroscopy-based methods, combined with chemometrics,
have been used to distinguish between trees that vary in disease
susceptibility. Early examples are provided in a series of papers by
Martin et al. in the mid to late 2000s, in which the authors detailed
the use of FT-IR spectroscopy, combined with chemometrics,
to distinguish between elm species and clones that differed
in susceptibility to O. novo-ulmi before and after infection
(Martin et al., 2005a,b; Martin et al., 2007, 2008). More recently
Conrad et al. (2014) utilized FT-IR spectroscopy combined
with chemometrics to identify Quercus agrifolia (coast live oak)
naturally resistant to the non-native and invasive pathogen
Phytophthora ramorum, the causal agent of sudden oak death.

The extensive use of vibrational spectroscopy-based methods
in many different scientific disciplines is a testament to their
general applicability and relative ease of use. For example,
these methods have been used for human disease diagnosis
(Ellis and Goodacre, 2006) and for general plant phenotyping
(Cozzolino, 2014; Li et al., 2014). However, these methods have
not been widely adopted for the study and identification of
disease resistant trees, perhaps because most forest pathologists,
and tree breeders are unaware of their potential applicability to
this field. Therefore, the focus of this review is to: (1) summarize
commonly used vibrational spectroscopic tools and chemometric
methods, (2) provide specific examples of where such tools have
been used in the context of trees and tree diseases, and (3) discuss
future applications of this technology for large-scale screening
and identification of disease resistant trees.

VIBRATIONAL SPECTROSCOPY-BASED
METHODS FOR CHEMICAL
FINGERPRINTING

Vibrational spectroscopy-based methods, which include IR and
Raman spectroscopy, can produce chemical fingerprints of solid,
liquid, and gaseous samples, and have the capability to be adapted
for high-throughput analysis (Diem, 1993; Fiehn, 2001). Solid
samples include intact leaf or twig tissue, or ground tissue.
Liquid extracts from tree tissues can also be analyzed, often with
benchtop or portable (i.e., smaller and easier to transport) devices
in laboratory settings. Handheld devices can be used beyond
the laboratory and are most appropriate for in-field or forest
applications.
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Fourier-Transform (mid)-Infrared (FT-IR)

Spectroscopy

FT-IR spectroscopy measures changes in the molecular
absorption of IR radiation and vibrations (e.g., stretching,
bending, deformation), which are influenced by molecular
structure (Diem, 1993; Guillén and Cabo, 1997; Ellis and
Goodacre, 2006; reviewed in Rodriguez-Saona and Allendorf,
2011). It is commonly used to examine the mid-infrared (MIR)
spectral region, which ranges from 4000 to 600 cm~! (cm™!—
inverse wavenumbers) or 2500-25,000nm (reviewed in Ellis
and Goodacre, 2006; Cozzolino, 2014). FT-based methods use
interferometers to collect and focus emitted light, and with FT-IR
spectroscopy all the wavelengths are analyzed simultaneously as
they arrive at the detector (Diem, 1993).

Fourier transformation is also combined with NIR and
Raman spectroscopy; however, for the purpose of this review,
FT-IR spectroscopy will be used to describe analyses of the
MIR spectral region, unless otherwise noted. The MIR spectral
region contains many sharp peaks and thus is information
rich (Figure 1), which is why it is often said to contain the
fingerprint region or zone (Ellis and Goodacre, 2006). One
potential disadvantage of using the MIR spectral region for
analysis is that water absorbs strongly in this region. To mitigate
this, different approaches can be used to remove potentially
obscuring signals, such as sample dehydration or utilization of
attenuated total reflectance attachments (reviewed in Ellis and
Goodacre, 2006).

Laboratory benchtop and portable FT-IR spectrometers are
most commonly used for sample analysis, although handheld
devices equipped with attenuated total reflectance accessories
are available (Sorak et al., 2012; Santos et al., 2013). Handheld
devices could be readily adopted for in-field (forest) use, though
device size may impact measurements, since smaller devices
may have reduced performance (Sorak et al., 2012). Still, the
obvious benefits of handheld devices—i.e., potential for in-
field measurement of chemical fingerprints, without the need to
process samples in the laboratory—would likely outweigh any
reduction in measurement performance.

