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Phosphate (Pi) deficiency severely affects crop yield. Modern high yielding rice genotypes

are sensitive to Pi deficiency whereas traditional rice genotypes are naturally compatible

with low Pi ecosystems. However, the underlying molecular mechanisms for low Pi

tolerance in traditional genotypes remain largely elusive. To delineate the molecular

mechanisms for low Pi tolerance, two contrasting rice genotypes, Dular (low Pi tolerant),

and PB1 (low Pi sensitive), have been selected. Comparative morphophysiological,

global transcriptome and lipidome analyses of root and shoot tissues of both genotypes

grown under Pi deficient and sufficient conditions revealed potential low Pi tolerance

mechanisms of the traditional genotype. Most of the genes associated with enhanced

internal Pi utilization (phospholipid remobilization) and modulation of root system

architecture (RSA) were highly induced in the traditional rice genotype, Dular. Higher

reserves of phospholipids and greater accumulation of galactolipids under low Pi in Dular

indicated it has more efficient Pi utilization. Furthermore, Dular also maintained greater

root growth than PB1 under low Pi, resulting in larger root surface area due to increased

lateral root density and root hair length. Genes involved in enhanced low Pi tolerance of

the traditional genotype can be exploited to improve the low Pi tolerance of modern high

yielding rice cultivars.

Keywords: metabolic flexibility, microarray, lipidomics, root system architecture (RSA), phosphate

INTRODUCTION

Phosphorus (P) is a critical element for plant growth and development. It is an essential component
of nucleic acids, membrane lipids, and regulates many vital plant physiological processes like
photosynthesis and respiration. Most of the natural soil P exists in the form of organic compounds
or sparingly soluble cationic complexes. As a result, phosphate (Pi), an inorganic bioavailable
form of phosphorus, is a limiting factor for ∼67% of the world’s cultivable soils (Gilbert, 2009).
Modern agriculture relies intensively on high input of Pi-fertilizers to compensate for limited soil
Pi. However, it has been predicted that at the current rate of extraction, global P reserves of rock
phosphate will be depleted soon (www.ifdc.org). In addition, application of Pi fertilizers is not
favored economically and environmentally. Ironically, less than 20% of the applied Pi is absorbed
by plants whilst the remainder forms insoluble complexes and also runs-off into water bodies (Ha
and Tran, 2013).
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Several plant adaptive responses to low Pi have been described.
These include modulation of Root System Architecture (RSA)
for increasing topsoil foraging (Lynch, 2011; Pandey et al.,
2013), enhancing the activity of Pi transporters for its uptake
(Ai et al., 2009), secretion of organic acids and phosphatases
to mobilize the Pi from soil organic/inorganic matter (Wang
et al., 2011) and production of ribonucleases/lipases to remobilize
the cellular Pi (Raghothama, 1999). Membranes in the form of
phospholipids contain 15–20% of total organic P in a cell (Poirier
et al., 1991). Under P starvation, membrane phospholipids
are hydrolyzed, galactolipids which do not contain Pi are
synthesized, and Pi is released as adaptive strategy (Nakamura,
2013). These adaptive responses are orchestrated by complex
molecular networks involving several genes (Ha and Tran, 2013;
Pant et al., 2015). A multi-component molecular network of Pi
scavenging systems, the Pho regulon, has been studied widely in
plants (Reviewed in López-Arredondo et al., 2014). This system
employs transcription factors, ubiquitin ligases, miRNAs and
several downstream genes to regulate the Pi homeostasis in plants
(Rouached et al., 2010).

Cultivated rice genotypes can be classified as “Pi responsive”
(higher yield under high Pi) and “Pi efficient” (yield protection
under low Pi) (Gerloff, 1977). Most of the modern rice cultivars
are “Pi responsive” as they had been developed and selected
on soils supplemented with Pi fertilizers. These genotypes
possess shallow root systems; well-adapted for enhanced Pi
acquisition from the topsoil under high Pi conditions (Wang
et al., 2010; Rose et al., 2011). They show efficient partitioning
of photosynthates toward economic yield, contributing to their
higher harvest index (HI). However, under low Pi conditions
thesemodern genotypes exhibit severe yield losses and are of little
value. In contrast, naturally existing low Pi tolerant genotypes
including landraces and naturally inbred traditional cultivars
have been cultivated on Pi poor soils for very long time and these
genotypes possess the genetic and phenotypic competence to
withstand low Pi conditions (Wissuwa and Ae, 2001). Therefore,
traditional genotypes can be an excellent resource of genes to
improve the low Pi tolerance of high yielding modern rice
genotypes.

Global transcriptome analysis in response to Pi deficiency has
been performed in Arabidopsis (Misson et al., 2005; Müller et al.,
2007), rice (Wasaki et al., 2003, 2006; Pariasca-Tanaka et al., 2009;
Li et al., 2010; Dai et al., 2012; Park et al., 2012; Cai et al., 2013;
Oono et al., 2013; Secco et al., 2013), tomato (Wang et al., 2002),
bean (Hernández et al., 2007), maize (Calderon-Vazquez et al.,
2008), and mustard (Hammond et al., 2005). These studies have
been proven extremely effective in unraveling many novel low
Pi responsive genes. However, a comprehensive picture of low Pi
tolerance mechanisms in naturally tolerant traditional genotypes
is missing.

In the present study, we have profiled a modern low
Pi sensitive rice genotype (PB1) and a traditional tolerant
genotype (Dular) to investigate their differential behavior under
low Pi. Our comparative morphophysiological, transcriptome
and lipidome analyses of these genotypes revealed that
the low Pi tolerance of Dular is likely due to efficient
internal Pi remobilization and maintenance of root growth

for Pi uptake under low Pi conditions. We also report the
changes in phospholipid/galactolipids accumulation and their
corresponding genes under low Pi. These Pi-efficient strategies
of traditional genotypes can be exploited to improve the low Pi
tolerance of high yielding modern rice genotypes.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds of PB1 and Dular were surface-sterilized by 0.1% mercuric
chloride for 15min and thereafter, washed with sterile water five-
times and germinated on wet filter paper for 2 days. Uniformly
germinated seedlings were transferred to Pi sufficient (320µM)
and Pi deficient (1µM) nutrient media (Yoshida et al., 1976)
with iron supplemented as FeNaEDTA. Seedlings were grown
in growth chamber with 16 h day (30◦C)/8 h night (28◦C)
photoperiod, 250–300µM photons/m2/sec photon density and
70% relative humidity. Containers filled with 15 liters nutrient
solution were used to grow 30 seedlings per genotype per
biological replicate. The nutrient solution (pH 5.5) was changed
every 24 h. After 15 days, root and shoot tissues were harvested
separately and immediately frozen in liquid nitrogen for further
analyses. Soluble Pi estimation in roots and shoots and In-Gel
APase assay were performed as described (Jain et al., 2007; Wang
et al., 2011). Root and shoot lengths were measured manually
using a ruler.

