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MYB transcription factor (TF) is one of the largest TF families and regulates defense

responses to various stresses, hormone signaling as well as many metabolic and

developmental processes in plants. Understanding these regulatory hierarchies of gene

expression networks in response to developmental and environmental cues is a major

challenge due to the complex interactions between the genetic elements. Correlation

analyses are useful to unravel co-regulated gene pairs governing biological process

as well as identification of new candidate hub genes in response to these complex

processes. High throughput expression profiling data are highly useful for construction

of co-expression networks. In the present study, we utilized transcriptome data for

comprehensive regulatory network studies of MYB TFs by “top-down” and “guide-gene”

approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental

conditions with 51 hub genes via “top-down” approach. Further, clusters were identified

using Markov Clustering (MCL). To maximize the clustering performance, parameter

evaluation of theMCL inflation score (I) was performed in terms of enrichedGO categories

by measuring F-score. Comparison of co-expressed cluster and clads analyzed from

phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We

utilized compendium of known interaction and biological role with Gene Ontology

enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part,

the transcriptional regulatory network analysis by “guide-gene” approach revealed 40

putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray

data. The putative targets with MYB-binding cis-elements enrichment in their promoter

region, functional co-occurrence as well as nuclear localization supports our finding.

Specially, enrichment of MYB binding regions involved in drought-inducibility implying

their regulatory role in drought response in rice. Thus, the co-regulatory network analysis

facilitated the identification of complexOsMYB regulatory networks, and candidate target

regulon genes of selected guideMYB genes. The results contribute to the candidate gene

screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and

their targets under stress conditions.
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INTRODUCTION

Plants are exposed to several environmental factors and
accordingly modulate their growth and development. Excess
or deficit of these environmental factors from their optimum
levels adversely affect the plant growth and thus crop yield (Gao
et al., 2007; Shinozaki and Yamaguchi-Shinozaki, 2007; Bansal
et al., 2012). Plants respond and adapt to these cues, through
various molecular, biochemical and physiological processes.
These processes are regulated by transcriptional regulators
which mediate the transcriptional regulation of several effector
genes required for stress tolerance. Hence, understanding the
regulatory hierarchy of gene expression in response to diverse
environmental cues is important to improve the plant processes
for enhancing agricultural production.

Systematic analysis of transcriptome data decipher regulatory
networks, that helps in identification of candidate genes with
certain degree of coordinated expression (Xue et al., 2012; Zhang
et al., 2012; Smita et al., 2013). Correlation analyses are useful to
identify co-regulated gene pairs in a signal transduction pathway
as well as in identifying new candidate genes for specific processes
(Gigolashvili et al., 2009; Mounet et al., 2009; Vandepoele et al.,
2009). Proteins encoded by highly co-regulated genes are co-
localized within the cell and often physically interact with each
other. Several gene clustering methods are used to identify
functionally coupled genes based on expression similarity (co-
expression) levels in a given set of conditions. To study the
functional association among genes “guide-gene” and “top-
down” approaches are generally used in system biology study. In
the guide-gene approach, genes with known functions are utilized
to retrieve the correlated genes in the co-expression network,
while top-down approach (non-targeted) is used to identify
the local module from the large network based on network
topology (Patnala et al., 2013). Further, relating these modules to
functional enrichment analysis leads to the identification of gene
function.

Network approach have been successfully applied in order to
analyze correlated genes and hub genes using high throughput
expression profiling data (Aoki et al., 2007; Yuan et al., 2008;
Cramer et al., 2011; Movahedi et al., 2012). The major progress
in molecular genetic analyses led to the identification of several
genes and TFs that directly and/or indirectly (i.e., regulated by
other pathway product) regulate the plant responses to abiotic
stresses (Chinnusamy et al., 2004; Nakashima et al., 2009; Xu
et al., 2011). TF genes encompass a considerable portion in
plant genome, and can be grouped into different, often large,
gene families on the basis of their specific DNA-binding domain.
This specific DNA binding domain of TF interacts with target
cis-elements in the promoter sequence, thereby controlling the
expression of the target gene. The MYB domain containing
TFs constitute one of the largest TF families in plant kingdom
(Qu and Zhu, 2006). The first MYB (myeloblastosis) family
of transcription factor identified was the “Oncogene” v-MYB
identified in avian myeloblastosis virus (Klempnauer et al., 1982).
Three v-MYB-related genes namely c-MYB, A-MYB, and B-MYB
were subsequently identified in many vertebrates (Martin and
Paz-Ares, 1997; Weston, 1998). MYB genes code for TFs with

a characteristic 52 amino acid MYB motifs. These TFs contain
one to four MYB domain direct repeats termed as R1, R2,
R3, and R4 (Du et al., 2009). As their name implies, one R-
MYB (MYB-related), two R-MYB, three R-MYB, four R-MYB
have one, two, three, and four repeats, respectively. Each MYB
domain has three regularly spaced tryptophan residues that are
separated by 18 or 19 amino acid residues, and each domain
form helix-turn-helix fold that is crucial for MYB TF–DNA
interaction (Saikumar et al., 1990). Among these, two R-MYB
(R2R3) are the richest class of MYB TF super-family genes
in plants (Dubos et al., 2010). The MYB TFs play important
role in wide range of biological processes such as cell cycle
regulation (Cominelli and Tonelli, 2009), cell proliferation (Xie
et al., 2010), developmental processes (Komaki and Sugimoto,
2012), hormone signal transduction (Zhao et al., 2014), and
abiotic stress responses (Dai et al., 2007; Liu et al., 2011; Seo
et al., 2011; Katiyar et al., 2012) in plants. Several researches have
demonstrated the regulatory role especially of R2R3-MYB genes
in various abiotic stresses responses (Pattanaik et al., 2010; Yun
et al., 2010; Du et al., 2012; Zhang et al., 2012).

Advances in high throughput omics technologies
complemented with comprehensive system biology approaches
offers many ways to identify gene networks that operate in a
given time or a biological processes. Several TF families have been
explored for regulatory network study (Meier et al., 2008; Berri
et al., 2009; Lim et al., 2010; Ouyang et al., 2012), while the MYB
family network has not been explored in spite of its important
roles in several biological processes. In the present study, we
applied co-expression network based analysis, to dissect MYB
transcriptional regulatory networks and their correlated links in
rice. Taking into account the role of MYBs in diverse biological
processes, we selected transcriptome data for fivemajor processes
such as developmental stages, abiotic stress response, biotic stress
response, hormone signaling, and phosphorus deficiency stress
response. Comprehensive correlation approach was employed
to answer: (i) how OsMYBs network connectivity relates to the
significant level of co-expression between OsMYBs by top-down
approach; and (ii) how transcriptional regulatory network based
analysis complementing with cis-regulatory elements relates
to the putative target genes by guide-gene approach. Thus,
the study revealed insight into the discovery of new links and
usefulness of characterizing the interacting target genes that lead
to the formation of complex transcriptional regulatory network
(TRN) in plants.

