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The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in
a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as
experimental host for a very broad range of plant pathogens, is susceptible to infection
by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome
the plant defense capacity, inducing maceration and death of the tissue, although
restricted to the infiltrated area. By contrast, the output of the defense response to
low dose inoculation is inhibition of maceration and limitation in the growth, or even
eradication, of bacteria. Responses of tissue invaded by bacteria (neighboring the
infiltrated areas after 2–3 days post-inoculation) included: (i) inhibition of photosynthesis
in terms of photosystem II efficiency; (ii) activation of energy dissipation as non-
photochemical quenching in photosystem II, which is related to the activation of plant
defense mechanisms; and (iii) accumulation of secondary metabolites in cell walls of the
epidermis (lignins) and the apoplast of the mesophyll (phytoalexins). Infiltrated tissues
showed an increase in the content of the main hormones regulating stress responses,
including abscisic acid, jasmonic acid, and salicylic acid. We propose a mechanism
involving the three hormones by which N. benthamiana could activate an efficient
defense response against D. dadantii.

Keywords: Dickeya dadantii, necrotroph, plant resistance, chlorophyll fluorescence imaging, multicolor
fluorescence imaging, thermal imaging

INTRODUCTION

The necrotrophic bacteria Dickeya sp. and Pectobacterium sp. are the causal agents of the soft-rot
disease in a broad range of hosts, affecting one-half of angiosperm plant orders (Ma et al., 2007). As
a result, they cause great economic losses in crops and ornamental plants world-wide (Reverchon
and Nasser, 2013). Dickeya dadantii strain 3937, formerly known as Erwinia chrysanthemi 3937,

Abbreviations: ABA, abscisic acid; B, base of the leaf; cfu, colony forming units; Chl-F, chlorophyll fluorescence; CLSM,
confocal laser scanning microscopy; dpi, days post-inoculation; ET, ethylene; F0, fluorescence in the dark-adapted state;
F440, blue fluorescence emission; F520, green fluorescence emission; FM, maximum fluorescence in the dark-adapted state;
�PSII, quantum yield of photosystem II in the light-adapted state; FV/FM, maximum quantum yield of photosystem II; HD,
high dose; hpi, hours post-inoculation; I, infiltrated; JA, jasmonic acid; JA-ILE, isoleucine-conjugated jasmonic acid; LD, low
dose; NPQ, non-photochemical quenching; PAL, phenyl ammonia lyase; PAMPs, pathogen-associated molecular patterns;
PSII, photosystem II; SA, salicylic acid; SAG, salicylic acid β-glucoside; SEG, salicylate β-D-glucose ester; T, tip of the leaf.
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was originally isolated from African violet (Saintpaulia
ionantha). This necrotrophic bacterium is especially pernicious
due to its ability to cause latent infections, which become
active in post-harvest, affecting the shelf life of the product.
Furthermore, D. dadantii can survive as saprophyte, epiphyte
or endophyte, being a frequent inhabitant of leaves (Haygood
et al., 1982), inland waters (Cother and Gilbert, 1990) and soils
(Burr and Schroth, 1977). In consequence, D. dadantii is widely
distributed and persistent in agronomic ecosystems worldwide.
Particularly in Southern Europe, D. dadantii has been identified
as an emergent problem (Palacio-Bielsa et al., 2010).

Necrotrophic pathogens have developed a wide range of
virulence strategies, including the secretion of phytotoxic
compounds and cell wall-degrading enzymes, to promote cell
death and leakage of nutrients to feed on. In some cases,
the plant immune system is effective against the necrotroph,
restricting further ingress and disease symptoms development
(Mengiste, 2012). The pathogenesis of D. dadantii has been
intensively studied at the molecular level during the last
decades. The traditional approach has emphasized the role
of multiple exozymes (including pectinases, cellulases, and
proteases) producing maceration of the infected tissue by
breaking down plant cell walls, as reviewed by Toth et al. (2003).