Absorbance

3800 3400 3000 2600 2200
Wavenumber (cm!)

1800 1400 1000

FIGURE 1 | A representative chemical fingerprint using raw spectra
collected in the mid-IR region (4000-700 cm~1) from Quercus agrifolia.
FT-IR spectroscopy produces chemical fingerprints that can be analyzed using
chemometrics to identify spectral differences between resistant and
susceptible trees.

Near-Infrared (NIR) Spectroscopy

Like with FT-IR spectroscopy, the attenuation of the IR
beam as it passes through the sample is monitored by NIR
spectroscopy as a function of wavelength (or wavenumber)
(Diem, 1993). Minimum sample preparation is required for NIR
spectroscopy, and sample analysis is relatively straightforward.
NIR spectrometers—which cover spectral ranges from 13,400
to 4000 cm™! (750-2500 nm)—are capable of analyzing organic
chemical structures containing O-H, N-H, and C-H bonds
(Foley et al., 1998; Cozzolino, 2014). Unique physico-chemical
properties of different molecules result in characteristic spectra
through wavelength-dependent scattering and absorption
(Cozzolino, 2014). However, unlike analysis in the MIR region,
peaks from NIR spectroscopy are not distinct or sharp and can
be lower in intensity (Foley et al., 1998; Cozzolino, 2014).

There are many commercial options available for high-
throughput screening and/or phenotyping using portable and
handheld NIR spectrometers, some of which come equipped
with interchangeable accessories, like fiber-optic probes (Foley
et al.,, 1998; Sorak et al., 2012; Warburton et al., 2014). While
NIR spectrometers may be less sensitive and accurate than FT-
IR spectrometers and Raman spectrometers (see below), ease of
use and generally lower costs for NIR sample analysis make it an
ideal tool for rapidly screening trees for disease resistance (Lupoi
et al., 2014).

Raman Spectroscopy

Raman spectroscopy also is capable of producing chemical
fingerprints; however, Raman spectroscopy measures the
exchange of energy at a given wavelength after molecules are
irradiated with an excitation source, such as a laser (Ellis and
Goodacre, 2006; Lupoi et al, 2014). Instead of measuring
the attenuation of light itself (as in IR spectroscopy), Raman
spectroscopy measures the spectra of scattering photons coming
from the sample (Diem, 1993). Raman shifts in wavelength of
incident laser light are analogous to IR absorption by molecules
after they are interrogated with an IR beam (Ellis and Goodacre,
2006). For this reason, data analysis is essentially the same for IR
and Raman spectroscopy.

One potential disadvantage of using Raman spectroscopy is
that the Raman effect may be weak, requiring longer signal
collection times (i.e., the amount of time spectra must be
collected by the detector) (Ellis and Goodacre, 2006). Still,
there are many advantages to using Raman spectroscopy. For
example, handheld and portable Raman spectrometers may be
more appropriate for on-site qualitative analysis than other IR-
based devices, because the laser focus can be positioned directly
on a sample—e.g., a sample can be analyzed even if stored in a
plastic bag or glass vial—and water does not have an obscuring
effect on spectra (Ellis and Goodacre, 2006; Sorak et al., 2012).

CHEMOMETRIC ANALYSIS OF CHEMICAL
FINGERPRINT DATA

Regardless of the approach used to generate chemical fingerprints
of biological samples, fingerprint data must be analyzed using
appropriate methods (i.e., chemometrics) in order to reveal
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underlying spectral patterns that may be associated with
variation between groups, either before or after pathogen
infection, and ultimately to develop accurate models for
predicting tree resistance. There are three primary steps to
analyzing chemical fingerprints: (1) pre-processing of raw data
to minimize background noise and to improve model fit; (2)
chemometric methods, including methods for data visualization,
data mining, data reduction, and predictive modeling; and (3)
model validation, including methods for assessing model fit and
accuracy.