Analysis of Lateral Roots and Root Angle
Seedlings were grown under low and sufficient Pimedia in aseptic
conditions using MS media with 0.2% phytagel for 15 days. For
lateral root analysis, 15-day-old roots were imaged and lateral
root length and density on primary roots were calculated using
ImageJ 1.46r (http://imagej.nih.gov/ij). For the root angle study,
seeds were transferred to the center of a basket containing soilrite
which was pre-treated with 1M HCl and repeatedly washed with
Milli Q water. Dried soilrite was filled in a basket supported on a
pot containing Yoshidamedia (+Pi and−Pi), pH 5.0−5.5.Media
were refreshed after every 24 h. After 30 days, the numbers of
roots emerging from bottom and sides of basket were counted
manually to calculate the root angle.

Extraction of Total RNA
Total RNA was extracted from root and shoot tissues of 15-
days-old seedlings using RNeasy Mini Kit (Qiagen) according to
the manufacturer’s instruction. Tissues from three seedlings were
pooled together for isolation of a sufficient amount of total RNA.
Purity and integrity of RNA was determined using Bioanalyzer
(2100 Agilent technologies). RNA samples having RIN (RNA
Integrity Number) value above 9.5 in root and 8 in shoot were
used for microarray analysis.

Affymetrix Genechip Hybridization,
Washing, and Scanning
The differential gene expression in each tissue/genotype grown
under low and sufficient Pi conditions was analyzed in
three independent biological replicates using Affymetrix rice
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genome array (57 K) GeneChip R© according to manufacturer’s
protocol. Washing and scanning was carried out at Affymetrix
GeneChip R© Fluidics Station 450 and GeneChip R© Scanner
3000 7G, respectively. Probe cel intensities for each array
were retrieved in .cel file format by Affymetrix R© GeneChip R©

Command Console R© Software (AGCC).

Microarray Data Analysis
For microarray analysis, data from 24 .cel files representing
root and shoot tissues of PB1 and Dular, raised under Pi
deficient and sufficient conditions in three biological replicates
were imported into “GeneSpring” software (Agilent Technologies
Inc.). The normalization and probe intensities summarization
were performed by GC-RMA. Three biological replicates of
each sample, showing correlation coefficient value of ≥ 0.97
were considered for downstream analysis (Supplementary Table
1). To identify the “significantly expressed” probe sets, a
Three-way ANOVA analysis with the following model was
performed to dissect out the independent effects of all three main
variables (Genotype, G; Tissue, T; and Phosphate, Pi) and their
interactions:

Yijkt = µ + Ti + Gj + Pik + (Ti × Gj)+ (Ti × Pik)

+ (Gj × Pik)+ (Ti × Gj × Pik)+ eijkt (1)

Yijkt denotes random variable giving the response for observation
t of the treatment at level i, j, k of Tissue, Genotype and Phosphate
whereas eijkt is independent random variable. To decrease the
number of false positives, Benjamini Hochberg correction was
applied at p-value cut-off of ≤ 0.05. All subsequent analysis was
carried out as described (Deveshwar et al., 2011).

Corresponding gene IDs for the final dataset were obtained
from the Rice Oligonucleotide Array Database (http://
www.ricearray.org/), KOME (http://cdna01.dna.affrc.go.jp/
cDNA) and NCBI (http://www.ncbi.nlm.nih.gov). Probe sets
showing ≥2-fold changes (FC) in expression under Pi deficiency
in relation to their respective control tissue, were considered
as “differentially expressed” (−Pi/+Pi). For evaluating relative
genotypic effects (Dular/PB1), relative gene expression in Dular
was calculated using PB1 as control. Finally, all significantly
expressed genes were assigned annotations and GO terms using
Rice Genome Annotation Database (http://rice.plantbiology.
msu.edu/index.shtml). Differentially expressed genes were then
searched in KEGG (http://www.genome.jp/kegg/pathway.html)
and RiceCyc (http://pathway.gramene.org/gramene/ricecyc.
shtml) for assigning their putative roles in cellular metabolism.
Heat maps were generated in MeV (Multi Experiment Viewer)
software, version 4.6.0. on log2 transformed FC and hierarchical
clustering was done using distance matrix Pearson correlation.

Quantitative real time PCR (qRT-PCR) was performed in
three replicates as described earlier (Deveshwar et al., 2011).
Primers used for the qRT-PCR are listed in Supplementary
Table 2.

Lipid Profiling by LC-QTOF
Plant lipids were extracted from 50mg lyophilised samples
of 15-day-old seedlings as described by Matyash et al.

(2008). The Lipidome data were acquired using an Agilent
6530 QTOF for positive ion analysis and Agilent 6550
QTOF Mass spectrometer for negative ion analysis (employing
Agilent jet stream thermal focussing technology). Raw data
were processed by Agilent’s Mass Hunter Qual software to
find peaks. Peaks were then imported into Mass Profiler
Professional for peak alignments and filtering. To annotate
lipids, MSMS files were used to query the Lipid Blast
library.

Identification of DNA Polymorphisms
SNPs and InDels in differentially regulated PSR genes were
identified from whole genome resequencing data of both
genotypes (Mehra et al., 2015). For identification of SNPs in
promoters of key PSR genes, 2 Kb upstream promoter regions
were analyzed.

RESULTS

Comparative Morphophysiological Study
Revealed Greater Potential of Dular to
Withstand Low Pi Conditions
We have recently shown greater biomass accumulation and
root hair growth under low Pi of Dular as compared to PB1,
which are low Pi tolerant and sensitive genotypes, respectively
(Mehra et al., 2015). Here, we analyzed the effects of genotype,
treatment and their interaction on growth of 15-days old
seedlings under low Pi. Reduction in shoot length was more
pronounced in PB1 as compared to Dular under low Pi. However,
root length in Dular increased by 33% while PB1 showed an
11% decrease in root length under low Pi (Figure 1A, Table 1).
Factorial analysis showed that all the morphological traits were
significantly influenced by the low Pi treatment followed by
the effect of genotype (Table 1). Interestingly, both genotypes
showed a similar increase in root to shoot biomass ratio under
Pi deficiency (Figure 1B). Our Two way ANOVA analysis of
growth parameters showed that these traits are influenced
significantly by the Pi treatment in 15-day-old seedlings (p <

0.05). Intriguingly, Dular has relatively lower soluble Pi content
than PB1 in both root and shoot tissues under sufficient Pi.
However, under low Pi, Dular showed higher Pi accumulation
than PB1 (Table 1).

Dular Root System Architecture Seems to
be Better Adapted for Low Pi Tolerance
RSA analysis revealed greater lateral root length and
density in Dular than PB1 which was further increased
under low Pi. Interestingly, this increase was higher in
Dular as compared to PB1 (Figures 1C–E). Our analysis
further showed shallower root growth of PB1 relative to
Dular, under both low and sufficient Pi (Figures 1F–H).
Interestingly, root spread behavior of both genotypes
did not alter significantly under Pi deficiency. However,
the total number of roots decreased under low Pi in PB1
(Figures 1F–H).
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FIGURE 1 | Differential plant growth under Pi deficiency (A) Seedling growth of hydroponically grown Dular and PB1 raised under Pi sufficient (320µM)

and Pi deficient (1µM) conditions in hydroponics after 15-days and (B) two-month. (C) Lateral root phenotype; (D) length and (E) density of PB1 and Dular

under +Pi and −Pi. (F) Root spread of PB1 and Dular under +Pi and −Pi condition. Lower panel shows points of root emergence from the side and bottom of basket.