METHODS

OsMYB Identification and Their
Genome-Wide Expression Profiling for
Top-Down Approach
MYB domain was retrieved by searching for PFAM-ID PF00249
(MYB domain) as a query in rice genome at TIGR (http://
rice.plantbiology.msu.edu/). The non-redundant dataset ofMYB
genes identified in rice genome MSU (release 7) was used as
input for further validation by domain search at the Pfam
database. Only the longest splice form was selected when
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more than one alternative splicing sequence was found for
the same locus. These analyses led to the identification of
237 non-redundant OsMYBs genes in our study. Further,
we discarded the loci lacking MYB-DNA binding domain
but annotated as MYB protein family in MSU. Finally, we
identified 233 OsMYBs genes in rice genome and named
these MYBs following the nomenclature scheme suggested
for TF genes in grasses (Gray et al., 2009). Affymetrix rice
arrays were downloaded from NCBI Gene Expression Omnibus
(GEO) (platform: GPL2025). Total fifty Affymetrix rice arrays
representing five different conditions abiotic (drought, cold,
salt), biotic (Magnaporthe oryzae strain Guy11), developmental
stages (embryo, endosperm, root, leaf, and seedling), phosphorus
deficiency, and hormone treatment (auxin; indole-3-acetic acid,
and benzyl aminopurine) with minimum of two biological
replicates were retrieved. The microarray data have been
retrieved from NCBI GEO under the accession number of
GSE6901, GSE18361, GSE11966, GSE35984, and GSE5167
(Table S1). Original.CEL files for were normalized using
RMA (Bolstad et al., 2003) a package of the statistical
software R-version 2.6.1, part of Bioconductor http://www.
bioconductor.org/ (R Development Core, Gentleman et al.,
2004). Normalization on total signal was performed using
the “Robust Multi-array Average-RMA” method. In brief, gene
expression raw data analysis was done using the robust multichip
analysis algorithm (RMA) and t-test was used to calculate
the P-value of the expression change of each probe set in
each biological perturbation. Differentially expressed genes
(DEGs) were identified based on normalized signal intensities of
biological replicates for each samples using the limma package
(Diboun et al., 2006). Fold change of gene expression was
calculated using average signal intensities of biological replicates
for each sample. OsMYBs were considered to be significantly
up/down regulated when the log of expression value is ≥1.5 with
adjusted P < 0.05.

Mapping of probes to gene models were done by searching
in the MSU Rice Genome Annotation Project release—7 (based
on a new pseudomolecule assembly, Os-Nipponbare-Reference-
IRGSP-1.0). Microarray data used in the study were from
Affymetrix platform (GPL2025) chip containing 57,381 probe
sets, each consisting of 11 pairs of 25-mers probes. The 123
probes designed for bacterial/phage control were not included in
further analysis. Particularly, when we searched probes matching
for OsMYBs—264 probe sets matched for 223 OsMYB loci (more
than one probes matched with one loci). Out of 223 OsMYBs,
219 were mapped to 262 probe sets, while no probe sets for
14 OsMYBs. Among 219 OsMYBs, 183 MYB genes had single
probe, while the remaining 36 OsMYBs were represented by
more than one probe. To avoid ambiguity during analysis, the
average expression was calculated for the genes having multiple
probes.

Expression Correlation Network Construction
The expression correlations assembled in matrix of all-versus-
all OsMYB genes were calculated by Pearson correlation
coefficient (PCC; r-value) that capture the linear relationships
between any two given components. Expression correlation

data were used for correlation network, where nodes
represent genes and edges are correlation coefficient value
among gene pair. The network was further visualized and
analyzed using Cytoscape version 2.8.3 (Shannon et al.,
2003).

Module Detection, Assessment and GO Enrichment

Analysis
Highly interconnected genes were identified by best graph
partitioning algorithms called Markov Clustering algorithm
(MCL) (Van Dongen, 2008). The MCL algorithm is designed
specifically for clustering of simple or weighted graphs. The MCL
algorithm finds cluster structure in graphs by a mathematical
bootstrapping procedure. Since the results of MCL depend
heavily on the choice of an inflation parameter (I), we applied
MCL to the networks constructed with varied I between 1.1 and
3.0 to identify the functional clusters. Clusters with less than three
probesets are often biologically meaningless and were removed.

Further, the evaluation of functionally enriched were done
by assessment of gene ontology (GO) term overrepresentation
within a cluster, as discussed by Wong et al. (2014). Gene
Ontology enrichment analysis was done by “g:Profiler” Gene
Ontology enrichment analysis tool (http://biit.cs.ut.ee/gprofiler/)
using the hypergeometric distribution adjusted by set count sizes
(SCS) for multiple hypothesis correction (Reimand et al., 2011).
SCS threshold remove enriched false positive GO terms and
prioritizes truly significant results. Each probe IDs were assigned
GO term, if it crossed the threshold adjusted P-values (SCS)
< 0.05. The evaluation of cluster performance using MCL at
various I-values was determined by calculating the fraction of
modules enriched with one annotation at FDR <0.05 (expressed
as specificity) and the fraction of annotations enriched in at
least one module at FDR < 0.05 (expressed as sensitivity),
having at least two genes associated with the enriched annotation
(Wong et al., 2013). The specificity and sensitivity values were
then summarized as a functional enrichment score, the F-
measure, calculated as the harmonic mean between specificity
and sensitivity [(2 × Specificity × Sensitivity)/(Specificity +

Sensitivity)].

Phylogenetic Analysis
Multiple sequence alignment of full OsMYB amino acid
sequences was performed by Clustal X 2.0.11 using default
parameters. Rooted phylogenetic tree topologies were
constructed by the Neighbor-Joining (NJ) method and the
distances were obtained using a PAM-like distance matrix. The
pairwise deletion and p-distance model parameters were used.
Bootstrap test (1000 replicates) was performed to validate the
phylogenetic tree. The phylogenetic tree image was displayed
with the iTOL programme (http://itol.embl.de/; Letunic and
Bork, 2011). In tree view, the branches with >1000 bootstrap
were shown as green nodes, while red nodes had >80 but
<1000 bootstrap value. Most of the genes with high Bootstrap
values shown the evolutionary relatedness of genes with high
confidence.
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Transcriptional Co-regulatory Network
Construction and Inference Using
guide-Gene Approach
The transcriptional co-regulatory network was built by
RiceFREND database (http://ricefrend.dna.affrc.go.jp/) with
hierarchy equal to two and mutual rank was set as five (Sato
et al., 2013). The database contains 815 microarray data from
various tissues at different developmental stages and plant
hormone treatment conditions with the access of single and
multiple guide-gene searches. In order to exclude the expression
correlation due to the constitutive expression pattern, the
correlated genes with weighted PCCs higher than the optimal
(0.6) thresholds were only extracted from the database and
considered as the putative co-expressed genes.

Cis-Element Enrichment Analysis
PlantCARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) was used to predict cis-regulatory
elements in the promoter region (1 kb upstream from the
translational start codon (Lescot et al., 2002). Over representation
of cis-regulatory elements in promoter region (−1000 bp) were
performed by de novo motif finder Multiple EM for motif
elicitation tool (MEME; Bailey et al., 2006) with maximum
number of motif set to five, E = 0.01, minimum motif width 6
and maximum motif width 10.