Many authors have addressed the effect of biotrophs and
hemi-biotrophs on plant physiology. However, photosynthetic
responses in plants to necrotrophs have been paid little attention.
A recent study (Göhre et al., 2012) demonstrated how PAMPs
triggered immunity response, which influences photosynthesis
and their crosstalk via the NPQ on Arabidopsis plants treated
with the PAMP flg22, a peptide derived from flagellin. NPQ is
a defense mechanism related to photosynthesis that protects the
thylakoid membrane of the chloroplast from excess excitation
energy by safely dissipating it. NPQ plays a crucial role in plant
fitness and under any stress condition that could compromise
or inhibit the activity of the thylakoid electron transport chain,
expressed in terms of quantum yield of photosystem II (�PSII).
In previous studies on Nicotiana benthamiana plants infected
with pepper mild mottle virus (Pérez-Bueno et al., 2006)
as well as on Phaseolus vulgaris infected with Pseudomonas
syringae pv. phaseolicola (Rodríguez-Moreno et al., 2008;
Pérez-Bueno et al., 2015), we demonstrated that NPQ plays an
important role in plant defense against pathogens. Inhibition
of photosynthesis upon infection could divert the major flow of
carbon from primary metabolism to secondary metabolism for
the biosynthesis of phenolic compounds (Bolton, 2009; Barón
et al., 2012). These phenolic compounds can act as physical and
chemical barriers against infection (for a review see Dixon et al.,
2002).

Another plant physiological process playing an important
role in pathogen infections is the stomatal function. A recent
review by Sawinski et al. (2013) highlights the importance
of stomatal regulation in innate plant immunity. Stomata are
the main natural entry site for pathogens and an activation
of stomatal closure upon detection of potentially pathogenic
microbes appears as an essential part of the plant defense against
pathogens. On the other hand, pathogens are frequently able to
manipulate stomata regulation and activate opening of guard

cells. Stomatal aperture controls the leaf transpiration rate, and
therefore determines the leaf temperature, which can easily be
analyzed by thermography, as revised by Chaerle and Van Der
Straeten (2001).

The aim of the present study is to gain knowledge about the
defense responses of N. benthamiana elicited by the necrotroph
D. dadantii 3937. Two fluorescence techniques combined with
thermal imaging were employed to obtain spatial and temporal
information about stomatal regulation, primary and secondary
metabolism throughout the infection and analyze their role in
plant defense. This study was complemented by the localization
of secondary metabolites within the structure of the leaves by
confocal microscopy and a quantitative analysis of secondary
metabolites and hormones. Taken all together, these results point
to a possible defense mechanism by which N. benthamiana
activates resistance to D. dadantii.

MATERIALS AND METHODS

Biological Material and Inoculation
Nicotiana benthamiana plants were grown at 150 μmol m−2 s−1

photosynthetically active radiation, using white fluorescent lamps
(HPI-T 250 W; Phillips, Eindhoven, The Netherlands), with
a 16/8 h (22/18◦C) light/dark photoperiod and 65% relative
humidity. D. dadantii 3937 was grown for 24 h at 28◦C in
Luria-Bertani (LB) plates containing 25 μg ml−1 rifampicin.

Fully developed leaves of 4 weeks-old plants were inoculated
by pressing the bacterial suspension into the abaxial side of
the leaf using the blunt end of a 1 ml syringe, with bacterial
suspensions at 104 or 106 cfu per ml in 10mMMgCl2, LD andHD
respectively. Mock-inoculated control plants (C) were infiltrated
with 10 mM MgCl2. The infiltrated area was accurately outlined
using a marker pen, as shown in Figure 1A. Three regions of the
leaf were analyzed: the infiltrated area (I), and the non-infiltrated
tip (T) and base (B) of the leaf. All measurements were repeated
in four independent experiments.

Determination of bacterial density per leaf area was performed
by extracting bacteria from two 0.5 cm2 leaf disks ground in
10 mM MgCl2. Serial dilutions of the bacteria in 10 mM MgCl2
were plated onto LB plates and cfu counts performed after 48 h.