(G) Percentage of roots emerging from side (outer) and bottom (inner) regions of basket under +Pi and (H) −Pi. Scale bar = 5 cm. **p < 0.01; ***p < 0.001; ns not

significant as determined by student’s t-test.
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TABLE 1 | Plant growth and Pi accumulation in Dular and PB1.

Genotype Growth condition Root length (cm) Shoot length

(cm)

Shoot surface

Area (cm2)

Root Pi

nmolPi/mg FW

Shoot Pi

nmolPi/mg FW

Dular +Pi 7.03 ± 0.09 24.25 ± 0.39 5.14 ± 0.04 1.65 ± 0.07 9.28 ± 0.37

−Pi 9.38 ± 0.17 21.9 ± 0.33 4.95 ± 0.03 0.15± 0.01 0.90 ± 0.06

PB1 +Pi 8.31 ± 0.18 21.93 ± 0.30 6.83 ± 0.33 2.27 ± 0.13 11.98 ± 0.41

−Pi 7.41 ± 0.15 15.36 ± 0.33 3.17 ± 0.10 0.03 ± 0.002 0.73 ± 0.05

Effects Root length Shoot length Shoot surface

area

Root Pi Shoot Pi

Genotype (G) 0.15ns 1.7E-15# 0.8ns 2.2E-05# 0.001***

Treatment (T) 0.01** 9.6E-20# 0.001*** 9.7E-49# 5.1E-39#

G × T 4.8E-12# 1.3E-05# 0.06ns 2.2E-06# 2.5E-06#

“+” and “−” indicate 320µM Pi and 1µM Pi in nutrient medium, respectively. Values represent mean of at least 20 replicates.**; ***; “#” indicates highly significant; ns indicate not

significant.

Gene Expression Profiles Under Pi
Deficiency
To understand the molecular basis of differential low Pi tolerance
in two genotypes, we performed global transcriptome analysis
using microarrays. Three-way ANOVA analysis on microarray
data distinguished the low Pi responsive genes from those
affected by genotype and tissues independent of Pi levels. Out
of total 57,381 probe sets on GeneChip, an overall 39,243 probe
sets “significantly expressed’ at p ≤ 0.05 in either of the tissues,
genotypes and Pi treatment. These 39,243 probe sets represented
16,458 unique genes. Of these, expressions of 12,619, 8135, and
13,541 genes were influenced by the main effects of genotype,
treatment and tissue, respectively. Whereas, expressions of 4230,
8466, 3379, and 1181 genes were influenced by the effect of
interactions of Genotype × Phosphate (G × Pi), Genotype ×

Tissue (G × T), Tissue × Phosphate (T × Pi) and Genotype ×
Tissue × Phosphate (G × T × Pi), respectively (Supplementary
Figure 1). Out of 8135 low Pi affected genes (Supplementary
Table 3), 77% and 84% were also influenced by the variability
of genotype and tissue, respectively. Further, 55% of genes were
influenced by the two way interaction of G × T while 32% and
33% of Pi responsive genes were influenced by G × Pi and
T × Pi interactions, respectively. Only 11% of Pi responsive
genes were influenced by the 3-way interactions of G × T × Pi.
This analysis revealed high order complexity and intricacy of all
three variables. Out of 8135 genes, 1457 genes were up-regulated
(−Pi/+Pi) and 1013 were down-regulated (−Pi/+Pi) in Dular
roots whereas, in PB1 roots, 893 and 710 genes were significantly
(≥2-fold) up and down-regulated, respectively. Shoot tissues, on
the contrary, showed a relatively lower number of genes with
altered expression (Figure 2A). This indicates more dynamic
gene expression in root tissues under Pi deficiency, especially
in the low Pi tolerant Dular genotype. Out of 12,619 genes
influenced by the genotype factor (Dular/PB1), 4708 and 3908
genes were differentially regulated in root and shoot tissues
under Pi deficiency, respectively. Comprehensive analysis of
differentially expressed genes showed perturbations in a variety of
cellular responses directed toward mitigation of Pi deficiency and

other regular plant processes (Supplementary Figure 2). Further,
we found many Phosphate Starvation Response (PSR) genes
like PHO1, phosphatase, SPX domain containing sequences and
others among the differentially expressed genes in both genotypes
(Supplementary Figure 3).

Results of the microarray experiments were also successfully
validated using qRT-PCR (Figure 2B; Supplementary Table 4) for
randomly selected genes with a correlation coefficient >0.94.

Expression Profile of Known PSR Genes in
Dular and PB1 Under Pi Deficiency
Many PSR genes have been identified and characterized for
their roles in improving plant Pi deficiency tolerance. We
compiled a list of 40 such common genes by screening the
published literature and analyzed their expression behavior
in our data (Figure 3). Interestingly, >30 of them were
prominently up-regulated in roots, with higher expression levels
in Dular than PB1. OsIPS1 and a ser/thr phosphatase were
up-regulated >900-fold in Dular roots. Other Pi responsive
genes like SPX domain containing proteins, PHO genes,
acid phosphatases, phosphoethanolamine phosphatase, and
nucleotide pyro-phosphatase were also highly up-regulated in
Dular roots as compared to PB1 roots. However, Pi transporter
and purple acid phosphatase (Os08g17784) showed greater up-
regulation in PB1 roots. We also compiled publically available
gene expression data of different rice genotypes under Pi
deficiency. Comparison of our data with this list revealed a
number of common and many unique PSR genes identified in
our study (Supplementary Tables 5, 6).

Expression Analysis of Genes Involved in
Internal Pi Utilization
Induction of Transcripts Involved in Glycolytic

Bypasses
Under Pi deprivation, plant cells bypass ATP or Pi dependent
biochemical reactions of sugar metabolism using alternate Pi-
independent enzymes. Genes involved in three such glycolytic
bypasses were altered in both genotypes with higher induction
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FIGURE 2 | Gene expression profiles of 15-days-old PB1 and Dular seedlings under Pi deficiency. (A) Venn diagram showing unique and commonly

regulated low Pi responsive genes (FC ≥ 2) in PB1 and Dular. Numbers outside and inside the parenthesis indicate up and down-regulated genes, respectively. (B)

Confirmation of microarray results with qPCR experiments. r-value represents the correlation coefficient between log2transformed fold changes of microarray and

qPCR results.

in Dular (Figure 4). The first bypass event is catalyzed by
PPi-dependent phosphofructokinase (PPi-PFK), which converts
the fructose-6 phosphate to fructose 1, 6-bisphosphate without
consumption of ATP. Two PPi-PFK genes, Os02g48360 and
Os06g22060, were up-regulated only in Dular roots. However,
one such gene (Os08g25720) was also induced in the shoot
of PB1. In the second bypass, NADP-GAPDH circumvents
the Pi requiring NAD-GAPDH enzyme for the formation of
1, 3-bisphosphoglycerate. The gene (Os12g12590) encoding
NADP dependent aldehyde dehydrogenase was specifically up-
regulated in Dular roots. Further downstream in glycolysis, one
more alternate pathway operates through phosphoenol pyruvate
carboxylase (PEPC) and malate dehydrogenase (MDH) to bypass
the Pi utilizing pyruvate kinase. In both Dular and PB1, a
PEPC encoding gene, Os09g14670, and one MDH encoding
gene, Os08g33720 were prominently induced under low Pi
treatment. Such adjustment mechanisms were induced in both
the genotypes; with a biased overrepresentation in Dular.