Subcellular Localization Prediction
Subcellular localization was predicted using consensus results of
four localization predictor; Plant-PLoc (version 2) http://www.
csbio.sjtu.edu.cn/bioinf/plant/ (Chou and Shen, 2008), (ii) WoLF
PSORT http://wolfpsort.org/ (Horton et al., 2007), (iii) CELLO
(version 2.5) http://cello.life.nctu.edu.tw/ (Yu et al., 2006), and
(iv) GO slim from TIGR-MSU database.

RESULTS

OsMYB Co-regulatory Network Using
Top-Down Approach
Retrieval of OsMYBs and Transcriptome Data

Pre-Processing
By a reiterative database exploration with Pfam-ID PF00249
as a query at TIGR, a total of 237 nucleotide sequences were
retrieved from rice genome as putative OsMYB genes with at
least one MYB domain. These candidate genes were further
examined by searching for MYB domain at Pfam database.
Based on this, we identified 233 MYB genes and named them
following the nomenclature scheme suggested earlier (Gray
et al., 2009; Table S2). Computational domain analysis of final
non-redundant set of 233 MYB genes showed the presence of
several other functional domains including WD domain, G-beta
repeat, response regulator receiver domain, BTB/POZ domain,
SWIRM/Zinc finger domain, and MYB-CC type transfactor
(LHEQLE motif). In total, 113 MYB, 70 MYB related, 44
G2-like MYB, and 6 ARR-B MYB genes were identified and
mapped on rice chromosomes. We observed the variant density
distribution of MYB genes on rice chromosomes. It reflects the

genome/ tandem duplication and gene amplification of MYB
over evolutionary time.

Gene regulation in response to a physiological perturbation
and those triggered by developmental stages can be inferred
by appending one dataset with the other. As MYB has diverse
role in stresses as well as developmental stages, we have mined
and append genome wide expression data of OsMYBs from
a total of 50 Affymetrix rice arrays for different conditions
viz. abiotic (GSE6901), biotic (GSE18361), developmental stages
(GSE11966), phosphorus deficiency (GSE35984), and hormone
treatment (GSE5167; Table S1). Differentially expressedOsMYBs
were identified based on normalized signal intensities of
biological replicates for each sample. About 20% OsMYBs
showed significant expression change (log fold ≥ 1.5; adjusted
P = 0.05) in at least one of the experiment (Table S3). Gene
Ontology enrichment analysis showed thatOsMYBs differentially
expressed were associated with genes involved in the regulation
of biological process such as response to freezing, abiotic stress,
endogenous stimulus, environmental stimulus, regulation of
two-component signal transduction system (phosphorelay), etc.,
(Table S4). The transcriptional responses of MYB TFs to several
cues clearly indicated the existence of a complex regulatory
circuit comprising transcriptional activator as well as repressors.
Hence, we utilized and correlated these data for understanding of
regulatory network in further analysis.

OsMYB Co-expression Network Construction with

Cross-Validated Expression Correlations
The complete expression data of 219 OsMYBs (mapped to the
probsets; see Section OsMYB Identification and Their Genome-
wide Expression Profiling for top-down Approach) was further
recruited for co-regulatory network analysis. The correlations
were measured using log transformed (logarithmic) expression
values and co-expression network was built as well as analyzed
with Cytoscape (Table S5A). The topology for networks was
examined at different threshold of PCC. This showed that
increasing PCC cutoff value leads to decrease in number of
both nodes and edges (Figure 1A). It was observed that with
increasing the PCC value from 0.85 to 0.90, the number of nodes
was reduced by 37.67%, while the number of edges was dropped
drastically by 69.46%. This drastic reduction in the number
of edges may drop important biological interaction. Hence, to
possess relatively large number of nodes and their correlation in
the network, we opted 0.85 as stringent PCC cutoff value. For
the topology, selecting PCC cutoff 0.85 was confirmed by plotting
the number of edges, nodes, and network density as a function of
the threshold values. The network density at the governed cutoff
was ∼0.027 in co-expression network, and increased thereafter
(Figure 1B). The network created in this study satisfied the scale
free topology (Figure 1C; Albert and Barabasi, 2000).

The preliminary co-expression network was constructed by
connecting genes with PCC magnitude >0.85 and said to be
strongly coexpressed genes (PCC > 0.85; positively co-expressed
and < −0.85; negatively coexpressed) (Figure S1). Total of
146 (66.67%) OsMYBs and 298 correlations in network at 0.85
PCC cutoffs were obtained. Among all correlation, a total of
95.30% paired genes had positive correlation; while 4.69% paired
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FIGURE 1 | Selection of Pearson correlation coefficient (PCC) threshold value. (A) Plot of number of edges and nodes vs. PCC threshold value. (B) Plot of

Network density as a function of PCC threshold value. (C) Network satisfying scale-free topology showed the node degree distribution following power law (R2 > 0.8).

(D) Parameter evaluation and optimization of the MCL inflation score (I) for cluster performance by F-measure.

genes had negative correlation (Table S5B). Genes with positive
correlation depict the role of interacting partner in a coordinated
manner in similar biological pathway, while genes showing
negative correlation might be effective in opposite regulation
of genes for a physiological response. This analysis revealed
the existence of three major co-regulatory sub-networks with
nodes having greater than 3◦, in networks (Figure S1). Network
analyses revealed that 151 out of 219 (68.95%) of the rice MYB
genes analyzed in this study are coexpressed with diverse degree
of connectivity with other OsMYBs.

Specificity of Module With GO Enrichment
Grouping of the cluster of coexpressed genes into “modules”
also reflects regulatory relationships found in biological systems.
One can conclude the function of unknown genes through
“guilt by association” with well-characterized genes. We grouped
the biologically related coexpressed genes by modular analysis
to unravel the underlying functional processes. Several graph
clustering methods based on sharing of common functional and
expression relatedness are being used in biological science. We
subjected the wholeOsMYB network formodule analysis byMCL
(Markov Cluster) algorithm (Van Dongen, 2008). This algorithm
has an important Inflation parameter (I). Higher value for I
tends to produce a large number of modules but smaller in
size. Parameter evaluation and optimization of the MCL inflation
score (I) is often necessary to maximize clustering performance
(the quality of derived GO predictions based on specificity,
sensitivity and F-measure; Wong et al., 2013). We examined

different inflation values between 1.1 and 3.0. At inflation value
1.1–1.3, no modules were obtained. At I value of 1.4 onwards
diverse number of modules were obtained in network. Further,
relating the largest module to diverse functional categories gives
clue to opt the inflation cutoff value. We observed that an MCL I
parameter of 1.4 produced the best clustering solution in terms of
enrichment significance for GO biological process (BP) of most
of the cluster and highest F-score (see the details in Methods
Section; Table S6, Figure 1D). Therefore, with the inflation value
set at 1.4, MCL detected 11 modules in the network with
modularity (0.256; Figure 2). As node degree distribution, the
module size distribution was also observed highly skewed. The
largest module had 103 nodes; whereas smallest module had two
nodes with one correlated edge in the network. Distribution of
hub nodes was observed to be restricted to module 1 only.

