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Simple sequence repeats (SSRs), also known as microsatellites, are ubiquitous short
tandem duplications commonly found in genomes and/or transcriptomes of diverse
organisms. They represent one of the most powerful molecular markers for genetic
analysis and breeding programs because of their high mutation rate and neutral
evolution. However, traditionally experimental screening of the SSR polymorphic status
and their subsequent applicability to genetic studies are extremely labor-intensive
and time-consuming. Thankfully, the recently decreased costs of next generation
sequencing and increasing availability of large genome and/or transcriptome sequences
have provided an excellent opportunity and sources for large-scale mining this type
of molecular markers. However, current tools are limited. Thus we here developed
a new pipeline, CandiSSR, to identify candidate polymorphic SSRs (PolySSRs)
based on the multiple assembled sequences. The pipeline allows users to identify
putative PolySSRs not only from the transcriptome datasets but also from multiple
assembled genome sequences. In addition, two confidence metrics including standard
deviation and missing rate of the SSR repetitions are provided to systematically
assess the feasibility of the detected PolySSRs for subsequent application to
genetic characterization. Meanwhile, primer pairs for each identified PolySSR are also
automatically designed and further evaluated by the global sequence similarities of
the primer-binding region, ensuring the successful rate of the marker development.
Screening rice genomes with CandiSSR and subsequent experimental validation
showed an accuracy rate of over 90%. Besides, the application of CandiSSR has
successfully identified a large number of PolySSRs in the Arabidopsis genomes and
Camellia transcriptomes. CandiSSR and the PolySSR marker sources are publicly
available at: http://www.plantkingdomgdb.com/CandiSSR/index.html.

Keywords: microsatellites, transferability, polymorphic SSR, CandiSSR, multiple assembled genomes, multiple
assembled transcriptomes
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INTRODUCTION

Simple sequence repeats (SSRs; also called microsatellites),
containing repetitive sequences of 1–6 bp in length, have been
extensively found in both the coding and non-coding sequences
of eukaryotic and prokaryotic genomes (Tautz and Renz, 1984;
Gupta et al., 1996; Li et al., 2002; Zhang et al., 2004). They are
broadly applied in various areas of genetic studies including the
evaluation of genetic variation (Kashi et al., 1997), construction
of genetic linkage maps (Jones et al., 2002), QTL analysis (Mei
et al., 2004; Minamiyama et al., 2007), positional cloning and
molecular marker-assisted selection in plant and animal breeding
programs (Mohan et al., 1997; Collard and Mackill, 2008). In
recent years, genomic microsatellites (gSSR) have attracted more
attention owing to high level of polymorphisms, reproducibility
and abundance in plant genomes (Jones et al., 1997; Uzunova and
Ecke, 1999). Compared to gSSRs, expressed sequence tag (EST)-
SSRs belong to the transcribed DNA regions and exhibit potential
advantages due to their high across-species transferability rate
and more generally consistent amplification efficiency (Scott
et al., 2000; Gupta et al., 2003). Moreover, the majority of
EST-SSR loci are present in functional genes, indicating these
markers could possibly be associated with some significant
phenotypes.

Owing to the recent rapid development of next-generation
sequencing techniques, hundreds of genomes and transcriptomes
of commercially or experimentally important organisms have
been sequenced (Arabidopsis Genome Initiative, 2000; Goff
et al., 2002; Grabherr et al., 2011). Accordingly, thousands
of gSSRs and EST-SSRs of these species were also collected
(Aranzana et al., 2003; Xia et al., 2014). However, due to
a low efficiency of the traditional laboratory assessment
for the SSR polymorphic status and their subsequent
applicability to genetic studies, fewer available polymorphic
SSRs (PolySSRs) are currently identified, which largely
hampers the fairly urgent needs for efficient employment of
the abundant SSR sources toward genetic studies and breeding
efforts.