Dular Showed Higher Expression of Lipid

Remodeling Genes
Pi deficiency leads to global membrane lipid remodeling in
order to release Pi from membrane phospholipids (Table 2).
This involves two major steps, degradation of phospholipids
to diacylglycerol and subsequent conversion into galactolipids
and sulfolipids. Phospholipid hydrolysis is either mediated
by phospholipase C (PLC) in a single step reaction or in
two-steps by phospholipase D (PLD) and phosphatidate
phosphatase (PAH) (reviewed in Nakamura, 2013). PLC
and PLD encoding genes were significantly up-regulated in
Dular and PB1 roots and PB1 shoot under low Pi (Table 2).
Further, two PAH genes (Os11g40080, Os05g38720) were
also preferentially up-regulated in Dular, especially in root
tissue. In a second step, the major product of phospholipid
hydrolysis, diacylglycerol is channeled into biosynthesis of
galactolipids, monogalactosyldiacylglycerol (MGDG), and
digalactosyldiacylglycerol (DGDG) in plastid membrane

(Nakamura, 2013). We found up-regulation of MGDG synthase
(Os08g20420) in both genotypes with relatively higher expression
in Dular roots. Noticeably, higher up-regulation in Dular shoots
was also observed for genes encoding DGDG (Os03g11560,
Os04g34000).

Genes involved in sulfolipid biosynthesis, UDP-
sulfoquinovose synthase (SQD1) and sulfolipid synthase (SQD2),
also showed significant induction in Dular and PB1, especially in
roots. SQD2 encoding gene, Os01g04920, was expressed at ≥80-
fold in Dular roots and 56-fold in PB1 roots under Pi deficiency.
In an alternative pathway, phospholipids hydrolysis is mediated
by glycerophosphodiester phosphodiesterases (GDPD). Further
analysis revealed four genes encoding GDPD were up-regulated.
Of these, Os03g40670 was highly up-regulated in Dular roots
(Table 2). An overall fairly high induction of lipid metabolism
genes in Dular indicates better cellular Pi homeostasis in this
genotype under Pi starvation. To confirm this hypothesis,
we analyzed the effect of “Genotype” (G) factor by drawing a
comparison of absolute level of transcripts (signal intensities)
in Dular with respect to PB1 (i.e., Dular/PB1) under both
Pi deficient and sufficient conditions (Table 2). Our analysis
confirmed that Dular has higher absolute expression of lipid
remodeling genes in shoot and to a lesser extent in roots as
well, under Pi deficient conditions when compared to PB1. It is
noteworthy from Table 2 that under the sufficient Pi condition
Dular has lesser transcripts than PB1 in both root and shoot.
Our analysis revealed that expression of lipid remodeling
genes more strongly regulated by the genotype than Pi stress.
Thus, these genes can contribute to the low Pi tolerance of
Dular.

Lipid Phenotyping Revealed Greater Metabolic

Flexibility of Dular Under low Pi
We validated the alterations in transcript abundance of lipid
remodeling genes by comprehensive metabolic phenotyping
(Supplementary Table 7). Our analysis of relative lipid
composition (+Pi/−Pi) revealed decreases in phospholipids such
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FIGURE 3 | Expression profile of known PSR genes under Pi deficiency. Gene list was compiled from published reports. 1, Dular root; 2, PB1 root; 3, Dular

shoot; 4, PB1 shoot.

as PC (Phosphatidylcholine), PE (Phosphatidylethanolamine),
and PI (Phosphatidylinositol), with a subsequent increase in
galactolipids (e.g MGDG, DGDG) under low Pi (Tables 3, 4).
Our lipidome analysis also captured the genotypic variability

(Dular/PB1) in levels of phospholipids. Under Pi sufficient
and deficient conditions, Dular shoots showed higher contents
of phospholipids as compared to PB1 shoots (Table 3). On
the other hand, PB1 roots and shoots showed a significant
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FIGURE 4 | Differential expression of key genes involved in carbohydrate metabolism under Pi deficiency. Expression profiles of differentially expressed

genes regulating key metabolic reactions are shown adjacent to their enzyme products. 1, Dular root; 2, PB1 root; 3, Dular shoot; 4, PB1 shoot.

decrease in phospholipid content as compared to Dular under
Pi deficiency. This indicates faster degradation of phospholipids
(i.e., degradation of major proportion of phospholipids) in PB1
under Pi deficiency from its limited reserves. This further implies
that Dular has a greater phospholipid reserve to release Pi under
low Pi and maintains membrane integrity at the same time.
Moreover, there was significant accumulation of phospholipids
PC and PE in Dular roots under low Pi. All these evidences

reveal greater potential of Dular to cope with low Pi stress than
PB1.

Interestingly, low Pi-tolerant Dular also showed increased
accumulation of galactolipids, DGDG in both roots and shoots
under low Pi as compared to PB1.While, increased accumulation
of MGDG was found in Dular shoots under low Pi (−Pi/+Pi)
(Table 4). Genotypic analysis (Dular/PB1) revealed increased
accumulation of MGDG and DGDG in Dular shoots as
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TABLE 2 | Expression profile of differentially expressed genes encoding key enzymes in lipid metabolic pathway.

Gene ID Functional annotation A. fold change (−Pi/+Pi) B. fold change (Dular/PB1)

Dular root PB1 root Dular shoot PB1 shoot Root +Pi Root −Pi Shoot +Pi Shoot −Pi

Os01g19390 ATS 2.94 1.45 1.08 1.02 −1.19 1.70 1.01 −1.04

Os01g22560 ATS −1.06 −1.01 −7.79 1.56 1.07 1.03 −7.98 135.54

Os05g38350 ATS 5.49 1.77 1.09 1.67 −7.65 −2.47 −3.76 1.25

Os05g38720 PAH 4.37 1.56 1.50 1.36 −1.73 1.61 −1.69 1.16

Os11g40080 PAH 4.01 2.87 3.12 2.20 −1.13 1.23 1.15 1.47

Os03g30130 PLC 4.13 2.63 1.81 2.93 1.82 2.86 1.70 1.44

Os12g37560 PLC 1.56 2.00 1.15 1.11 −1.72 −2.22 −1.26 −1.44

Os06g40170 PLD 3.14 4.02 1.39 2.08 −1.46 −1.87 −2.60 2.43

Os06g40180 PLD 3.47 2.73 1.30 1.37 −1.24 1.03 −5.63 −2.64

Os08g20420 MGD2 627.68 190.77 110.82 123.37 −1.05 3.13 −1.04 16.43

Os03g11560 DGD2 4.20 2.36 3.46 2.03 −1.25 1.43 −1.49 1.35

Os04g34000 DGD2 16.95 8.70 23.15 14.54 −2.80 −1.44 −3.24 5.67

Os05g32140 SQD1 3.51 8.23 2.45 2.89 2.02 −1.16 1.17 2.28

Os01g04920 SQD2 82.66 56.18 16.50 10.19 1.20 1.76 −1.07 3.38

Os07g01030 SQD2 4.40 5.31 2.48 1.81 1.37 1.14 −1.45 2.40

Os01g55780 GDPD 2.31 1.53 1.67 1.28 −1.13 1.33 −1.15 1.08

Os02g31030 GDPD 4.97 4.38 34.50 60.46 1.15 1.30 1.61 1.73

Os03g40670 GDPD 403.33 80.96 2.89 7.23 −6.06 −1.22 1.46 3.06

Os08g42390 GDPD 3.54 2.96 14.35 27.58 2.19 2.62 1.38 1.46

ATS, Acetyl Transferase; PAH, phosphatidate phosphatase; PLC, Phospholipase C; PLD, Phospholipase D; SQD1/2, UDP-sulfoquinovose synthase1/2; GDPD, glycerophosphodiester

phosphodiesterases.