Data Pre-processing

Pre-processing methods are needed to deconvolute overlapping
bands (peaks), minimize background and noise, and improve
model predictions. There are a variety of different methods for
spectral data normalization and smoothing, which can be used
individually or in combination. Commonly used methods for
pre-processing spectral data can be found in Table 1.

Chemometric Methods
In order to use chemical fingerprints to develop models capable
of accurately grouping trees based on variation in susceptibility,
data need to be visualized and the most important spectra for
discriminating between groups need to be identified (Gierlinger
et al,, 2003; Durgante et al., 2013). The chemometric methods
used should be able to reduce the dimensionality of data and
handle potential co-linearity between variables. These methods
should also be capable of identifying which factors or latent
variables are most important and should be included in the
final model. Calibration models (i.e., models developed from a
training data set) that are over-fit contain too many factors or
latent variables and thus take into account random noise (Lupoi
et al.,, 2014). Over-fit models may appear to be more accurate
when tested against training data, but will make less accurate
predictions when used on a testing data set, and can be avoided
by using cross validation (see subsequent section) (Moore et al.,
2010; Lupoi et al., 2014).

There are two primary types of chemometric models:
supervised (a priori groupings used to inform the model)

TABLE 1 | Commonly used pre-processing methods for infrared
spectroscopy and Raman spectroscopy derived data.

Pre-processing method Description

Standard normal variate (SNV) Multiplicative scatter and particle size
interference is removed (Barnes et al., 1989).
Multiplicative scatter
correlation (MSC)

Derivative

Corrects for noise and scatter; removes
multiplicative effects (Lupoi et al., 2014).

First and second derivative functions are
commonly used to reduce error and resolve
overlapping bands (peaks) (Sankaran et al.,
2010).

Savitzky-Golay polynomial For smoothing and derivatizing data (Gierlinger
filter et al., 2003).

Detrending Corrects for variation in baseline shifts and
co-linearity (Barnes et al., 1989).

KEY CONCEPT 4 | Training and testing data sets

Training data are used to build a predictive model, whereas testing data, which
were not included in the training data set, are used for model validation and can
also be used to assess model sensitivity and specificity.

and unsupervised (a priori groupings are not used to inform
the model). There are many methods for supervised analysis,
including: SIMCA, partial least squares discriminant analysis
(PLS-DA), PLSR, and linear discriminant analysis (LDA)
(Sankaran et al., 2010; Guzmadn et al., 2012; Durgante et al,,
2013). For supervised analysis, samples must be grouped (i.e.,
phenotyped) using reliable and accurate methods. Among
unsupervised approaches, PCA is used most widely. Based on
our review of literature related to trees and IR and Raman
spectroscopy, we compiled a list of commonly used chemometric
methods and included a general description of each method in
Table 2. Finally, while some methods can be used independently
(e.g., SIMCA), others should be used in conjunction (e.g., PCA
combined with DFA or LDA) to identify important spectra and to
develop models capable of discriminating between groups of trees
that vary in disease susceptibility. See Figure 2 for an example of
a hypothetical output from SIMCA analysis.

Model Validation

The final step in analysis of chemical fingerprint data, model
validation is the most important for ensuring that accurate and

KEY CONCEPT 5 | Model validation

In order to ensure accurate predictions, models must be validated by testing
model predictions on a naive data set (i.e., testing data set) or by using
cross-validation methods, such as leave-one-out cross validation.

good-fitting models have been developed (see Moore et al., 2010;
Sankaran et al, 2010; Guzman et al, 2012; O'Reilly-Wapstra
etal., 2013; Lupoi et al., 2014). Validation can include testing the
calibration model (i.e., the model derived from the training data
set) on a testing data set, or using cross validation (Foley et al.,
1998). For cross validation, the sample population is randomly
divided into smaller groups and an iterative process is used to test
predictions of one group based on calibration models developed
from the remaining groups (Foley et al., 1998). Leave-one-out
cross validation (LOOCV) is a commonly used method that
involves removing one individual (instead of group) at a time
(Durgante et al., 2013; Lupoi et al., 2014). Validation using a
testing set can be used when the sample size is large enough to
split data sets into two, while cross validation methods may be
more appropriate for data sets with smaller samples sizes and are
more convenient because a testing data set does not need to be
maintained (Foley et al., 1998).