Simple sequence repeats marker development mainly consists
of three separate steps: SSR discovery, primer design and
polymorphic survey in representative population or individuals.
Traditional approaches for SSR development were costly and
consists of time-consuming procedures such as SSR-enriched
libraries construction and candidate clone sequencing (Sargent
et al., 2003) as well as polyacrylamide gel electrophoresis and/or
fluorescent capillary electrophoresis (Bassil et al., 2005). More
recently, alternative methods of SSR development based on
mining the already available genomic and/or transcriptomic
sequence data (Wen et al., 2010; Lee et al., 2014) turned out to
be more economical and efficient. Several computational tools
have also been developed such as MISA (Thiel et al., 2003),
SSR Primer (Robinson et al., 2004), and SSR Locator (da Maia
et al., 2008). However, SSRs discovered by these tools are still
required to manually screen their polymorphic status because
of these tools have not yet integrated a computational solution
for systematically assessment the SSR polymorphic status.
Thus an easy-to-use software that integrates SSR discovery,

primer design as well as in silico assessment of the SSRs
polymorphic status based on existing sequence data from
multiple individuals or species will surely greatly meet the urgent
demands.

Although there were a couple of pipelines, such as PolySSR
(Tang et al., 2008) and SSRPoly (Duran et al., 2013), which
may be used to identify PolySSRs in merely short sequences
from EST datasets, none of them can handle the assembled
large genome sequences mainly due to their adoption of
a cluster-based strategy. Briefly, the pipeline of PolySSR
(Tang et al., 2008) mainly consists of the three steps: (i)
the EST sequences are clustered using CAP3 (Huang and
Madan, 1999), and only the clusters with size between 2
and 500 are selected for subsequent analyses; (ii) then the
C program named PolySSR together with Sputnik package
are used for the prediction of SNPs and PolySSRs; and
(iii) finally the Primer3 and CheckSSR implemented in
PolySSR pipeline are used to design high-quality primers for
PCR amplification. As for SSRPoly pipeline (Duran et al.,
2013), it also adopts the similar cluster-based strategy like
PolySSR, but differs in using a custom MySQL method
and SSRPrimer for the PolySSR identification and primer
designing. Both tools have succeeded in predicting PolySSRs
in EST database, but they cannot further apply to large
genome datasets from next generation sequencing (NGS),
as both are not easy to complete their clustering steps in
such long sequences or huge datasets. Moreover, the average
sequence similarity of primer-binding regions among different
species and/or individuals should be seriously taken into
consideration to evaluate the levels of the confidence of SSR
identification. However, both these two tools, PolySSR and
SSRPoly, fail to provide solutions for this point. Thus we
here developed an easy-to-use pipeline, CandiSSR (Figure 1),
friendly enabling users to find putative PolySSRs not only from
the transcriptome datasets but also from multiple assembled
genome sequences of a given species or genus along with several
comprehensive assessments. It would help researchers focus
more on subsequent genetic studies on plants and animals of
interest rather than aimlessly spending time onmarker-screening
experiments.

MATERIALS AND METHODS

Data Accessibility
The genome sequences of six Oryza AA species are
available at Oryza AA Genomes Database (http://www.
plantkingdomgdb.com/). The genome sequences of 19
Arabidopsis thaliana accessions are available at: http://mus.
well.ox.ac.uk/19genomes/. Rice and Arabidopsis PolySSR
marker sources reported in this study are publicly available at:
http://www.plantkingdomgdb.com/CandiSSR/index.html.

Package Availability and Requirements
Project name: CandiSSR
Project home page: http://www.plantkingdomgdb.com/CandiSSR/
Operating system(s): Linux and UNIX
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FIGURE 1 | Flowchart of the CandiSSR pipeline. (A) Data preparation and Blast searches; (B) Blast result parsing and specific Simple sequence repeats (SSRs)
identification; (C) SSR polymorphism analyzing and primer designing. The black arrows represent the data flow.