compared to PB1 under Pi deficiency (Table 4). Noticeably,
these observations are in high concordance with transcriptome
results of shoot tissue in both the genotypes. However, PB1
root tissue had a higher accumulation of galactolipids than
Dular under Pi deficiency (Table 4). To assess the impact of this
observation, we further analyzed the lipid data in terms of third
factor, “Tissue” (Shoot/Root; Table 4). Interestingly, we found
higher accumulation of galactolipids in shoots than roots. This
differential accumulation accounts to the fact that photosynthetic
leaves contain chloroplasts with larger surface area as compared
to roots with rudimentary plastids. Galactolipids form the bulk
of these shoot thylakoid membranes as they play important role
in light reactions (Dormann, 2007). Thus, higher accumulation
of galactolipids in Dular shoots might outpace the advantage of
having higher accumulation of galactolipids in PB1 roots under
Pi deficiency.

Expression Analysis of Genes Involved in
Pi Acquisition
Induction of RSA, Cell Wall Loosening, and

Biosynthesis Genes
Pi deficiency generally alters root architecture for increasing
soil foraging capacity. Therefore, we compared our data
with available transcriptome data of rice roots in different
developmental stages and tissues (Takehisa et al., 2012). Our
analysis revealed upregulation of 64 genes involved in lateral
root development in Dular roots, but upregulation of only
33 genes in PB1 (Supplementary Table 8). Furthermore, cell
wall loosening and biosynthesis are essential processes for

modulating RSA. A comparison of our data with the Cell
Wall Navigator Database (Girke et al., 2004) revealed higher
numbers of up-regulated root growth and cell wall biosynthesis
genes in Dular roots (66) as compared to PB1 roots (34).
These genes include expansins, glycosyl transferases, glycosyl
hydrolases and cellulose synthase (Supplementary Table 9 and
Supplementary Figure 4). A comparative analysis with rice GT
genes database (Cao et al., 2008) showed 109 differentially
expressed genes in both the genotypes (Supplementary Table
10). Interestingly, Dular roots showed a higher number of
up-regulated GT genes (82) than PB1 roots (37). Five of
the xyloglucan endotransglucosylases (Os04g51460, Os06g48200,
Os07g34580, Os03g02610, and Os03g63760) were also found
significantly upregulated in Dular roots under Pi deficiency. This
again showed the general tendency of higher up-regulation of
transcripts related to root growth and cell wall loosening in Dular
root as compared to PB1 roots.

Increased Expression of Acid Phosphatases and

Organic Acids Genes in Dular
Phosphatases, ribonucleases and organic acids release the Pi
from organic/inorganic compounds in the rhizosphere under
its deficiency. We found 266 various types of phosphatases
and hydrolases differentially expressed in Dular and PB1,
out of which, 128 and 95 genes were up-regulated in
Dular and PB1 roots, respectively (Supplementary Table 11).
Interestingly, up-regulation of ser/thr phosphatase (Os10g02750)
and phosphocholine phosphatase (Os01g52230) genes was as
high as 909-and 552-fold in Dular roots in comparison to
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TABLE 3 | LC-QTOF analysis of relative concentrations of phospholipids under Pi deficiency.

m/z tR Annotation A. peak ratios (−Pi/+Pi) B. peak ratios (Dular/PB1)