We took the modules having more than three correlated
edges (i.e., six modules) for modular GO enrichment analysis.
The network possesses more number of edges and confers co-
regulation of genes even with large differences in expression level.
We examined the significant modular GO functional enrichment
analysis for six modules using g:profiler tool with cut-off using
the hypergeometric distribution adjusted by set count sizes (SCS)
p ≤ 0.05 (Figure 2). The module genes were significantly
enriched in response to gibberellin stimulus (GO:0009739;
g:scs < 6.94E-06), jasmonic acid stimulus (GO:0009753; g:scs <

5.54E-06), hormone stimulus (GO:0009725; g:scs < 1.17E-02),
auxin stimulus (GO:0009733; g:scs < 6.27E-03), temperature
homeostasis (GO:0001659; g:scs < 2.66E-04 ), abiotic stimulus
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FIGURE 2 | Co-regulatory rice OsMYB network identified by top-down approach. The 11 modules are shown in different color. Fonts in larger size indicate

differentially expressed OsMYBs. The positive and negative correlation value is shown by yellow and gray color edges, respectively.

(GO:0009628; g:scs < 5.10E-04), cold (GO:0009409; g:scs <

2.20E-03), response to freezing (GO:0050826; g:scs < 2.96E-04)
etc. with highest significance. OsMYBs of module 3 were found
to be significantly enriched with GO term positive regulation of
response to stimulus (GO:0048584; g:scs < 1.04E-02). Besides,
the molecular functions related to DNA binding and nucleic acid
binding were significantly enriched. More detailed knowledge
about the significant and unique biological processes, molecular
functions, and cellular component where the OsMYBs act are
given in Table S4.

Evaluating the Relationship Between Differential

Expression and Functional Coherence of a Modular

OsMYBs
The correlation analysis gave a hint to correlate the significant
relationship between regulatory modular OsMYB genes and the
differentially expressed OsMYBs. To investigate this relationship
between differentially expressed genes in the network, we
assessed topological properties of network and function of
OsMYB nodes and hubs (labeled in red color in Figure S1,
Figure 2). We observed this kind of relationship especially
in 1st, 2nd, and 7th modules. Analysis showed that more

than 50% of the genes of module 1 were found to be
upregulated under drought conditions. Among them, one
pair of OsMYB; LOC_Os09g23620 and LOC_Os02g04640 was
positively correlated (0.80) with each other. We observed
that LOC_Os02g55320 and LOC_Os01g67770 were positively
correlated (0.90) with each other and were found to be
up regulated in leaf by more than two-fold with significant
enrichment of two-component signal transduction system.

First module gene LOC_Os03g51110 was found to be
upregulated in leaf and down regulated in phosphorous
deficiency and significantly enriched with response to organic
substance. This gene positively correlated with other upregulated
genes in the leaf viz. LOC_Os08g43550, LOC_Os06g45890, and
LOC_Os08g33750. Most of the genes in second modules are
induced in leaves, which imply that this module may serve as a
tissue specific regulator in rice leaves, whereas some of themwere
found to be down regulated in root. LOC_Os11g03440 showed
positive correlation with LOC_Os11g35390. Interestingly,
module 3 contained 12 OsMYBs that were found to be
negative regulator of leaf and all these genes were found to
be correlated with each other. We observed correlation of
LOC_Os01g63160 with two other OsMYBs viz. LOC_Os08g34960
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and LOC_Os03g38210 genes, while LOC_Os03g38210 correlates
with LOC_Os03g29614 and LOC_Os08g34960.

Assessment of Phylogenetic Conserved Modules
Considering the fact that the knowledge of sequence
conservation is additive in identification of coexpressed
gene clusters (Elnitski et al., 2006), phylogenetic analysis was
performed with the Maximum Likelihood method using all
OsMYB protein sequences to infer diverse conserved cluster.
The tree revealed six main phylogenetic groups, which were
further sub-grouped in to smaller clades based upon the
bootstrap values. We then mapped the selected six functionally
enriched modules (see Section Specificity of Module with GO
Enrichment) on the phylogenetic tree (Figure 3). Particularly,
genes lie in module 1, 2, and 3 were found to be in different
clade with high bootstrap values. This illustration was signifying
the sequence conservation of these modules as well as their
co-regulatory roles. Majority of the network modules clearly
grouped in to different phylogenetic groups suggesting that
evolutionarily diverse OsMYBs contributing to orchestrate a
specific common signal transduction pathway in a network.

All clades identified based on evolutionary relatedness
showed the existence of co-expressed MYB genes in clusters.
Moreover, some of the OsMYBs of module 1, 2, 3, and 4
showed strong positive correlation within the whole network
module as well as sequence conservation. For example, module
1 gene LOC_Os12g37970 had significant positive correlation
(0.90) with LOC_Os11g47460 and observed to be evolutionarily
conserved in largest phylogenetic group. LOC_Os07g44090
of module 4 had strong positive correlation (0.90) with
LOC_Os01g18240 and occupied in thirrd phylogenetic cluster.
We observed that OsMYB2P-1 (LOC_Os05g04820) protein was
close to LOC_Os01g65370, LOC_Os05g3550, and OsMYB4
(LOC_Os04g43680) in 3rd phylogenetic cluster. Specificity of the
genes lies in one module as well as together in one phylogenetic
clad suggested its evolutionary role in co-regulatory manner.

Hub OsMYBs in Regulatory Network Exhibit

Biological Significance
Genes with high degree of connectivity either positive/negative
correlation was defined as hub genes. In this study, we defined
“hubs” as nodes having five and more than five connectivity
in the whole network (Patil and Nakamura, 2006; Lu et al.,
2007). We found 51 OsMYBs as hub genes which were present
in network (Table S5C). Additionally, candidate hub nodes
that were significantly enriched in higher level of biological
processes such as signaling were adopted as a factor for potential
hub genes in the network. We observed high correlation
(positive/negative) among hub nodes themselves. Among 51
hubs, 48 hub OsMYBs were significantly enriched with GO term,
while three hub genes were not found to be enriched with any
GO term. Among 48 hubOsMYBs, 17 were significantly enriched
with response to salicylic acid stimulus, stimulus, hormone
stimulus, jasmonic acid stimulus, gibberellin stimulus, and
abscisic acid stimulus related GO biological processes (Table 1).
Results revealed that nodes pertaining to molecular functions
such as DNA binding (GO:0003677; g:scs < 4.29e-32), nucleic

TABLE 1 | Hub OsMYB genes that were significantly enriched with abiotic

stress and hormone related Gene Ontology (biological process).

Hub node MSU_ID Degree

LOC_Os01g13740 8

LOC_Os01g62660 5

LOC_Os01g67770 10

LOC_Os02g08500 12

LOC_Os02g10060 7

LOC_Os02g36890 8

LOC_Os02g54520 14

LOC_Os02g55320 5

LOC_Os03g51110 6

LOC_Os03g55590 5

LOC_Os04g39470 5

LOC_Os05g48010 9

LOC_Os06g01670 5

LOC_Os06g11780 6

LOC_Os07g43580 5

LOC_Os08g43550 15

LOC_Os11g35390 5

LOC_Os12g37970 17

Nodes in bold are differentially expressed in at least one of the condition.

acid binding (GO:0003676; g:scs < 1.13e-21), two-component
response regulator activity (GO:0000156; g:scs < 2.91E-02),
organic cyclic compound binding (GO:0097159; g:scs < 7.12e-
14), etc. The details of all 48 hub nodes and significantly enriched
GO biological processes were summarized in the Table S4.