Programming language: Perl, and BASH
Other requirements: MISA (Thiel et al., 2003), BLAST
(Altschul et al., 1997), Primer3 (Koressaar and Remm, 2007;
Untergasser et al., 2012) and Clustalw (Thompson et al.,
2002)
License: GNU General Public License v2
Any restrictions to use by non-academics: None

Experimental Validation by PCR
Amplifications
For each rice target SSRs, primers are automatically designed
in our pipeline based on the Primer3 package (Koressaar and
Remm, 2007; Untergasser et al., 2012). Additional information
such as global similarities of the primer binding regions is also
provided. Primers, which are completely conserved (100% global
similarity of their primer binding region) in all six rice species,
were selected, and the amplification specificity was further
predicted by using the online tool Primer-BLAST (Ye et al., 2012)
in the NCBI website (http://www.ncbi.nlm.nih.gov/). Genomic
DNA for each rice sample was extracted by using the modified
CTAB method (Doyle, 1987). Standard PCR amplifications were
performed following the conditions below: 95◦C for 1min; 30
cycles of 95◦C for 30 s, 50–59◦C for 20 s, and 72◦C for 15 s; a
final extension at 72◦C for 1 min. PCR products were resolved
by the electrophoresis on 8% non-denaturing polyacrylamide gels
in 1x TBE (Tris-Borate-EDTA) buffer, and visualized by silver
staining.

RESULTS AND DISCUSSION

Implementation
The input files for CandiSSR are assembled sequences from
a given species or genus in FASTA format. The major
procedures to detect candidate PolySSRs in the pipeline
are (Figure 1): (1) collect the assembled genome and/or
transcriptome sequences of a given species or genus of interest;
(2) rename their sequence header to avoid ambiguous description
and subsequent error processing; (3) identify SSRs within
the specified reference genome and/or transcriptome, and the
mono-nucleotide repeat SSRs (MNRs) are removed; (4) retrieve
the flanking sequences of the detected SSRs, and then align
all the sequences except for those from reference genomes
and/or transcriptomes to them using Blast (Altschul et al.,
1997) without filtering low complexity sequences; (5) parse
blast results and remove those low-quality hits that meet the
criteria of <MI (Minimum Identity) and <MC (Minimum
Coverage) using Bioperl package; (6) extract the non-reference
sequence of each valid hit and then elongate a specified length
from both sides; (7) search the specific reference SSRs within
them; (8) remove those invalid searching items and yield the
final list of SSRs; (9) analyze the SSR polymorphism and
then filter out those low-quality PolySSRs matching standard
deviation (SD) = 0 and Missing Rate (MR) > 50%; (10)
output the final high-quality candidate PolySSRs; (11) calculate
sequence similarities of flanking regions of the identified
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FIGURE 2 | Characteristics of the polymorphic SSRs (PolySSRs) identified in rice and Athaliana thaliana. Chromosomal distribution (A), genomic location
(B), similarity of flanking sequence (C) of rice PolySSRs; Chromosomal distribution (D), genomic location (E), similarity of flanking sequence (F) of identified
PolySSRs of A. thaliana.

PolySSRs; and (12) design primer pairs and computationally
assess the global similarity of primer binding regions for each
PolySSR.

All these steps are automatically implemented in one Perl
script, CandiSSR.pl, although the pipeline includes additional
components implemented in Bash shell. When running
the script, users can easily and rapidly obtain the detailed

information of genome-wide and/or transcriptome-wide
candidate PolySSRs of a given species or genus, including the
SSR type, number of repeats, chromosome location, dispersion
degree,MR, corresponding primer pairs, and their transferability.
In addition, the flanking sequences with a specified length (−l
option) of the finally identified PolySSRs are also generated so
that users can simply use them to redesign the primer pairs for
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FIGURE 3 | Overview of the candidate polymorphic EST-SSRs detected in the Camellia species. (A) Distribution of the polymorphic EST-SSRs;
(B) Distribution of the flanking sequence similarity of PolySSRs.

further PCR amplification or any other genetic studies depending
on the demands of users.