Dular

root

PB1

root

Dular

shoot

PB1

shoot

Root

+Pi

Root

−Pi

Shoot

+Pi

Shoot

−Pi

734.57 5.44 PC (16:0/16:0) [M+H]+ 0.08 0.04 0.1 0.05 1.12 2.15 2.29 4.26

732.55_754.54 4.92_4.79 PC (32:1) [M+H]+_PC

(32:1) [M+Na]+

0.39 0.06 0.16 0.13 0.41 2.84 2.24 2.83

752.52_730.54 4.43_4.44 PC (32:2) [M+Na]+_PC

(32:2) [M+H]+

0.27 0.09 0.12 0.04 0.62 1.81 2.88 10.13

744.55_766.54 4.73_4.77 PC (33:2) [M+H]+_PC

(33:2) [M+Na]+

0.44 0.07 0.23 0.06 0.44 2.71 1.54 6.18

742.54 4.34 PC (33:3) 0.5 0.07 0.24 0.06 0.36 2.49 2.95 11.68

760.58 5.76 PC (34:1) A [M+H]+ 0.32 0.14 0.08 0.32 0.5 1.15 2.99 0.79

760.58_782.57 5.52_5.52 PC (34:1) B [M+H]+_PC

(34:1) B [M+Na]+

0.3 0.1 0.17 0.05 0.46 1.38 2.66 9.08

758.57 5.19 PC (34:2) A [M+H]+ 0.3 0.07 0.22 0.08 0.68 2.71 2.9 7.52

780.55_758.57 5.03_5.03 PC (34:2) B [M+Na]+_PC

(34:2) B [M+H]+

0.41 0.18 0.32 0.09 0.72 1.69 1.82 6.72

756.56 4.95 PC (34:3) A [M+H]+ 0.47 0.41 0.35 0.25 0.25 0.28 3.15 4.53

756.55_778.54 4.61_4.61 PC (34:3) B [M+H]+_PC

(34:3) B [M+Na]+

0.45 0.17 0.45 0.1 0.61 1.64 2.77 13.03

754.54 4.26 PC (34:4) 0.42 0.1 0.15 0.15 0.54 2.34 5.37 5.29

772.58 5.05 PC (35:2) A [M+H]+ 0.48 2.13 1.8 0.39 2.33 0.52 0.6 2.81

772.59 5.39 PC (35:2) B [M+H]+ 0.31 0.32 0.22 0.3 0.71 0.7 2.42 1.78

770.57 4.90 PC (35:3) B [M+H]+ 0.39 0.12 0.31 0.52 0.66 2.09 4.26 2.55

788.62_810.60 6.17_6.17 PC (36:1) [M+H]+_PC

(38:4) B [M+H]+

0.14 0.15 0.27 0.1 1.02 0.98 1.72 4.53

786.60_808.58 5.63_5.64 PC (36:2) [M+H]+_PC

(36:2) [M+Na]+

0.18 0.14 0.32 0.09 0.59 0.72 1.74 6.15

784.59 5.13 PC (36:3) A [M+H]+ 0.5 0.15 0.17 0.05 0.42 1.45 2.44 7.83

804.55_782.57 4.65_4.64 PC (36:4) A [M+H]+_PC A

(36:4) [M+Na]+

0.52 0.19 0.33 0.11 0.57 1.59 1.6 5

804.55 5.04 PC (36:4) B [M+Na]+ 0.21 0.41 0.83 0.47 1.38 0.69 1.07 1.92

780.55 4.29 PC (36:5) [M+H]+ 0.46 0.11 0.39 0.12 0.37 1.49 2.61 8.76

778.54 3.91 PC (36:6) [M+H]+ A 0.39 0.08 0.35 0.12 0.23 1.14 6.78 19.93

800.62 6.04 PC (37:2) [M+H]+ 0.11 0.21 0.67 0.88 1.25 0.66 1.92 1.46

777.55_794.58 4.73_4.72 PC (37:5) [M+H]+_PC

(37:5) [M+NH4]+

0.2 0.14 1.61 0.61 0.43 0.6 0.62 1.63

808.58_808.58 4.78_5.03 PC (38:5) A [M+H]+_PC

(38:5) A [M+H]+

0.44 0.49 0.23 0.25 1.03 0.91 2.22 2.05

806.57 4.69 PC (38:6) A [M+H]+ 0.57 0.38 0.34 0.22 0.91 1.36 1.68 2.58

806.57 5.10 PC (38:6) B [M+H]+ 0.52 0.16 0.15 0.09 0.42 1.37 2.86 5.02

742.58 5.15 PC (p-34:2) or PC (o-34:3)

[M+H]+

0.7 0.99 0.44 0.67 1.34 0.95 1.46 0.96

798.64 6.44 PC (p-38:2) or PC (o-38:3)

[M+H]+

0.48 0.63 0.52 0.79 1.02 0.77 1.35 0.89

794.60 5.78 PC (p-38:4) B or PC

(o-38:5) B [M+H]+

0.34 0.26 0.45 0.7 0.63 0.82 1.73 1.13

716.52_738.51 5.18_5.19 PE (34:2) [M+H]+_PE (34:2)

[M+Na]+

0.14 0.11 0.08 0.03 0.89 1.18 2.68 8.04

740.53 4.80 PE (36:4) [M+H]+ 0.21 0.1 0.16 0.05 0.48 1 2.36 7.13

714.51 5.21 PE (34:2) [M−H]− B 0.16 0.12 0.1 0.03 0.83 1.11 2.6 7.87

740.52 5.29 PE (36:3) [M−H]− B 0.4 0.21 0.5 0.35 0.59 1.1 2.49 3.56

818.59 6.11 PE (38:1) [M+HCOO]− A 0.76 1.65 0.49 0.48 0.91 0.42 1.39 1.45

747.52 5.04 PG 34:1 [M−H]− 0.04 0.03 0.23 0.15 0.52 0.57 1.94 2.97

(Continued)
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TABLE 3 | Continued

m/z tR Annotation A. peak ratios (−Pi/+Pi) B. peak ratios (Dular/PB1)

Dular

root

PB1

root

Dular

shoot

PB1

shoot

Root

+Pi

Root

−Pi

Shoot

+Pi

Shoot

−Pi

745.50 4.62 PG 34:2 [M−H]− 0.11 0.06 0.07 0.13 0.53 0.87 2.58 1.41

819.53 4.32 PG 40:7 [M−H]− 0.14 0.13 1.01 0.51 0.46 0.48 0.98 1.94

835.53 4.92 PI (34:1) [M−H]− 0.31 0.21 0.46 0.44 0.66 0.97 0.88 0.93

901.51 and

833.52

4.48 and

4.45

PI (34:2) [M+NaHCO2]− &

PI (34:2) [M−H]−

0.21 0.23 0.15 0.13 0.77 0.71 0.96 1.12

857.52 4.14 PI 36:4 [M−H]− 0.18 0.28 0.19 0.26 0.83 0.52 0.64 0.47

PC, PhosPC: photidylcholine; PE, Phosphotidylehanolamine; PG, Phosphotidylglycerol; PI, Phosphotidylinositol.

TABLE 4 | LC-QTOF analysis of relative concentrations of galactolipids under Pi deficiency.

m/z tR Annotation A. peak ratios (-Pi/+Pi) B. peak ratios (Dular/PB1) C. peak ratios (Shoot/Root)

Dular

Root

PB1

Root

Dular

Shoot

PB1

Shoot

Root

+Pi

Root

-Pi

Shoot

+Pi

Shoot

-Pi

Dular

+Pi

PB1

+Pi

Dular

-Pi

PB1

-Pi

941.6176_

936.6609

5.538_5.51 DGDG 34:1 [M+Na]+

DGDG 34:1 [M+NH4]+

1.54 1.71 1.19 1.32 0.60 0.54 0.51 0.46 0.94 1.10 0.73 0.85

962.6771 5.69 DGDG 36:2 [M+NH4]+ 2.08 1.81 3.01 2.25 0.70 0.80 0.51 0.69 2.21 3.02 3.20 3.74

965.6163_

960.6603

5.206_5.18 DGDG 36:3 [M+Na]+

DGDG 36:3 [M+NH4]+

3.26 2.40 1.96 1.02 0.67 0.91 0.61 1.18 6.45 7.09 3.88 3.01

961.5859_

956.6313

4.267_4.27 DGDG 36:5 [M+Na]+

DGDG 36:5 [M+NH4]+

0.90 0.56 2.26 2.08 0.41 0.65 0.63 0.69 5.42 3.46 13.68 12.82

954.6155 3.92 DGDG 36:6 [M+NH4]+ 0.16 0.15 1.17 0.84 0.36 0.38 0.91 1.26 28.33 11.33 209.7 63.02

779.5652 6.03 MGDG 34:1 [M+Na]+ 0.68 2.63 1.01 0.37 0.78 0.20 0.61 1.69 0.86 1.10 1.29 0.15

777.5495 5.54 MGDG 34:2 [M+Na]+ 0.61 2.68 1.73 0.74 1.25 0.29 0.62 1.47 0.49 0.99 1.39 0.27

773.5189 4.59 MGDG 34:4 [M+Na]+ 0.08 0.03 0.96 0.16 0.44 1.01 0.44 2.57 1.29 1.30 16.20 6.38

803.5664_

798.6027

5.681_5.54 MGDG 36:3 [M+Na]+

MGDG 36:3

[M+NH4]+

0.78 1.02 1.43 0.37 0.39 0.30 0.70 2.71 3.00 1.69 5.47 0.61

799.5335 4.70 MGDG 36:5 [M+Na]+ 0.28 0.33 1.37 0.74 0.62 0.53 0.70 1.30 2.27 2.02 10.91 4.49

797.5183_

792.5621

4.301_4.31 MGDG 36:6 [M+Na]+

MGDG 36:6

[M+NH4]+

0.10 0.11 1.02 0.47 0.48 0.44 0.96 2.11 6.76 3.34 71.60 14.87

770.5749 5.11 MGDG 34:3

[M+NH4]+

0.38 0.47 1.75 0.39 0.54 0.43 0.61 2.75 0.94 1.10 0.73 0.85

MGDG, Monogalactosyldiacylglycerol; DGDG, Digalactosyldiacylglycerol.