Photosynthetic Parameters
The photosynthetic activity was evaluated by Chl-F imaging,
carried out with an Open FluorCam FC 800-O (PSI, Brno,
Czeck Republic) kinetic imaging fluorometer controlled by
FluorCam7 (PSI) software. Measuring light flashes (10 μs) for
modulated Chl-F excitation were generated by a pair of red
LED panels (λmax∼618 nm), and saturating light pulses (1 s,
∼2000 μmol m−2 s−1) and actinic light by a pair of blue LED
panels (λmax∼455 nm). Chl-F emission kinetics was captured by
a B&WCCD camera with 12-bit and 1024× 768 pixel resolution,
taking 10 images per second. Reflected radiation was blocked by
a far-red filter (RG697, Schott, Mainz, Germany). Measurements
of minimum and maximum fluorescence in the dark-adapted
state (F0 and FM , respectively) and after 20 min light-adaptation
(Ft and F’M) were used to determine maximum quantum yield
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as FV /FM = (FM-F0)/FM , NPQ in the light-adapted steady-state
as NPQ = (FM-F’M)/F’M , and quantum efficiency of PSII as
φPSII = (F’M-Ft)/F’M (Maxwell and Johnson, 2000). Images were
displayed using a false color scale applied by the FluorCam
software version 7.1.0.3. Average FV/FM, NPQ and φPSII values
were determined over the area of infiltrated (in the middle of
the leaf) and non-infiltrated regions (base and tip) of each leaf.
All measurements were carried out on attached leaves at 1, 2, 3,
and 6 days post-inoculation for each treatment. Images presented
correspond to the most representative data.

Leaf Thermography
Infrared images of plant leaves were taken in the growth
chamber with a Photon 640 camera (FLIR Systems, Wilsonville,
OR, USA) vertically positioned approximately 0.5 m above
the leaves according to Pérez-Bueno et al. (2015). Immediately
after infiltration, three plants representing each treatment were
positioned for simultaneous imaging of one leaf from each plant,
and images were recorded every 10 min during the first day, and
then once a day (at midday) over a period of 6 days. Average
temperatures were determined for infiltrated and non-infiltrated
regions of each leaf.

Autofluorescence by Multicolor
Fluorescence Imaging
Multicolor fluorescence imaging was performed on control and
D. dadantii infected plants using an Open FluorCam FC 800-O
(Photon Systems Instruments, Brno, Czech Republic). Multicolor
fluorescence emission in the blue (F440) and green (F520) regions
of the fluorescence spectrum was acquired for attached leaves at
1, 2, 3, and 6 dpi, as described in Pérez-Bueno et al. (2015). The
excitation wavelength used was 355 nm. Black and white images
of fluorescence were displayed using a false color scale applied
by the FluorCam software version 7.1.0.3. Numerical data from
the regions of interest were also processed. Four different plants
per treatment were analyzed. Images presented correspond to the
most representative data.

Localization of Phenolic Compounds by
Confocal Laser Scanning Microscopy
Fresh leaf samples (infiltrated region and leaf tip) were cut out
and incubated on microscopic slides in a droplet of water, and
autofluorescence of the samples was studied with a Nikon C1
laser scanning confocal microscope (Nikon Instruments Inc.,
Japan) at an excitation wavelength of 405 nm. CLSM images
were obtained for blue (400–430 nm), green (515–565 nm), and
red (>650 nm) fluorescence channels at different focal planes
(epidermal and mesophyll layers) using a 40× oil immersion
objective. To compare autofluorescence in leaves from different
treatments at 1–6 dpi all measurements were conducted with
equal sensitivity settings. Images presented correspond to the
most representative data.

Determination of Secondary Metabolites
The determination of total soluble phenolic compounds was
performed as previously described (Chun and Kim, 2004).

A colorimetric reaction using Folin’s reagent (Merck Darmstadt,
Germany) at 4.7% on methanol leaf extracts was followed at
765 nm. Caffeic acid was used as standard for the calibration
curve.

Secondary metabolites and phytohormones were analyzed
by LC-ESI. 50 mg of freeze-dried leaf samples were extracted
with MeOH:H2O (10:90) containing 0.01% of HCOOH. Before
extraction, a mixture of internal standards containing 100 ng
dihydrojasmonic acid, d5-ABA, d6-SA, and propyl-paraben was
added. After polytron homogenization on ice, the samples
were centrifuged for 15 min at 15000 g and the supernatant
was filtered and an aliquot was used for subsequent analysis.
An Acquity ultra-performance liquid chromatography system
(UPLC, Waters, Mildford, MA, USA) was interfaced to a
triple quadrupole mass spectrometer (TQD, Waters, Manchester,
UK). The chromatographic separation conditions were closely
related to those described previously. The LC separation was
performed by HPLC SunFire C18 analytical column, 5 μm
particle size, 2.1 mm × 100 mm (Waters, Mildford, MA,
USA). Chromatographic conditions and TQD parameters were
followed as described in Agut et al. (2014). Compound quantities
were compared with their respective standard curves for ABA,
SA, SAG, SGE, chlorogenic acid, ferulic acid, and scopoletin.
Quantifications where carried out with Mass Lynx (v 1.4,
Mycromass) software using the internal standards as reference for
extraction recovery and the standard curves as quantifiers.