The hub node LOC_Os12g37970 with highest degree had
17 coexpressed neighbors; 15 positive and 2 negative, with an
average correlation 0.88 and 0.86, respectively (Figure 4). GO
analysis of sub-network of this highest degree node revealed
that five nodes are significantly enriched with GO biological
processes in response to stimulus and response to hormone
stimulus. Among 17 coexpressed OsMYBs, six were found to
be differentially expressed in at least one of the conditions
taken in the present study. Where, three (LOC_Os01g74410,
LOC_Os11g47460, and LOC_Os07g43580) were differentially
expressed in our previous study under drought condition with
more than 1.5-fold change (Katiyar et al., 2012). The function
of individual genes was explored on the basis of GO annotation
and found to be involved in endogenous stimulus, stress, abiotic,
signal transduction pathways for all positively correlated genes.
While two pair of genes with negative correlation; first the
LOC_Os07g43580 has role in cell death, lipid metabolic process,
biotic stimulus and other one LOC_Os01g51260 has role in flower
development. These data clearly showed that the hub genes and
their interacting genes as putative nodes to function in several
stresses and hormones signaling pathway.

Abiotic Stress Responsive OsMYB

Transcriptional Regulatory Network (TRN)
by Guide-Gene Approach
Identifying directly co-regulated genes (i.e., genes that are
both co-expressed and share conserved upstream regulatory
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FIGURE 3 | Phylogenetic tree of OsMYB proteins. OsMYBs lie in module 1 (highlighted in red), module 2 (in orange), module 3 (in green), and module 4 (in blue),

were found to be evolutionary related with high bootstrap values. Gene pair marked with star (*) showed their sequence conservation with high boot strap value as

well as coexpression which lies in same module. Bootstrap values higher than 80 are indicated by colored nodes (green nodes with >1000 bootstrap value; red nodes

with >80 but <1000 bootstrap value).

sequences) is important for exploring the underlying
transcriptional regulatory network and putative target genes
(Imam et al., 2015). For this purpose, based on the available
biological knowledge, certain OsMYBs were selected as guide

genes that are known to play key role in a specific biological
process. Total of 35 OsMYBs were chosen as guide genes to build
global co-expression network that included 17 OsMYBs with
previously known functions and 18 OsMYBs with more than two
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FIGURE 4 | Hub OsMYBLOC_Os12g37970 with the highest connection in co-regulatory network. Differentially expressed nodes are in dark red color. Genes

with abiotic stress related GO term are marked with green star (*). Characterized genes having role in abiotic stress response are highlighted with red star (*).

fold up-regulation under drought conditions in our previous
study (Katiyar et al., 2012; Table S7A). The transcriptional
regulatory networks have two types of nodes namely “TFs hub”
and putative target genes. We employed recently published
RiceFREND co-expression tool that contains microarray data
for abscisic acid, gibberellins, jasmonic acid, developmental
stages, etc., for co-expressed gene identification based on mutual
ranking. Since hormones play significant role in adaptive
response of plants to abiotic and biotic stresses, we opted
RiceFREND database with multiple guide genes search option to
understand the underlying transcriptional regulatory network.
The resulting regulatory networks derived from this analysis
contained a total of 163 correlated nodes (TFs and putative target
genes) with 158 correlations that include 24 guide genes with
cutoff of weighted PCC > 0.6 and mutual rank <5 (Figure 5;
Table S7B).

The GO enrichment analysis of target genes showed
that significant enrichment of biological processes such as
response to abiotic stimulus (GO:0009628; g:scs < 1.25E-
02), response to salicylic acid stimulus (GO:000975; g:scs <

5.36E-04), response to ethylene stimulus (GO:0009723; g:scs <

2.24E-02) response to gibberellin stimulus (GO:0009739;
g:scs < 1.12E-03), etc. Interestingly as expected, the
molecular function enrichment showed the term DNA
binding (GO:0003677; g:scs < 1.04E-03) with highest
enrichment. The cellular component showed the nucleus
(GO:0005634; g:scs < 6.04E-08), intracellular organelle
(GO:0043229; g:scs < 2.10E-03) with highest enrichment
(Table S7C).

Co-regulated Drought Responsive Putative Target

Genes Of OsMYBs
Most of the guide OsMYB genes in the network were found to be
involved in drought response and hence, the coexpressed genes
were analyzed for the presence of drought response (or abiotic

stress related) regulatory elements in their promoters. As shown
in Figure 5, transcriptional regulators based on coordinated
expression and over representation of the cis-elements associated
with the OsMYB in putative target genes may support our
finding. For this purpose, OsMYB co-regulatory network was
further analyzed for similar promoter cis-elements. A total of
53 genes as a direct neighbor of 26 guide OsMYBs were found.
Localization prediction showed that the majority of the co-
regulated MYB TF-target pairs have nuclear localization. The
presence of nuclear localization signal and GO cellular location
in MYB TFs and their target genes suggest that these pairs are
not only co-expressed but also localized in the same cellular
(nucleus) location. Further, this suggests their putative physical
interactions and function in the same signaling/gene expression
pathway.

The results encouraged us to identify putative targets of
guide OsMYB genes having MYB binding cis-elements in their
promoter region. Interestingly, we observed around 40 (75%)
putative target genes with at least one MYB binding region
in their promoter region (Table 2). Remarkably, among all
40 putative targets, 27 (∼67%) were found to be enriched
with 44 MYB binding regions involved in drought-inducibility
(MBS; CAACTG, and TAACTG), implying their regulatory
role in drought response. Among 27, nine were annotated as
unknown proteins having MYB binding cis-element in their
promoter. Furthermore, MYB binding site involved in light
responsiveness (MRE; AACCTAA) and flavonoid biosynthetic
gene regulation (MBSII; AAAAGTTAGTTA) were also found to
be enriched in the putative target genes. The results suggested
the multiple functionality of MYB targeting genes which have
association with abiotic stress, function in light signaling,
flavonoid biosynthesis and circadian control (Kuno et al., 2003;
Dubos et al., 2010).

Along the MYB binding site involved in these processes,
several other cis-elements were also found in good frequency.
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FIGURE 5 | OsMYB transcriptional co-regulatory network constructed using guide-gene approach. The co-expression network of 24 reported drought

responsive genes as guide OsMYBs (RAP_ID, enlarged red circle); their putative first neighbor target gene (RAP_ID, orange circle) based on integrative analysis of

coexpressed gene and over representation of target promoter motif enrichment with that class of transcription factor. A link between two nodes indicates direct

interaction with PCC > 0.64 and MR <10. The thickness and brightness of the edges represents the confidence of the interaction.
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FIGURE 6 | Frequency of cis-regulatory elements in the 1kb promoter of first neighboring target genes of guide OsMYBs in the co-regulatory network.

Pie chart depicts the categorized seven types of cis-regulatory elements and the corresponding colored bar chart depicts the occurrence of different cis-elements.