Candidate Polymorphic gSSRs in Rice
and Arabidopsis thaliana
Rice is one of the most three important cereal crops together
with maize and wheat for human consumption, providing staple
food for more than half the world’s population (Khush, 1997,
2005; Goff et al., 2002). Up to now, although a number of
PolySSRs have been developed in rice, more genetic markers are
still required as the amount and their density in rice genomes
are insufficient for satisfying the need of rice geneticists and
breeders (Shen et al., 2004; Zhang et al., 2007). To prove the
use of CandiSSR and enlarge the available PolySSRs in rice, in
this study, we massively detected the rice candidate polymorphic
gSSRs with the published genome sequences of six Oryza AA
species that include Oryza sativa L. ssp. japonica, O. nivara,
O. glaberrima, O. barthii, O. glumaepatula, and O. meridionalis
(Goff et al., 2002; Zhang et al., 2014) using CandiSSR with
default parameters. This identification took approximately 4.4 h
on a Linux desktop computer that has 10 Gb memory and
2.13 GHz Dual-Core CPU. Consequently, a total of 17,374 rice
PolySSRs with an average length of 17 bp were detected. These
putative PolySSRs are predominately dispersed on the first three
largest chromosomes (Chromosomes 1, 2, and 3; Figure 2A),
showing a similar distribution with rice chromosome size. Di-
nucleotide repeats (DNRs) are the most abundant repeat type
(8,963; 51.59%) in rice PolySSRs, followed by tri-nucleotides
(TNRs; 7,357; 42.34%), tetra-nucleotide (TTRs; 851; 4.90%),
penta-nucleotides (PNRs; 163; 0.94%) and hexa-nucleotides
(HNRs; 40; 0.23%). In addition, TNRs were mainly found
in the coding regions (40.29%), while DNRs were principally
distributed in intergenic (65.69%), intronic (21.56%), 5′-UTR
(7.87%), and 3′-UTR (3.75%) regions (Figure 2B). Interestingly,

all types of the identified rice PolySSRs had a similar distribution
among different rice genomic regions except for TNRs, the
percentages of which varied largely among different genomic
regions (Figure 2B). Moreover, the average similarity of the
flanking sequences of rice PolySSRs was 0.98, and approximately
92.11% of which was above 0.95, indicating a high potential of
transferability of primer pairs that could be designed for these
PolySSRs (Figure 2C). Meanwhile, a total of 16,556 PolySSRs,
accounting for ∼95% of all the rice PolySSRs identified, can
be designed with primers. In comparison, the determination of
the candidate polymorphic gSSRs in A. thaliana with a total of
19 Arabidopsis genomes (Gan et al., 2011) spent about 9.7 h
with the same Linux device due to a large total sequence size
(∼2.23 Gb) from more screened genomes. As a result, a total
of 8,119 putative PolySSRs were detected in A. thaliana. The
average length ofA. thaliana PolySSRs was 18 bp, which is slightly
larger than that of rice. Like rice, the chromosomal distribution
of A. thaliana PolySSRs is also consistent to chromosome size,
and most of them are intensely distributed on chromosomes 1, 5,
and 3 (Figure 2D). Intergenic region was the dominant genomic
region to cover nearly 52.35% of these PolySSRs. Similarly, the
majority of the TNRs were located within the protein-coding
regions, whereas DNRs were massively distributed within the
intergenic, intronic, 5′-UTR, and 3′-UTR regions (Figure 2E).
The average similarity of the flanking sequences of theA. thaliana
PolySSRs was 0.99 and 95.43% of them were >0.95, which
is considerably greater than that of rice (Figure 2F). Overall,
the PolySSRs reported here have significantly expanded the
number of molecular markers publicly available for rice and
A. thaliana in the databases. More importantly, researchers can
easily use this pipeline to rapidly generate numerous high-
quality usable PolySSRs for a target genus (e.g., Oryza) or species
(e.g., A. thaliana), which will greatly accelerate relevant genetic
studies.
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FIGURE 4 | Detailed information of the two randomly selected rice PolySSRs. (A) Multiple sequence alignment (MSA) for flanking regions of CPSSR_9
detected by CandiSSR; (B) PCR validation of polymorphic status for CPSSR_9; (C) MSA for flanking regions of CPSSR_4933; (D) PCR validation of polymorphic
status for CPSSR_4933. Green box represents the PolySSRs among different rice species, while red asterisk indicates the clustal consensus for each position.
Orange triangle denotes the base variations among rice species.
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FIGURE 5 | Running time changes of CandiSSR depending on the
number of samples. The blue, orange, green, and red lines show the running
time changes for 5, 10, 15, 19 Arabidopsis genomes, respectively. As shown
in the figure, the running time of the pipeline is largely affected by the number
of samples and partially related to the total size of the assembled sequences.