Bacterial Growth Inhibition Assays
The inhibition of bacterial growth by SA and scopoletin (Sigma-
Aldrich, St. Louis, MO, USA) was tested in D. dadantii
suspensions at 104 cfu ml−1 in LB liquid medium containing
25 μg ml−1 rifampicin and grown for 24 h at 28◦C. The optical
density at 600 nmwas recorded at time 0 and 24 h. The percentage
of bacterial growth was calculated referring the optical density of
the bacterial suspensions containing increasing concentrations of
SA or scopoletin to bacterial suspensions. For each experiment,
three replicates per treatment were considered (control and the
different SA/scopoletin concentrations tested. The percentage
of growth inhibition was calculated as 100∗(DO600−0 mM –
DO600 × mM)/DO600−0 mM. The experiment was repeated three
times with identical results. All data from the three experiments
were taken in account for the calculation of average and SE values.

Statistics
All calculations were performed with Microsoft Office Excel
2010 (Microsoft Corporation, Redmond, WA, USA). Statistical
analysis of data was carried out using Student’s t-test with
SigmaPlot (Systat Software, Inc., Richmond, CA, USA).

RESULTS

Symptomatology and Bacterial Growth in
Infected Plants
The response of N. benthamiana to bacterial challenge was
analyzed by comparing the effects of inoculation using two
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bacterial concentrations: the so called LD (104 cfu ml−1),
considered to be closer to natural infection conditions, and HD
(106 cfu ml−1).

In LD leaves, infiltrated areas developed a very slight chlorosis
at 3 dpi, that spread out of the infiltration site after 6 dpi, as
marked in Figure 1A. On the contrary, the areas infiltrated with
HD showed clear signs of maceration at 1 dpi and necrosis at 2
dpi. Chlorosis appeared at the leaf tip at 3 dpi and spread toward
the base of the leaf within the time of study, only in HD leaves
(Figure 1A).

Bacterial density in the infiltrated areas increased up to 108–
109 cfu cm−2 in 1 dpi for HD and 2 dpi for LD, and then remained
stable throughout the period of study (Figures 2A,B). In the
neighboring regions, tip and base of the leaf, the bacterial density
reached ∼105 cfu cm−2 at 1 dpi in HD plants and 1 day later in
LD leaves. Only in the last case the bacterial density decreased
during the later stages of infection. Indeed, no colony-forming
bacteria were detected in the tip and base of the LD leaf area at 6
dpi in any of the four experiments performed.

The results suggest that plant defense responses were effective
in leaves infected with relatively low densities of bacteria
(including LD inoculated leaves and non-infiltrated regions
of HD inoculated leaves), but plant defense capacity at the
infiltration site was overcome when the bacterial density was
sufficiently high.

Photosynthesis upon Infection with
D. dadantii
In LD infiltrated areas, the maximum efficiency of PSII measured
as FV/FM decreased rapidly from 2 dpi onward, indicating
increasing loss of activity of PSII. There was also a very small
decrease in FV/FM in the leaf tip of the LD infiltrated leaves from
3 dpi, but no significant change in the leaf base (Figures 1B and
3A). In HD inoculated areas FV/FM was radically reduced as
early as 1 dpi, indicating severe inhibition of PSII (Figures 1B
and 3B). Furthermore, FV/FM in the leaf tip region of the HD
infiltrated leaves decreased rapidly from 2 dpi onward, whereas

FIGURE 1 | Nicotiana benthamiana leaves inoculated with Dickeya dadantii at a concentration of 104 (LD) or 106 (HD) cfu per ml or mock-inoculated
plants (C). Evolution of symptoms (A) and images at different post-infection times of: maximum quantum efficiency of PSII (B), NPQ in the light-adapted steady
state (C), quantum efficiency of PSII in the light-adapted steady state (D), and fluorescence at 440 nm (E), and 520 nm (F). The infiltrated area was accurately
outlined. The false color-scale used in (B–F) is depicted for each parameter. Images show a representative measurement.
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FIGURE 2 | Bacterial growth in N. benthamiana leaves inoculated with D. dadantii. Three regions of interest have been analyzed: the infiltrated (I) as well as
the tip (T) and base (B) of non-infiltrated areas, surrounding the infiltrated area. Bacterial density found in leaves inoculated at LD (A) and HD (B). Error bars indicate
standard errors, n = 10.

the leaf base area only showed a very small decrease from 3
dpi.