318-and 47-fold in PB1 roots, respectively. In-gel APase assay
also revealed the higher activity of APases under Pi deficiency in
Dular roots as compared to PB1 (Figure 5A). An earlier reported
Pi inducible E1 isoform of APase, OsPAP10, was found to be
stained with equal intensity under Pi deficiency. The gene for the
same isoform also showed almost equal upregulation of 9.16 and
9.62 in Dular and PB1 roots, respectively.

We also found prominent upregulation of a PEPC encoding
gene (Os09g14670) in Dular roots and shoots (42-and 11-
fold) as compared to PB1 roots and shoots (2.7-and 4.2-fold)
which catalyze the synthesis of oxaloacetate and release Pi
as a by-product (Supplementary Table 11 and Figure 5B).
Additionally, genes involved in malic acid metabolism,
(MDH Os04g46560, Os08g33720) were also up-regulated
in roots of both genotypes. Moreover, genes for ribonucleases

(RNases) (Os08g33710, Os01g67180, Os01g67190) and a
citrate transporter (Os10g31040) were also up-regulated
more prominently in Dular roots. This comparative study
of phosphatases, RNases, and organic acids encoding genes
revealed a potential ability to solubilize soil-bound Pi by
Dular under Pi deficiency (Supplementary Table 11 and
Figure 5).

Higher Induction of Pi Transporter Genes in PB1
We observed that 104 transporter encoding genes were
upregulated in Dular roots while only 52 were in PB1 under
Pi stress (Supplementary Table 12). Out of 26 potential Pi
transporters in rice, 5 Pi transporters, including the high
affinity Pi transporter OsPT6, were induced (Supplementary
Figure 5). Interestingly, high affinity Pi transporters like OsPT6
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FIGURE 5 | Effect of Pi deficiency on APases and genes involved in organic acids metabolism. (A) In-gel APase activity of proteins extracted from PB1 and

Dular roots under +Pi and -Pi conditions. (B) Expression profile of APases showing higher expression of APases in Dular and PB1 under +Pi and -Pi. (C) Differential

expression of genes involved in organic acid metabolism in Dular and PB1 under Pi deficiency. 1, Dular root; 2, PB1 root; 3, Dular shoot; 4, PB1 shoot.

(Os08g45000) showed higher upregulation in PB1 roots as
compared to Dular. Analysis of absolute transcript expression
(Dular/PB1) revealed a higher expression (3.6) of OsPT6
in PB1 roots under Pi deficiency as compared to Dular.
Notably, our data also reflect the transcript induction of the
OsPHO1-3 (Os06g29790) gene involved in Pi loading into
xylem. Transcripts of four SPX domain containing proteins
(Os03g29250, Os10g25310, Os06g40120, and Os02g10780) were
also up-regulated in both Dular and PB1 roots.

Identification of SNPs and Indels Between
Dular and PB1 in Differentially Expressed
PSR Genes
We also identified SNPs and InDels presents between Dular
and PB1 in 8135 differentially regulated genes under low Pi
conditions using available genome sequence (Mehra et al., 2015;
Supplementary Table 13). 75244 genic SNPs and 16400 genic
InDels were identified between Dular and PB1; however, 17739
coding SNPs and 1123 coding InDels were discovered. 5′ UTRs
and 3′ UTRs of Dular and PB1 were also analyzed for SNPs and
InDels which yielded 3978, 9048 SNPs and 1772 and 2455 InDels,
respectively. Functional classification of these SNPs and InDels
revealed 10 startloss and 18 stoploss SNPs between Dular and
PB1. Moreover, 69 non-sense and 7337 missense as well as 7805
silent SNPs were identified. Further, 217 large effect frameshift
InDels between Dular and PB1 were also observed. Additionally,
we also analyzed the SNPs and InDels present in 2kb upstream
promoter regions of key PSR genes (Supplementary Table
14). Interestingly, numerous SNPs and InDels were found in
promoter regions of lipid remobilizing genes (SQD2, GDPD, ATS,
PAH, MGD2, DGD2, PLD), a high affinity phosphate transporter
(OsPT6), SPX domain containing proteins, various organic acid
genes (lactate/malate dehydrogenase, PEPC) and purple acid
phosphatases between Dular and PB1 (Supplementary Table 14).

DISCUSSION

We investigated the potential low Pi tolerance mechanisms
using comparative morphophysiological, transcriptomics, and
lipidomics approaches in a low Pi sensitive modern rice genotype
(PB1) and a tolerant genotype, Dular. Pusa Basmati-1 (PB1) is the
first high yielding semi-dwarf Basmati variety which yields∼50–
52 q/ha and shows improved growth parameters with high
nutrient supply (Sharma et al., 2012). On the other hand, Dular
is a traditional genotype with very low yield potential of about
7–22 q/ha and has been shown to be one of the most tolerant
rice genotypes for Pi deficiency in field conditions (Wissuwa and
Ae, 2001; Chin et al., 2010). Low Pi tolerance can be achieved
through better Pi acquisition and efficient cellular Pi utilization
(Wang et al., 2010; Rose et al., 2011). Higher “Pi acquisition
efficiency” corroborates to enhanced Pi uptake, root architectural
modifications and solubilisation of bound Pi in soil whereas
“Pi utilization efficiency” refers to efficient remobilization of
cellular Pi. Generally, modern genotypes are believed to be highly
“Pi responsive” due to higher Pi uptake, whereas, traditional
genotypes like Dular are “Pi efficient” (Gerloff, 1977; Wissuwa
and Ae, 2001). However, insufficient molecular evidences exist to
support this notion. Therefore, we employed transcriptome and
lipidome profiling of both contrasting genotypes to reveal the low
Pi tolerance mechanisms of a Pi efficient genotype.

Three way ANOVA analysis of microarray data revealed
that most of the transcripts were influenced by tissue and
genotype. This suggests that most of the Pi responsive genes were
expressed at different background levels in selected genotype
and tissue types. We found two- and five-fold higher numbers
of differentially expressed transcripts affected by the genotype
factor as compared to the Pi treatment factor in Dular root
and shoot tissues, respectively. Thus, there exists a significant
genetic variability between the selected genotypes which provides
a novel aspect to unravel the low Pi tolerance mechanisms. Our
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integrated transcriptome, lipidome, and morphological analysis
revealed that Dular showed multifaceted tolerance mechanisms
which involve RSA modulation and lipid remobilization.
However, earlier studies conducted by Pariasca-Tanaka et al.
(2009) had shown RSA modulation as the only mechanism for
low Pi tolerance of NIL6-4 (introgressed with Pup1 QTL from
low Pi tolerant aus genotype, Kasalath). This was probably due
to less genetic variability between NIL6-4 and low Pi sensitive
recurrent parent, Nipponbare. Intriguingly, both PB1 and Dular
carry the Pup1 candidate gene Pstol1 (data not shown). Therefore,
present study becomes more rational to look into the other
low Pi tolerance mechanisms. In another study, Oono et al.
(2013) found that low Pi induced genes are more up-regulated
in tolerant aus genotypes, Kasalath than sensitive genotypes.
Our study also confirms the same hypothesis in another aus
genotype Dular and proved the importance of transcriptional
regulation for low Pi adaptation. Furthermore, similar to earlier
observation in Kasalath (Oono et al., 2013), Dular also showed
reduced inorganic P content which reflects on potential efficient
P utilization.