We categorized all the cis-elements in the seven broad categories
on the basis of responsiveness for any perturbation (Figure 6).
We observed the enrichment of light, abiotic stress and tissue
specific cis-elements in the promoter region of first neighbor
target of guide OsMYBs. Detailed promoter content has been
summarized in Table S8A. Furthermore, the position of 44
MYB binding region involved in drought-inducibility revealed
distinct patterns of sites related to proximal/distal location with
respect to transcription start site (TSS). Majority of them (up
to 75%) are far from TSS (∼200 bp) indicating their distal
type of gene expression regulation. Furthermore, the enrichment
analysis of motif in 1000 bp promoter region performed by
using MEME with minimum motif width 8 and maximum
motif width 10 with E-value set to 0.01 (Table S8B). Results
showed that four motifs were highly conserved in 186 sites
in maximum of the target promoter sequences (Figure 7).
Interestingly, we found CIRCADIAN CLOCK ASSOCIATED 1
(CCA1) motif which has been reported to be binding region

of CCA1 MYB-related transcription factor (Wang et al., 1997).
It supports our findings that these target genes identified in
global co-regulatory network are putative and a researchable area
in future.

Consideration of the phylogenetic conservation of binding
sites of the promoter elements can enhance the accuracy
and have a higher likelihood of being functional in vivo
(Elnitski et al., 2006). This approach relies on the principle that
biologically important TF-binding sites are more likely to be
conserved during evolution (Harbison et al., 2004; Dieterich
et al., 2005). Therefore, relationship between phylogenetically
conserved 1 kb promoter region of all correlated gene pair in
the global network and modules were investigated (Figure S2).
Results showed the evolutionary conservation of several pair
of correlated genes. Co-regulated genes with MYB binding
regions were examined for evolutionary conservation. Results
showed the presence of putative target genes having MYB
binding cis-element from module 2; 6–10 were evolutionarily
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TABLE 2 | The guide OsMYB genes and their first neighbor as putative target with MYB binding cis-elements within 1 kb upstream promoter region.

Guide gene First neighbor gene; PCC MYB binding

related

Cis-elements*

Strand Position

Os04g43680 (MYB family transcription factor,

OsMYB4)

Os03g32230 (ZOS3-12—C2H2 zinc finger

protein); 0.7

TAACTG + 521

CAACTG + 566

Os09g17146 (unknown protein); 0.7 TAACTG + 582

CGGTCA − 941

TAACTG − 688

AACCTAA − 497

Os10g41200 (Transcription factor MYBS3,

OsMYBS3)

Os02g05630 (protein phosphatase 2C, putative);

0.7

TAACTG + 729

Os10g22430 (gibberellin response modulator

protein); 0.7

CAACTG − 641

Os06g45890 (MYB family transcription factor) Os01g18584 (WRKY9); 0.8 CAACTG + 27

Os03g11010 (natural resistance-associated

macrophage protein); 0.7

TAACTG + 51

CAACTG + 516

TAACTG + 128

Os06g14780 (unknown protein); 0.7 TAACTG − 754

Os06g40330 (GAMYB-like1) Os01g59660 (GAMyb); 0.7 CGGTCA + 222

CGGTCA − 479

Os10g29660 (TFIID, TATA-binding protein); 0.7 CAACTG − 115

Os07g43240 (SKP1-like protein 1B); 0.7 TAACTG − 191

CAACTG − 286

Os05g03550 (MYB family transcription factor) Os07g25680 (protein kinase domain containing

protein); 0.7

CAACTG + 905

AACCTAA + 757

Os07g38360(unknown protein); 0.7 CAACGG + 691

Os08g33320 (unknown protein); 0.7 AACCTAA − 210

Os08g33660 (MYB family transcription factor) Os02g36890 (MYB family transcription factor);

0.6

CGGTCA − 377

OS10g38800 (leucine-rich repeat

transmembrane protein kinase); 0.7

CGGTCA − 196

CGGTCA + 360

Os11g27400 (Glycoside hydrolase); 0.7 CAACTG + 16

TAACTG − 358

TAACTG − 278

Os06g19550 (Short-chain

dehydrogenase/reductase SDR domain

containing protein); 0.7

CGGTCA − 377

Os01g74410 (MYB59) Os11g47460 (MYB family transcription factor);

0.8

CAACGG − 364

TAACTG − 61

CAACTG + 790

Os05g02420 (unknown protein); 0.8 CAACGG − 314

Os01g13740 (MYB family transcription factor) Os06g39330

(UDP-glucuronosyl/UDP-glucosyltransferase

family protein); 0.7

AACCTAA + 257

Os06g40960 (ZOS6-05 - C2H2 zinc finger

protein); 0.7

TAACTG + 77

Os02g51070 (Starch synthase isoform zSTSII-2);

0.7

CAACGG + 525

CAACTG − 288

(Continued)
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TABLE 2 | Continued

Guide gene First neighbor gene; PCC MYB binding

related

Cis-elements*

Strand Position

Os11g35390 (MYB family transcription factor) Os02g43194 (Aldehyde dehydrogenase); 0.7 CGGTCA + 124

CAACTG + 555

CGGTCA − 267

TAACTG − 909

Os02g46030 (OsMyb1R) Os02g57060 (OsCttP2 - Putative C-terminal

processing peptidase homolog); 0.8

CAACGG + 792

Os01g62410 (OsMYB3R−2) Os04g42770 (unknown protein); 0.6 CAACGG − 326

CAACGG + 345

TAACTG + 413

CAACTG − 491

CGGTCA + 458

TAACTG − 823

Os06g49800 (ubiquitin interaction motif family

protein); 0.6

CAACTG − 744

CAACTG + 755

Os06g45410 (MYB family transcription factor) Os03g57080 (PLA IIIA/PLP7, Patatin-like

phospholipase family protein); 0.6

CGGTCA − 141

CAACTG + 921

Os01g04930 (OsMYB2) Os10g36400 (GIL1); 0.6 TAACTG + 808

Os02g50240 (glutamine synthetase, catalytic

domain containing protein); 0.7

TAACTG − 471

Os03g22560 (MYB family transcription factor) Os06g29020 (retrotransposon protein); 0.6 CAACGG + 515

CGGTCA + 189

Os06g19980 (MYB family transcription factor) Os03g01970 (THO complex subunit 1); 0.8 TAACTG − 555

CAACTG + 689

Os05g35500 (MYB family transcription factor) Os09g36730 (P-type R2R3 Myb protein); 0.6 CAACTG − 75

Os03g01580 (unknown protein); 0.6 CAACTG − 75

Os12g41920 (Similar to Single myb histone 6) Os04g59394 (unknown protein); 0.7 TAACTG + 67

Os04g57290 (OsFBX153 - F-box domain

containing protein); 0.6

TAACTG − 700

CAACTG + 925

Os02g47744 (MYB family transcription factor) Os12g44040 (transposon protein); 0.7 TAACTG − 797

AAAAGTTAGTTA + 786

Os05g48010 (OsMYB55) Os03g03034 (flavonol synthase/flavanone

3-hydroxylase); 0.6

TAACTG + 533

Os07g30130 (Myb, DNA-binding domain

containing protein)

OS07g48690 (DUF630/DUF632 domains

containing protein); 0.7

TAACTG − 328

Os02g17190 (Myb, DNA-binding domain

containing protein)

Os07g47860 (tRNA synthetase); 0.7 CAACTG + 286

*Seven types of MYB binding cis-elements were present—CAACGG, (CCAAT-box; MYBHv1 binding site); AACCTAA, (MRE; MYB binding site involved in light responsiveness); MBSII,

(AAAAGTTAGTTA; MYB binding site involved in flavonoid biosynthetic genes regulation); TAACTG, (MBS; MYB binding site involved in drought-inducibility); CAACTG, (MBS; MYB

binding site involved in drought-inducibility); CGGTCA, (MBS; MYB Binding Site).

conserved. Thus, the analysis performed via top down and
guide gene approaches in this study identified the highly
correlated hub OsMYBs and drought responsive putative target
genes of OsMYBs. Several uncharacterized hub genes as well

as co-expressed genes with guide genes annotated as unknown
proteins in co-expression network represent high confidence
candidate regulator awaiting further examination and validation
in vitro.
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FIGURE 7 | Four enriched motifs logo in the 1kb promoter region of first neighboring target genes of guide OsMYBs in the co-regulatory network.