A clear increase in the capacity for energy dissipation in
PSII, measured as NPQ, was found in the LD infiltrated area
after 1 dpi, followed by a decrease, relative to the mock-control
values. In the tip of those leaves, NPQ was increased at 2 and
3 dpi and decreased to control values at 6 dpi. No significant
changes were found on the base of the leaf (Figures 1C and 3C).
Similarly, the tip of HD infiltrated leaves showed higher NPQ at
1dpi followed by a drastic decrease and no significant differences
were found on the base of the leaf. However, the NPQ in HD
infiltrated areas decreased very drastically after 2 dpi (Figures 1C
and 3D).

Non-photochemical quenching has two contributions,
reversible and irreversible NPQ. Reversible NPQ is actively
controlled by the plant, regulated by the luminal pH, the
xanthophylls cycle and the protein PsbS. However, the
irreversible NPQ is caused by damage to the PSII. No
significant differences were found in the irreversible NPQ
(data not shown). Therefore, the increases found in NPQ can
be attributed to changes in the capacity for reversible NPQ,
positively enhanced by the plant as part of the defense response.

The quantum efficiency of PSII decreased progressively in LD
infiltrated areas whereas HD infiltrated tissue showed no PSII
activity after 1 dpi. In the non-infiltrated areas, the tip of the LD
leaves showed a slight decrease in �PSII from 3 dpi. By contrast,
the decline was much more drastic in the tip and base of the HD
leaves than in the corresponding areas in LD leaves (Figures 1D
and 3E,F).

In summary, an irreversible inhibition and loss of
photosynthetic activity was found for the HD-I area from 1
dpi. The bacterial infection had the same effect in LD-I and HD-
T, but 1 day delayed. On the contrary, LD-T showed an increase
in the mechanisms of protection of PSII. However, regardless
of the bacterial dose, the performance of photosynthesis at
the base of the infiltrated leaves was little affected by the
infection.

Transpiration and Stomata Function
during Infection with D. dadantii
Figure 4A shows representative thermal images of control-
mock, LD and HD infiltrated N. benthamiana leaves during
the first hours and days after inoculation. Their corresponding
RGB images are shown in Supplementary Figure S1. Average
temperatures were determined over the area of infiltrated and
non-infiltrated regions of the leaves (Figures 4B,C). Thermal
imaging indicated an average temperature of non-infiltrated
leaves at 19.4◦C (Figures 4A,B). During the first hour post-
infiltration the temperature increased rapidly in infiltrates areas,
peaking at 20.2 and 20.4◦C for HD and LD treated leaves,
respectively, whereas mock-inoculated areas showed a smaller
increase to 19.7◦C. During the next hour the temperatures
decreased again and stabilized at 19.4◦C in mock-inoculated and
20.0◦C in LD treated leaves. In contrast, the temperature of HD
infiltrated areas increased again over the next hour to 20.5◦C
(at 3 h post-inoculation). These temperature oscillations during
the first 3 h suggest an initial stomatal closure in response to
wounding and bacterial invasion, followed, in the case of mock-
control and LD infiltration, by stomatal reopening. However,
stomata in HD infiltrated areas closed again after 2 hpi. Over
this early phase of the infection no significant differences in
temperature were found for non-infiltrated regions (Figure 4A).

During 6 days post-infiltration, the midday temperature of
infiltrated and non-infiltrated regions of control leaves remained
constant at 19.5◦C (Figure 4C). By contrast, leaves with LD
and HD bacterial treatments displayed substantial increases
in temperature during the first 2 days post-infiltration before
leaf temperatures decreased again. In LD treated leaves, the
temperature in the infiltrated region peaked at 20.6◦C at 2 dpi,
and then decreased slowly during the next days (down to 19.7◦C
at 10 dpi). In the tip of the LD infiltrated leaves, the increase
in temperature was delayed, and reached a maximum of 20.4◦C
at 2 dpi. Furthermore, the temperature in this region decreased
down to the values found for mock-control infiltrated areas after
4 dpi, suggesting a more rapid recovery. In HD treated leaves,
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FIGURE 3 | Photosynthesis performance in N. benthamiana leaves inoculated with D. dadantii. Three regions of interest have been selected: the infiltrated
(I) as well as the tip (T) and base (B) of non-infiltrated areas, surrounding the infiltrated area. Average values for maximum quantum efficiency of PSII in leaves
inoculated at LD (A) and HD (B). Average values for NPQ in the light-adapted steady state in leaves inoculated at LD (C) and HD (D). Average values for quantum
efficiency of PSII in the light-adapted steady state in leaves inoculated at LD (E) and HD (F). Error bars mean standard error, being n = 6.