Rapid Identification of Tea Polymorphic
EST-SSRs
Expressed sequence tag-SSR is another type of SSR that
specifically derived from transcribed gene regions of a given
organism, and therefore, they may be associated with some
important traits or pathways (Kaur et al., 2011). In this study, as
another case study, we identified the putative tea polymorphic
EST-SSRs with four published transcriptomes in the genus
Camellia, including Camellia sinensis, C. taliensis, C. oleifera,
and C. reticulata (Shi et al., 2011; Xia et al., 2014; Zhang
et al., 2015). With the same Linux system above-described
to detect rice and A. thaliana polySSRs, the identification
of tea polymorphic EST-SSRs using CandiSSR with default
parameters took no more than 5.85 min. Finally, a total of
450 polymorphic EST-SSRs were generated with an average
length of 17 bp. Of them, TNRs were the most abundant type
(256; 56.89%), followed by DNRs (170; 37.78%), TTRs (15;
3.33%), HNRs (5; 1.11%), and PNRs (4; 0.89%) (Figure 3A).

Among DNRs, GA/TC (31.18%) was quite dominant, followed
by AG/CT (26.47%) and TA/TA (17.65%). ACC/GGT (11.33%)
was the most abundant motif for TNRs. The flanking sequence
similarity of over 86.89% tea polymorphic EST-SSRs was greater
than 95% (Figure 3B). In addition, primer pairs could be
successfully designed for a total of 440 (97.78%) PolySSRs. To
the best of our knowledge, although there are much more
SSRs that were previously reported in the genus Camellia,
relatively fewer polymorphic loci have been identified (Ma
et al., 2010; Wen et al., 2012; Tong et al., 2013). Thus,
the PolySSRs reported here will be particularly valuable for
the germplasm characterization and utilization in the genus
Camellia.

Experimental Validation of 10 Randomly
Selected Rice Polymorphic SSRs
To experimentally validate the PolySSRs detected by using
CandiSSR, we randomly selected 10 rice PolySSRs that cover all
MS types, two for each type (TNR, DNR, TTR, HNR, and PNR),
for the PCR experiments (Table 1). The detailed PCR results were
presented in Supplementary Figure S1. All of the tested primer
pairs were successfully amplified, showing a good transferability
of these primer pairs among these six rice species. Additionally,
nine of the 10 tested PolySSRs were unquestionably confirmed
to be polymorphic among these six rice species except for SSR
CPSSR_10489, which was amplified with multiple DNA bands,
indicating a high accuracy rate of 90% by using this pipeline. In
most of the cases, the lengths of PCR products are solely affected
by the number of SSR repeats that can be easily determined
by electrophoresis experiments. For instance, CPSSR_9 was a
typical case that the length of PCR products is concordant with
the number variation of SSR repeats (Figures 4A,B). Note that
both Indels and base substitutions may occasionally exist in the
flanking regions of the detected SSRs that may complicate the
results of experimental validation. For example, CPSSR_4933
had five repeats for the motif “CCACGG” in the japonica rice
but showed a shorter PCR product than that of O. nivara (four
repeats), O. glaberrima (four repeats), O. barthii (four repeats)
and O. glumaepatula (three repeats), mainly because the flanking
regions of the japonica rice contained a 6 bp deletion within the

TABLE 1 | Primer pairs of the candidate rice polymorphic SSRs (PolySSRs) employed for PCR validation.