RSA modulations like increased root hairs, lateral roots
and higher turnover of roots are important traits involved in
adaptation to Pi deficiency (Lynch, 2011; Gamuyao et al., 2012;
Pandey et al., 2013). Sensing of Pi deficiency at the root tip
activates the downstream Pi responsive genes associated with
RSA modulation (Svistoonoff et al., 2007). Our transcriptome
data also showed higher induction of RSA genes (glycosylases,
expansins, XTHs) in Dular roots in comparison to PB1 under
Pi deficiency. Phenotypic analysis of Dular and PB1 genotypes
also depicted apparent differences in the root architecture of
both genotypes. In an earlier study, we found increased lateral
roots and root hair growth in Dular under low Pi as compared
to PB1 (Figure 1C, Mehra et al., 2015). Both traits bestow
enhanced Pi acquisition by increasing the absorptive surface
area under Pi limiting condition. Additionally, Dular roots
showed a significant increase in root length under low Pi. This
quantitative trait has been linked with Pi deficiency tolerance in
some rice genotypes (Shimizu et al., 2004). Increased root length
is associated with longer and more branched roots per unit of
root dry matter (Hill et al., 2006). Root elongation enhances the
porosity and oxygen release capacity of plants which leads to
iron oxidation and release of protons. This causes an increase
in rhizosphere acidity that helps in solubilisation of soil Pi
compounds (Kirk and Du, 1997). Therefore, increase in root
length helps in surviving in Pi poor soil. Our analysis of root
spread showed that PB1 possesses shallow root system which
suggests that it has been selected on nutrient rich soils for higher
Pi acquisition attributing to its higher yield. Since, PB1 is a
drought sensitive genotype (Mutum et al., 2013) shallow root
system may contribute to its high drought sensitivity. On the
other hand, we observed a steeper-angled root system in Dular
which also likely contributes to its drought avoidance mechanism
as Dular is a traditional upland genotype (Henry et al., 2011).
Moreover, upland systems are co-limited for water and Pi
together. Therefore, Dular has been co-selected for both the
traits i.e., low Pi tolerance and drought avoidance. Therefore, this
traditional “Pi-efficient” genotype can also be further exploited

to target the dual problem of drought and low Pi tolerance. We
didn’t find significant change in root spread for either genotype
caused by low Pi. This indicates that root spread behavior might
be governed by genotype rather than low Pi stress. Interestingly,
we also observed greater cortical aerenchyma formation in
Dular than PB1 root under Pi deficiency (Supplementary Figure
6). This adaptive trait allows reallocation of resources toward
formation of new roots with minimum additional metabolic cost
(Lynch, 2011; Postma and Lynch, 2013). Noticeably, under Pi
deficiency, Dular roots also showed higher induction of XTHs
(Xyloglucan endotransglucosylase) genes known to be involved
in aerenchyma and root hair formation (Vissenberg et al., 2001).
It is noteworthy that NIL6-4 with introgressed Pup1 locus didn’t
show such advantage in root hair and aerenchyma formation
despite induction of XTHs. This implies that these complex traits
involve several molecular regulators influenced by environment
and genotype. The integration of these root traits may lead to
synergistic interactions that substantially increase P uptake (York
et al., 2013).

Metabolic plasticity plays an important role in conserving
cellular Pi (Plaxton and Tran, 2011) and thereby enhances Pi
utilization efficiency. In our data, many key genes involved in
glycolytic bypasses were significantly up-regulated in Dular thus
efficiently mitigating the demand of Pi under its deficiency.
Cellular Pi pools can also be conserved by replacing membrane
phospholipids with galactolipids and sulfolipids (Nakamura,
2013; Okazaki et al., 2013). A set of membrane lipid remodeling
genes, including like PLC, PLD, and GDPD, were found to
be induced in Dular at relatively higher levels than PB1
under low Pi. Further, low Pi induction of lipid remodeling
genes and accumulation of corresponding metabolic lipid bio-
markers (MGDG and DGDG) indicate that lipid remobilization
is also one of adaptive strategies for low Pi tolerance in
the traditional genotype. Analysis of phospholipid composition
showed higher degradation of phospholipids in PB1 under
low Pi. However, the total amount of phospholipids degraded
is more in Dular (analogy model, Supplementary Figure 7).
Genotypic comparison of Dular and PB1 revealed a greater pool
of phospholipids in Dular shoots under both low and high Pi
as compared to PB1. This indicates Dular has greater room
to maneuvre its phospholipid reserve under low Pi stress. All
these results together indicate the higher metabolic adjustments
in Dular relative to PB1 which allow it to withstand low Pi
stress. However, a matter of future research will be whether high
phospholipid content and its remobilization is a general low
Pi tolerance strategy among traditional rice genotypes. Earlier
reports also suggest lipid remobilization is one of the important
low Pi tolerance mechanisms in other crops like kidney bean, oat,
and sesame (Gniazdowska et al., 1999; Andersson et al., 2003,
2005; Shimojima et al., 2013).

Moreover, SNPs and InDels identified in the promoter regions
between PB1 and Dular can modulate the differential expression
of these PSR genes between these two genotypes. This differential
expression due to non-sense and other large effect SNPs of Dular
and PB1 can provide the tolerance and sensitive attributes to
these genotypes. Further characterization of these large effect
variants will allow the detailed dissection of the molecular
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mechanism of low P tolerance of Dular and other traditional
cultivars. However, a large population will be needed to explore
these SNPs to achieve the necessary genotypic and phenotypic
variation.

In our data, we also found induction of various transporters in
Dular, including the glucose six phosphate transporter, glycerol
three phosphate transporters, and phospholipid transporters,
which are involved in cellular Pi remobilization. This provides
additional evidence of better internal Pi utilization in Dular.
Pi transporters (both low and high-affinity) mediate uptake
from soil and distribution of Pi in plants against concentration
gradients (Ai et al., 2009; Li et al., 2015). However, induction of
the high-affinity Pi transporter was observed as a response rather
than a tolerance mechanism under low Pi (Pariasca-Tanaka et al.,
2009; Oono et al., 2013). High induction of OsPT6 in PB1 roots
might reflect its greater Pi demand from exogenous sources. On
the contrary, Dular’s higher Pi use efficiency and low Pi demand
is potentially addressed by better cellular Pi mobilization and
efficient Pi acquisition. This may explain the relatively lower
induction of high affinity Pi transporters in Dular.

In conclusion, we have shown that the traditional genotype
Dular might employ both better internal Pi utilization and
acquisition strategies for low Pi tolerance as revealed by
transcriptome, lipidome and RSA phenotyping. Traditional
upland genotypes like Dular can serve as a novel genetic sources
for improving low Pi tolerance of modern Pi responsive elite
cultivars.
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