the temperature in the infiltrated region peaked at 21.2◦C at 2
dpi, and then decreased slowly during the next days. In the tip
of the HD treated leaves the increase in temperature was delayed
by 1 day, and thereafter followed the same trend as the infiltrated
region. The high temperature in infiltrated and tip areas of HD
treated leaves represent the death of the tissue and a strong
decrease in the stomatal aperture in those regions, respectively.

Secondary Metabolism in
D. dadantii-Infected Plants
Localization of Secondary Metabolites in vivo by
Imaging Techniques
Dickeya dadantii-inoculated plants showed higher levels of blue
and green fluorescence emission (F440 and F520, respectively)

than the mock-inoculated controls early in the infection process
(Figures 1E,F). F440 increased in areas infiltrated at LD from 2
dpi, relative to the control, while in the surrounding tissues it
was increased from 3 dpi. In the case of HD, F440 was slightly
increased in infiltrated areas at 1 dpi. After 2 dpi, the tip of the
leaf showed an increase in F440, which spread toward the base
of the leaf along the infection. Changes in the intensity of F520
were larger than F440 and detected at earlier times (at 1 and
2 dpi for HD and LD inoculation, respectively). Control leaves
did not show any changes in F440 or F520 during the period of
study.

The source of these autofluorescence signals were localized
within the leaf structure by CLSM (Figure 5 and Supplementary
Figure S2). The HD infiltrated areas quickly showed maceration
and disruption of the cell structures, and displayed a very strong
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FIGURE 4 | Infrared emission of N. benthamiana leaves inoculated with D. dadantii at LD and HD, monitored by a thermal camera. (A) False color-scale
thermal images of inoculated and control leaves during the first 6 days post-infection. Images show a representative measurement. Averaged temperature values in
infiltrated areas (I) and tip (T) of control and inoculated leaves during the first 4 h (B) or 10 days (C) post-infection. Data represent in both cases the average of four
experiments ± standard error, n = 6.
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increase in autofluorescence emitted by phenolic compounds in
the epidermis as well as mesophyll areas. In non-necrotic leaf
tissues (HD-Te, LD-Ie, and Te), autofluorescence from the cell
wall of the epidermis initially increased and then declined, but
at different rate and magnitude depending on the treatment and
the region of the leaf. In LD infiltrated areas the autofluorescence
increased strongly up to 3 dpi, and then declined at 6 dpi, whereas
tip of LD leaves showed a much slower and weaker response.
By contrast, the tip of HD leaves showed a quicker response,
with a peak in autofluorescence at 2 dpi and a decline already at
3 dpi.

In the mesophyll of non-necrotic leaf tissues, soluble phenolic
compounds initially accumulated in the apoplast, and then
in the vacuoles. The intensity of the autofluorescence in the
apoplast of LD infiltrated tissue increased strongly up to 3
dpi, followed by a decline and significant accumulation in the
vacuoles at 6 dpi (Figure 5 and Supplementary Figure S1).
Again, the tip of LD inoculated leaves displayed a similar
response, while the tip of HD infiltrated leaves showed a quicker

FIGURE 5 | Confocal epifluorescence micrographs of epidermal and
mesophyll layers of infiltrated areas of N. benthamiana leaves
mock-control (Ce and Cm, respectively) and infected with D. dadantii
at LD (LDe and LDm, respectively). Micrographs were obtained at 3 dpi
(LDe3, LDm3) and 6 dpi (LDe6, LDm6).

accumulation of phenolic compounds in the apoplast as well as
the vacuoles.

Quantification of Phenolic Compounds
The autofluorescence detected both in apoplast and vacuoles
suggest an increase in the accumulation of soluble phenolic
compounds, rather than bound to the cell walls. These
compounds were quantified along the infection for infiltrated
and non-infiltrated areas of the leaves (Figure 6). The highest
contents were found in the areas infiltrated at LD from 3 dpi
onward. Moreover, the tip of both LD and HD inoculated leaves
accumulated soluble phenolics, reaching highest levels after 6 dpi.