DISCUSSION

Inferring Function of Candidate OsMYBs in
Co-expressed Modules
In this study, we carried out transcriptome analysis of OsMYB
gene family in different abiotic, biotic, hormone stress and
developmental stages to identify underlying regulatory network.
The OsMYBs were first analyzed for their differential expression
and putative functions. We found, OsMYBs differentially
expressed were associated with genes involved in the regulation
of biological process such as response to freezing, abiotic
stress, endogenous stimulus, environmental stimulus, regulation
of two-component signal transduction system (phosphorelay),
The two-component system has been shown to play an
important role in response to environmental stimuli and
growth regulation (Hwang and Sheen, 2001; Du et al.,
2007).

The subset of genes that are differentially expressed in
particular sample are also observed to be correlated with each
other in a co-expression network (Cho et al., 2012). In the
OsMYBs network of co-expressed genes identified, from the
function of known gene in the network, the potential function
the co-expressed genes may be inferred and could be selected
as candidates for functional verification by in vivo approaches.
The preliminary gene network of OsMYBs was constructed with
the relative stringent thresholds to reduce false connections.
Module identification and comparison with DEGs showed,
correlated OsMYB pair in 1st, 2nd, and 7th modules was also
differentially regulated under any stress conditions taken in
consideration (Figure 2). GO enrichment assessment of the
modules revealed the significant enrichment of term related to

abiotic stress related responses. Some of the candidate genes
correlating with already characterized genes for a particular
condition showed their role in similar biological pathways as
extracted by GO analysis also. Taken together, the coexpression
results largely confirm results from previous studies and provided
additional clues into the complex molecular mechanism of
OsMYBs. OsMYB3R-2 (LOC_Os01g62410) was found to be
differentially expressed in drought and had positive correlation
with LOC_Os03g51220 which was found to be involved in
biosynthetic process. OsMYB3R-2 is known to confer tolerance
to freezing, drought, and salt stresses in transgenic Arabidopsis
(Ma et al., 2009). Several predicted OsMYBs were activated
at early response mechanism in chilling stress (Yun et al.,
2010).

LOC_Os06g45410 positively correlated with
LOC_Os03g20900 and has role in biosynthetic processes
(Table S5B). In a previous study, it was shown that
LOC_Os03g20900 has a positive correlation (0.80) withOsATG6a
which is involved in abiotic stress (heat, cold, and drought) and
abscisic acid responses (Rana et al., 2012). The MYB genes have
been studied for their cross talk in abiotic stress and hormone
regulated gene expression (Peleg and Blumwald, 2011). ABA and
auxin responses were regulated by ABI5-like1 (ABL1), a bZIP
transcription factor, and the expression of LOC_Os05g04820
was changed in abl1 mutant (Yang et al., 2011). In our study,
we observed its positive correlation with LOC_Os01g12860.
A large number of TFs interact with calmodulin (CaMs) to
mediate both biotic and abiotic stress responses (Laluk et al.,
2012). Recently, several putative OsMYBs have been reported
to interact with calmodulin (Chantarachot et al., 2012). In
our study, we found correlation of CaM binding MYBs i.e.,
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LOC_Os05g04210, LOC_Os11g45740 and LOC_Os01g45090 with
other OsMYBs. GO slim analysis revealed that the participation
of first two genes (LOC_Os05g04210 and LOC_Os11g45740)
in response to abiotic stimulus and all trios in response to
endogenous stimulus. In consistent with previous study, several
OsMYBs of module were previously shown to play significant
role in activation of immune response, regulation of response
to stress as well as in defense response signaling pathway
(Glazebrook, 2001). Module 1 genes pair were upregulated
in leaf and significant enrichment of two-component signal
transduction system. The two-component signal transduction
system plays central role in cytokinin signaling and growth
(Skerker et al., 2008; Schaller et al., 2011). Recently, it has been
reported that the substantial difference in hormone signaling
in several response regulators due to variation within their
MYB-like DNA binding motif (Tsai et al., 2012). Hence, the
correlated OsMYB genes may be good candidates for functional
characterization of their role in abiotic stress and hormone
responses.

Further identifying the hub nodes showed 51 hubs OsMYB
in our study. These hub genes might have important roles
in organizing the functional modules (Barabási and Oltvai,
2004). Some of the high degree functionally characterized
hub genes such as OsMYBS1 (LOC_Os01g34060), OsMYBS2
(LOC_Os10g41260), and OsMYBS3 (LOC_Os10g41200) have
been studied previously and found to mediate sugar and
hormone regulation of α-amylase gene expression (Lu et al.,
2002). Moreover, OsMYB3 is known to be essential for
conferring cold tolerance to rice plants (Su et al., 2010).
Another OsMYB55 (LOC_Os05g48010) with 9◦ has been shown
to confer high temperature stress tolerance and modulation
of amino acid metabolism (Wahid et al., 2007). A highest
hub node LOC_Os12g37970 with 15 positively coexpressed
MYB genes with their enriched GO terms “response to
stimulus” and “hormone stimulus” as well as differential
expression pattern suggest their function in stress and hormone
signaling pathway (Figure 4). Where two negatively coexpressed
OsMYBs with the hub genes showed their function in
flower development, cell death and lipid metabolic process.
That shows, environmental stress lead to the modulation
in flower development and cell death might be due to
(reactive oxygen species) ROS formation (Petrov et al.,
2015).

Interestingly, we look at numerous scientific reports
demonstrated the characterized genes in stress signal
pathways from this highest hub cluster (Figure 4). Some of
the correlated OsMYBs with this highest hub genes such
as LOC_Os01g74410 has been characterized for significant
improvement in tolerance to drought and salinity stresses in
rice (Xiong et al., 2014). The ortholog of LOC_Os01g74410 i.e.,
TaMYB13-1 was also evidenced as transcriptional activator for
fructan synthesis that known as protecting agent for drought
and cold stress (Xue et al., 2011). The other coexpresssed
LOC_Os01g51260 corresponds to the Arabidopsis MYB
TF AT3G13890 that known to be activator of secondary
wall thickening (Yang et al., 2007) and LOC_Os08g33750
ortholog in maize for ethylene-induced lysigenous aerenchyma

formation under aerobic conditions (Takahashi et al., 2015).
Another positive correlated OsMYB LOC_Os09g26170 was
recently study for their significant role in MG-response
and stress-responsive signal transduction pathways. (Kaur
et al., 2015). Remarkably, two of the correlated 561 genes
LOC_Os05g10690 and LOC_Os05g48010 were patented for
enhancing yield-related traits in plants by modulating expression
in a plant (Molinero, 2013). Hence, we hypothesize this high
hub gene cluster have specific role in regulation of stress
tolerance, in particular in defense mechanism as well as in
crop yield improvement. And thus characterization of some
uncharacterized MYB TF from this cluster can be a promising
future direction.