CandiSSR ID Forward (5′->3′) Reverse (5′->3′)

CPSSR_9 ACCCTCTTGAAAACCAGAAAGA TGGAGAGGGTTTAGTTTAGCAGT

CPSSR_361 TTCAGGTACTATGCGAGCGT CTGCTCTGATCGCTGTTCCA

CPSSR_2506 GTCCAGGTGTCTGCTTCCAT GCCCTCTCGTGAGCTCTAAG

CPSSR_4482 ACCACAGCACGGAGAATCAG GGAGCGGAAAGGGTTGGATT

CPSSR_4933 TCCTACTACTGGGAGCAGCA TTTCACAGGTGGAGGTCGAC

CPSSR_9097 TTTCCAGTTGTTCGCTTCGC TTTCCGTCGTCGATCCACTC

CPSSR_10489 AGTTTGTGTCGGGGAGCAAA CATCTCTCTCCGCGATCGTC

CPSSR_10941 TGAGGTGTTCTTGGACGACA TGCTGCTGTTCTTGTGTTGC

CPSSR_13442 AGCCATTGTTATGCAAACGGT TGTTTTCCCACGATGAGACG

CPSSR_14617 AGAGGCCGTGAGAATTTCCG GCACTGTACCATAGTTTTGGACA

Specific primer pairs of the 10 randomly selected PolySSRs are shown, which were automatically designed by using CandiSSR based on the Primer3 software.
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fifth repeat motif (Figures 4C,D). Besides, CPSSR_4933 had two
substitutions in the “CCACGG” target regions ofO. meridionalis,
resulting in only one continuous repeat of “CCACGG” retained
in this species.

Dependence of CandiSSR Running Time
on the Number of Organism Samples
The running time of this pipeline was 9.7 h to identify
putative PolySSRs in A. thaliana with approximately 2.23 GB
assembled data from the 19 A. thaliana genomes. Such a
result indicates that the pipeline can handle as many as
19 A. thaliana genomes harboring nearly 230 Mb data per
hour. However, it is not clear whether the total size of
the assembled sequences or the number of genome samples
essentially determine the whole running time of CandiSSR. To
make this clear, we chose the Col-0 genome of A. thaliana
(∼119 Mb) as reference and estimated the running times of
CandiSSR with different data sets that produced from the
18 A. thaliana genomes. As shown in Figure 5, each line
demonstrated the change of running time depending on the
differences of total sizes of assembled sequences for a specific
sample number. Obviously, the running times for different
total sizes of assembled sequences change slightly when fewer
samples are provided, otherwise they vary considerably. For
example, the running time ranged from 18.7 to 32.6 min
for five samples with total lengths from 100 to 500 Mb
(Figure 5). On the contrary, running with a total of 19
samples containing the same size of datasets took increased
times between 64.3 and 159.5 min. In addition, the average
running times for datasets having differently total sizes of
assembled sequences for 5, 10, 15, and 19 samples were 25.2,
51.7, 76.2, and 104.2 min, respectively, suggesting that nearly
26.3 min should be taken into consideration for processing
each increased five samples. On the other hand, the average
running times for datasets containing 100, 200, 300, 400,
and 500 Mb were 42.1, 52.1, 63.7, 73.2, and 90.6 min,
respectively. This result suggests that processing additional
100 Mb data merely needs approximately extra 12.1 min, which
is considerably shorter than the time for handling every five
added samples. Hence, we may conclude that the running
time of CandiSSR is largely affected by the total number of
samples but is partially related to the total size of the assembled
sequences.

CONCLUSION

Using CandiSSR, users can efficiently identify numerous
PolySSRs from multiple assembled sequences of a target genus
or species. These genome and/or transcriptome sequences can
be assembled from a number of sequencing strategies. Therefore,
this pipeline can help the research community to easily collect
plentiful PolySSRs that will undoubtedly accelerate genetic
studies on and enhance breeding programs of plants and animals
of great interest.
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FIGURE S1 | Experimental validation of the 10 randomly selected
PolySSRs in rice. 10 PolySSRs covering all MS types, two for each type, are
randomly selected for PCR validation. The detailed information of primers pairs are
given in Table 1. PCR products were resolved by the electrophoresis on 8%
non-denaturing polyacrylamide gels and visualized by silver staining. Lanes for
each SSR are labeled, and their templates followed by the order of “Oryza sativa
L. ssp. japonica, O. nivara, O. glaberrima, O. barthii, O. glumaepatula, and
O. meridionalis.”
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