CHEMICAL FINGERPRINTING OF TREES
USING IR AND RAMAN SPECTROSCOPY

FT-IR Spectroscopy

For more than 10 years, FT-IR spectroscopy combined with
chemometrics has been used as a tool to discriminate between
trees that differ in disease susceptibility before and after pathogen
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TABLE 2 | List of commonly used chemometric methods for visualizing
and mining spectral data, and for building predictive models from spectral
data for trees.

Chemometric method Description

Discriminant function analysis
(DFA)

Supervised projection method, which identifies
regions that are important for separating
groups. A priori groupings used to measure
within and between group variance, and then
used to define optimal function for
discriminating a priori groups (Martin et al.,
2008).

K-nearest neighbors (KNN) Compares the distance between unknown
samples (testing set) and samples in the
training set. Samples are classified based on
proximity to training set samples (Guzman

etal., 2012).

Linear discriminant analysis
(LDA)

A supervised method for classifying data with
two or more classes, which selects latent
variables that maximize variance between
groups and minimize variance within groups.
Uses a discriminant function to assign classes
to unknown samples (Sankaran et al., 2010;
Durgante et al., 2013).

Principal components analysis
(PCA)

Unsupervised method for visualizing and
grouping data based on natural clustering
patterns. Can be used to reduce the
dimensionality of data, minimize co-linearity,
examine spectral variance, and identify outliers
(Gierlinger et al., 2003; Sankaran et al., 2010;
Guzman et al., 2012; Durgante et al., 2013;
O’Reilly-Wapstra et al., 2013; Lupoi et al.,
2014).

Partial least squares
regression (PLSR)

Combines methods for reduction of high
dimensional and potentially co-linear data with
regression to develop predictive (calibration)
models for quantitative traits of interest. This
supervised method is commonly used for the
analysis of NIR spectra (Fackler et al., 2007;
Moore et al., 2010; Conrad et al., 2014;
Warburton et al., 2014).

Partial least squares
discriminant analysis (PLS-DA)

Supervised classification analysis that resolves
separation between groups and identifies the
most important variables for discriminating
between groups. Similar to PLSR but with
categorical (qualitative) response variables
(Guzman et al., 2012).

Soft independent modeling of
class analogy (SIMCA)

A supervised classification method that
develops principal components models for
each training group and identifies important
variables for discriminating between groups.
Can be used to predict group memberships of
unknown samples (Guzman et al., 2012;
Conrad et al., 2014).

Please refer to cited papers for additional information.

infection. The elm (Ulmus spp.)-O. novo-ulmi pathosystem
(Martin et al., 2005a,b; Martin et al., 2007, 2008) is the
most studied system. Using FT-IR spectroscopy combined with
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FIGURE 2 | This hypothetical output from SIMCA analysis displays the
relative, dimension-free distance between samples (trees), and
groupings of individual trees into resistant and susceptible
phenotypes. Dashed lines represent critical sample residual thresholds. Trees
in quadrant (A) would be classified as resistant by the SIMCA model, while
trees in quadrant (B) would be classified as neither resistant nor susceptible,
i.e., as ambiguous. Trees in quadrant (C) could be classified as either resistant
or susceptible, and may therefore include trees of intermediate phenotype.
Trees in quadrant (D) would be classified as susceptible.

chemometrics (e.g., PCA and DFA), Martin et al. (2005a,b) were
able to monitor chemical changes in resistant and susceptible
U. minor following infection with O. novo-ulmi. Using the same
approach, Martin et al. (2007) detected changes in chemical
profiles, specifically in lignin levels, of inoculated U. minor and
U. minor x U. pumila hybrids compared to their respective non-
inoculated controls. Finally, they used chemical fingerprints from
healthy xylem tissue to separate resistant U. pumila, susceptible
U. minor, and resistant U. minor clones and identify spectral
bands that were important for discriminating between those
groups (Martin et al., 2008).