Phytoalexins are soluble phenolic compounds that take part in
the defense response against pathogens, and generally emit blue
and green fluorescence. A selection of phytoalexins that could
be produced by N. benthamiana under stress conditions was
determined for mock and LD infiltrated areas at 3 dpi (Figure 7).
Ferulic acid and scopoletin, two well-known phytoalexins, were
found to be increased by 4 and 1.2-fold in the LD infiltrated areas,
respectively. However, the accumulation of the phytoalexins
caffeic acid and chlorogenic acid was not affected by the infection
(data relative to caffeic acid not shown).

Many phytoalexins are well-known antimicrobials. Figure 7
shows the capacity of SA and scopoletin for growth inhibition of
D. dadantii 3937. Both compounds inhibited by 60% the bacterial
growth at 0.5 mM and by 100 and 90% at 2 mM, respectively.
Scopoletin inhibited bacterial growth by 25% at only 0.1 mM.

FIGURE 6 | Quantification of soluble phenolic compounds in
N. benthamiana leaves mock-control and inoculated with D. dadantii
at LD (A) and HD (B) for infiltrated (I), base (B) and tip (T) of the leaves.
Error bars mean standard error, n = 6. ∗P < 0.05; ∗∗P < 0.01.

Frontiers in Plant Science | www.frontiersin.org 8 January 2016 | Volume 6 | Article 1209

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Pérez-Bueno et al. N. benthamiana Responses against D. dadantii

FIGURE 7 | Quantification of (A) phenolic compounds (chlorogenic acid, ferulic acid, and scopoletin); (B) hormones and its derivatives (ABA, SA, SEG,
SAG, JA, and JA-ILE), in mock and LD infiltrated areas at 3 dpi. (C) The inhibition of bacterial growth by SA and scopoletin on D. dadantii is
expressed as percentage of bacterial growth. Error bars mean standard error, n = 5 (A,B), n = 9 (C). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Quantification of Hormones Regulating the defense
Response
The content on hormones related to biotic stress responses was
analyzed in mock and LD infiltrated areas at 3 dpi (Figure 7).

SA and JA are two main signaling molecules controlling plant
immune reactions. The two active forms of SA, the free acid and
its glucosyl ester (SEG), increased by 12 and 3-fold, respectively,
whereas the storage form SAG was increased by almost 150-fold
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in the infected areas. On the other hand, the active species JA and
the isoleucine conjugated acid (JA-ILE), taken together, increased
by twofold (P = 0.017). ABA is an important regulator of plant
defense against biotic stress which role is still controversial. In
the LD infiltrated areas, ABA was increased by eightfold relative
to the mock control. Cytokinins have been found to play a role in
plant defense against some pathogens (Großkinsky et al. (2011),
and references therein).

The content on kinetin, a cytokinin, was also analyzed, finding
no significant changes relative to the mock-control (data not
shown).

DISCUSSION

Dickeya dadantii is a broad host-range necrotroph which
infectious cycle starts by the entry into the apoplast through
stomata or wounds. Then, and according to the very recent
review by Duprey et al. (2014), the bacteria would undergo an
asymptomatic phase of the infection in which the bacteria would
multiply without causing significant damage to the plant tissue.
Once the bacteria were acclimatized to the environment and
in high population levels, they would enter the symptomatic
phase. At that time, a great amount of virulence factors
would be secreted, including cell wall degrading enzymes. This
transition would be triggered by the scarcity of nutrients through
quorum sensing, as reviewed by Fatima and Senthil-Kumar
(2015).

Nicotiana benthamiana was able to activate resistance
mechanisms against D. dadantii when infiltrated at low bacterial
dose, condition closer to infections in nature. And, although
D. dadantii could overcome plant defense capacity when
inoculated at high enough doses, it is remarkable that, even then,
maceration was always restricted to the infiltrated area.

To analyze such plant defense mechanisms, the combination
of several imaging techniques, giving temporal and spatial
information about metabolic processes, have been proved to
be a suitable tool. Moreover, they are useful for the detection
of the infection even prior to the development of symptoms.