Phylogenetically Preserved OsMYBs

Reveals Strong Associations Between
Genes Co-expression, Function and
Evolution
The phylogenetic footprinting might be additive to coexpressed
cluster and successfully being applied to determine expression
association of genes (Elnitski et al., 2006). Exploring the co-
expression and phylogenetic analysis suggested that the highly
co-expressed genes with known role in specific regulatory
processes were preserved in the network. We found such
type of relation in module 1, 2, 3, and 4 (Figure 3).
Two of the OsMYB2 (LOC_Os01g18240, LOC_Os05g04820)
genes were found to be upregulated in phase-I of chilling
stress, where OsMYB2 (LOC_Os01g18240) positively correlated
with LOC_Os07g44090 (phylogenetically also closely related),
LOC_Os05g40960, LOC_Os01g36460 and LOC_Os06g49040.
The phylogenetically close pair was found to be involved
in highly similar type of processes such as response to
biosynthetic process, endogenous stimulus, reproduction, post-
embryonic development. Two of the genes with high degree viz.
LOC_Os01g74410 (MYB59) and LOC_Os01g51154 (R1-MYB)
were found to be highly correlated with several other MYB
genes in the network (Table S5B). It is in agreement with
the study that the expression of these genes are modulated
both by cold independent conditions (Park et al., 2010). We
observed that OsMYB2P-1 (LOC_Os05g04820) protein was
close to LOC_Os01g65370, LOC_Os05g3550, and OsMYB4
(LOC_Os04g43680) in 3rd phylogenetic cluster. OsMYB2P-
1 is known to regulate phosphate starvation, cold, salt and
osmotic stress responses, and also found to be up-regulated
in phosphorus starvation in this study. This is in agreement
with the results by Dai et al. (2012). A system biology
approach has identified R2R3 motif MYB28 and two homologs,
MYB29 and MYB76 genes that form a single clade with
distinct and overlapping functions in regulation of aliphatic
glucosinolates (Sønderby et al., 2007). These evidences showed
the important regulatory roles of MYBs in several biological
processes. Moreover, OsMYB4 is known to express in cold-
mediated and cold-independent transcriptional network (Park
et al., 2010). Evaluation of data revealed that the cluster of
genes that are co-expressed lie in distinct phylogenetic clade,
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suggesting functional redundancy and their evolution by recent
duplication.

Deciphering Transcriptional Regulatory
Network for Putative Target Gene
Identification
The first step in gene regulation is transcriptional regulation
which is governed by the recognition of cis-element by the
DNA binding domain of TFs. The assembly of TFs on the
promoter cis-element region and their interaction in regulatory
network profoundly influence the target gene expression. It is
known that genes with similar expression pattern in the same
biological function are likely to be regulated by same TF(s) (i.e.,
co-regulated) having similar cis-regulatory elements for the TFs
were liable for putative target gene identification (Wang and
Stormo, 2003; Walhout, 2006; Wang et al., 2009; Imam et al.,
2015). Hence, we created another OsMYB network by guide gene
approach to identify the putative target OsMYB genes on the
basis of functional co-occurrence as well as MYB recognition
cis-elements in their promoter region.

Among TFs, we observed ten guide OsMYBs were in
correlation with other OsMYB genes forming a more complex
feedback network. We also observe the presence of feedback
motif in the target OsMYBs Comparing the results from both
top-down and guide-gene approach showed the conservation
of one correlated pair of OsMYB (LOC_Os11g47460,
LOC_Os01g74410; PCC 0.98). Among correlated TFs such
as WRKY, ZOS6-05—C2H2 zinc finger protein and helix–
loop–helix (bHLH) protein were found. This suggests that the
function of OsMYB proteins might require participation of
various members of these transcription factors (Table S7B).
It is in partial agreement with the recent study that showed
transcriptional regulation by MYB–bHLH–WD40 (MBW)
complex in the late step of flavonoid biosynthetic pathway
(Hichri et al., 2011), GL2 expression and the non-hair or
trichome fate (Schiefelbein, 2003).

Conclusively, in the present study we identified co-regulatory
network and functional co-occurrence of modules of OsMYB
genes in rice. This will contribute to illustrate the functions of
gene cooperation pathways that have not yet been identified
by classical genetic analyses. In the first part of the study, we
adopted the top-down approach to decipher the OsMYBs with
correlated expression pattern in different development and stress
conditions. We defined the existence of OsMYBs gene clusters
comprising both phylogenetically related and unrelated genes
that were strongly coexpressed, signifying their evolutionary role
in co-regulatory manner. A sum of 51most highly connected hub
OsMYBs were identified, some of them were expected to play the
significant regulatory roles in abiotic stress tolerance. As the hubs
have high correlation value, they may play crucial role in stress
tolerance as well as development.

More importantly, our analyses revealed the existence of
OsMYBs transcriptionally co-regulatory networks by taking
guide OsMYB genes with known function under abiotic stress
condition. This provided insight into the functional association
of several uncharacterized genes and coexpressed putative target

genes possessing MYB binding cis-elements in their promoter
region. The presence of drought responsive MYB binding cis-
elements in the putative target genes and guide genes with known
drought stress response identified the co-regulatory network in
response to drought stress. In several instances, these rationales
for candidate gene screening and functional validation allowed
us to generate hypotheses, which are experimentally testable and
their relevance in a specific process involved in plant response
to stress or hormone signals. Functional testing of in vivo
interaction or action of the candidate co-expressed gene network
modules and hubs will significantly enhance our knowledge on
the function of MYB family and help develop improved rice
genotypes. Therefore, the network modules predicted in the
present study were of high biological relevance and revealed
putative role for uncharacterized genes. Further, the outcome of
the study offers new biological insights into the transcriptional
regulatory networks that await experimental validation.
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Table S3 | Differentially expressed OsMYB genes under diverse microarray

experiments.
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encoding genes expressed under different microarray experiments. (B)

Pearson correlation coefficient (PCC) among OsMYB genes in top down

approach. (C) Simple and complex topological properties of correlation network of

OsMYB genes. Red highlighted is hub nodes.

Table S6 | Parameter evaluation and optimization of the MCL inflation
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Table S7 | (A) List of guide genes used to create global co-regulatory

network via guide-gene approach. (B) Global co-regulatory network of guide

OsMYB genes and their correlated allies with their description. (C) Gene ontology

enrichment analysis of target genes.

Table S8 | (A)List of cis-elements in 1 kb upstream promoter region of

direct first neighbor of guide OsMYB genes in global co-regulatory

network. (B) Motif enrichment analyses by MEME of direct first neighbor of guide

OsMYB genes in global co-regulatory network.
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