More recently, Hardoim et al. (2015) used FT-IR spectroscopy
and chemometrics to examine changes in the metabolic patterns
of Quercus suber roots following infection with the pathogen
Phytophthora cinnamomi; significant differences in the intensity
of certain spectral bands were detected between inoculated and
mock-inoculated plants. Vivas et al. (2014) also recently used
a combined FT-IR spectroscopic and chemometric approach
to analyze maternal effects on the MIR spectrum of Pinus
pinaster before and after inoculation with the pathogen Fusarium
circinatum, the causal agent of pitch canker disease. They
found that control seedlings from an unfavorable maternal
environment, which were previously found to be less tolerant
to F. circinatum (compared to seedlings from a favorable
maternal environment), showed higher mean absorbances in
the MIR spectral region compared to control seedlings from
a favorable maternal environment; the same pattern held
for seedlings after pathogen inoculation (Vivas et al, 2014).
The authors concluded that variation in the intensity of the
MIR spectrum may be associated with seedling carbohydrate
content, and changes in carbohydrate content of seedlings
following infection may impact their tolerance to F. circinatum
(Vivas et al., 2014).

In our own work, we used a combined FT-IR spectroscopy
and chemometric approach to distinguish between resistant

Frontiers in Plant Science | www.frontiersin.org

January 2016 | Volume 6 | Article 1152


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Conrad and Bonello

Tree Disease Phenotyping Using Spectroscopy

and susceptible Q. agrifolia from natural populations before
infection with the pathogen P. ramorum (Conrad et al., 2014).
SIMCA analysis was used to discriminate between resistant and
susceptible Q. agrifolia trees and to identify the most important
spectra for discriminating between those groups (Conrad et al.,
2014). In addition, PLSR was used to estimate the concentration
of specific phenolic compounds previously associated with Q.
agrifolia resistance to P. ramorum, based on FT-IR spectra.

NIR Spectroscopy

Even though NIR reflectance spectroscopy has been used widely,
the technique has not been used extensively to screen trees for
disease resistance. FT-NIR combined with PLSR was used to
predict larch (Larix spp.) heartwood durability—a trait of interest
in many tree breeding programs—and PCA was used to examine
spectral variation between durability classes (Gierlinger et al.,
2003). Furthermore, NIR spectroscopy combined with PLSR was
used to predict decay resistance of Pinus sylvestris heartwood
to the brown rot fungus Poria placenta (Fleete and Haartveit,
2004). Although the authors were primarily interested in using
the technology to assess natural tree durability after harvesting,
the results suggest that NIR spectroscopy can be used to detect
chemical differences between groups that are phenotypically
different (Fleete and Haartveit, 2004).

The ability to detect chemical differences between groups is
important, because plant-derived chemicals are often associated
with tree defense responses. For example Moore et al. (2010)
used NIR reflectance spectroscopy to examine the relationship
between palatability of Eucalyptus foliage and the total amount
of formylated phloroglucinol compounds (FPCs). FPCs are
known deterrents of koala feeding (Moore et al., 2010). These
authors were able to estimate the total concentration of FPC
in Eucalyptus foliage using calibration models that were created
using NIR spectra and concentrations of FPC in Eucalyptus
foliage quantitated by high performance liquid chromatography.
Estimates were then combined with spatial tree distribution
data to produce palatability maps based on koala feeding
preferences of Eucalyptus foliage. A similar approach could be
used to map the distribution of disease resistant trees on a
landscape scale.

Most recently, O’Reilly-Wapstra et al. (2013) used chemical
fingerprints generated from NIR reflectance spectroscopy (using
a FT-NIR spectrometer equipped with a fiber optic probe),
in combination with chemometric analysis (PCA and linear
models), to differentiate between multiple generations of
interspecific Eucalyptus globulus x Eucalyptus nitens hybrids and
parent species. While the authors did not use this method to
screen trees for disease resistance, they clearly showed that the
technique can be used to discriminate between groups based
on genetic differences in chemistry. Since tree disease resistance
is genetically based and often an inherited trait, it is plausible
that NIR spectroscopy and chemometrics could also be used
to distinguish between genetic-based differences in resistance
that manifest as differences in chemical composition. Further
applications and examples of NIR spectroscopy for analyzing
the chemical composition, anatomical features, mechanical

properties, and other attributes of trees can be found in a recent
review by Tsuchikawa and Kobori (2015).

Raman Spectroscopy

We were unable to find any papers where Raman spectroscopy
and chemometrics were used to distinguish between trees that
varied in disease susceptibility. However, it has been used to
measure and estimate various chemical constituents of trees. For
example, FT-Raman spectroscopy was used to study chemical
changes in waterlogged Pinus spp. and Quercus spp. (Petrou
et al., 2009). The authors assessed the depletion of cellulose,
hemicellulose, and lignin in ancient wood samples from these
tree species. Raman spectroscopy was also used to measure the
lignin syringyl/guaiacyl (S/G) ratio of 17 eucalypt and Acacia
tree species (Lupoi et al, 2014). Lupoi et al. (2014) were
interested in assessing whether or not Raman (but also MIR
and NIR) could be used to screen trees for biofuel feedstock
candidates. While all three methods could be used to estimate
S/G ratios, estimations were most accurate when determined
using spectral data collected from Raman and MIR spectroscopy
(Lupoi et al, 2014). Finally, a portable Raman spectrometer
(equipped with a laser diode and optical fiber) was used to
assess the quality of fruit from olive trees and could differentiate
between sound (i.e., higher quality) and ground (i.e., lower
quality) fruit using PCA, SIMCA, PLS-DA, and KNN (Guzmaén
et al., 2012).

Raman spectroscopy is clearly capable of detecting chemical
differences between sample groups. Since plant-derived
chemicals (e.g., phenolics) can be associated with tree resistance
(reviewed in Witzell and Martin, 2008), this technology could
also be used to identify spectra associated with variation in tree
disease resistance.

FUTURE APPLICATION OF IR AND RAMAN
SPECTROSCOPY FOR IDENTIFYING
DISEASE RESISTANT TREES

In the preceding sections, we described methods for chemically
fingerprinting trees using IR and Raman spectroscopy. Chemical
fingerprinting, when combined with chemometrics, is a powerful
tool that can be used to distinguish between groups of trees
that vary in disease susceptibility. Alternatively, these methods
could be used to estimate quantitative traits of interest, like
the concentration of plant-derived chemicals, which may be
associated with resistant tree responses.

Many of the studies referenced above utilized benchtop
spectrometers for chemical fingerprinting of samples; however,
there are many portable and handheld devices available that
could be used directly in the forest to screen larger numbers
of trees for disease resistance, once protocols to deal with fresh
tissues have been optimized (see reviews by Sorak et al., 2012;
Cozzolino, 2014). Handheld devices have not yet been used
for this purpose, though on-site screening methods using NIR
spectroscopy have been developed to predict sugarcane smut
resistance for plant breeding (Purcell et al., 2011) and portable
NIR spectrometers were used for in-forest prediction of Kraft
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pulp yvield and cellulose content of standing trees (Meder et al.,
2011). Although Meder et al. (2011) acknowledge that their
approach needs to be modified to improve accuracy of model
predictions, they believe hand-held devices are a feasible, rapid,
and low-cost alternative that can be used to screen trees for
breeding programs.

Handheld or automated laboratory devices will need to be
utilized if chemical fingerprinting by IR and Raman spectroscopy
is to be implemented on more high-throughput scales to
efficiently screen trees for disease resistance. Instruments
for these types of analyses are commercially available and
chemometric pipelines for analyzing large data sets are well
established. The next steps will be to scale-up existing
experiments using handheld and portable devices, increase
sample diversity within training and testing data sets, and validate
predictive models for in-forest assessment of tree resistance.
Once these steps have been completed, chemical fingerprinting
and chemometrics should be viewed as a reliable method
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