Stomata take Part in Plant defense
Subsequently the first hour after infection, in which temperature
of infiltrated areas could be controlled by a wounding
response due to the physical damage caused during the
infiltration [Desikan et al. (2002) and references therein],
changes in temperature seemed to be dose-dependent. Moreover,
temperature decreased down to mock-controlled levels in non-
infiltrated areas of LD treated leaves parallel to the decrease in
cfu. The activation of stomatal closure triggered by recognition
of PAMPs in guard-cells is a widespread defense mechanism in
vascular plants against invasion by the potentially vast number
of bacteria to which plants are exposed in nature (Melotto
et al., 2006, 2008). In this case the stomatal closure would
be triggered by the detection of PAMPs and controlled by
ABA via SA signaling. This is in agreement with the increase
in the accumulation of ABA, SA and its derivatives here
reported.

Contribution of Photosynthesis to Plant
defense
Photosynthesis supplies the plant with energy, needed for growth
but also for defense. Therefore, the regulation of photosynthesis
must be integrated into the defense response of plant to
pathogens. The nature of photosynthetic limitations imposed by
phytopathogenic bacteria is variable and they have been recently
summarized by Barón et al. (2012). Bacterial challenge affects
photosynthesis by both stomatal and non-stomatal limitations,
causing reduction on plant CO2 assimilation to different extents
depending on the severity and timing of infection, but also on the
particular type of bacterial life style and on genotype-associated
resistance of the host plant.

Several studies report the downregulation of many genes
in response to bacterial infection, in particular those encoding
proteins involved in photosynthesis, as recently reviewed by
Bilgin et al. (2010). Particularly the decrease in the accumulation
of the subunits forming the oxygen evolving complex of PSII
appear to be a common feature in many plant-pathogen systems,
i.e., N. benthamiana infected by pepper and paprika mild mottle
virus (Pérez-Bueno et al., 2004), or Arabidopsis infected by
P. syringae pv. tomato DC3000 (Rodríguez-Herva et al., 2012).
The decrease in components of the oxygen evolving complex
causes impairment in PSII activity and could contribute to an
increase in the production of reactive oxygen species by PSII
(Jones et al., 2006).

In this study D. dadantii caused a decrease in �PSII
accompanied by an increase in the capacity for energy dissipation
or reversible NPQ (Figure 3), in accordance with previous
reports in other plant–pathogen systems, reviewed by Berger
et al. (2007). Indeed, the downregulation of photosynthesis, and
therefore of PSII, has been suggested to be part of the plant
defense program to limit carbon source availability for pathogens
and/or to redirect carbon into secondary metabolism (Bolton,
2009). On the other hand, the protective mechanism of NPQ,
which originates in PSII when downregulated, has been suggested
as a positive regulator of PAMPs triggered immunity (Göhre
et al., 2012). Our data correlate with this hypothesis, since the
activation of the reversible NPQ is detected in the tissues in
which the defense response is able to prevent maceration and/or
control bacterial proliferation. Chloroplasts in LD-infiltrated
areas showed a loss of functionality (very low values of all
photosynthetic parameters analyzed) by 6 dpi. However, non-
infiltrated areas of LD treated leaves showed control values of
the photosynthetic parameters after 6 dpi, when no cfu could
be detected. In the case of the HD inoculated leaves the loss of
activity in the chloroplasts extended to the tip, but not to the base
of the leaf.

Role of Secondary Metabolism in Plant
defense
Phytoalexins and other phenolic compounds play a crucial role
in plant defense against pathogens. Indeed, several studies have
correlated the accumulation levels of soluble phenolics with
resistance to soft rot in potato (Kumar et al., 1991; Ngadze et al.,
2012). The success of such a response depends upon the timing

Frontiers in Plant Science | www.frontiersin.org 10 January 2016 | Volume 6 | Article 1209

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Pérez-Bueno et al. N. benthamiana Responses against D. dadantii

of their accumulation as well as the location. Accordingly, Bellow
et al. (2012) showed clear differences in the location of stilbenes
induced by downy mildew in different cultivars of grapevine and
correlated it with their grade of susceptibility or resistance to the
pathogen. These results are in accordance with the location of
high autofluorescence in the cell walls of the epidermis and the
apoplast of the spongy mesophyll in LD infected N. benthamiana
tissues reported in this study (Figure 5 and Supplementary
Figure S2).

The main phytoalexins produced by Nicotiana sp. are
phenylpropanoids and terpenoids (La Camera et al., 2004).
Tobacco and N. benthamiana have been reported to accumulate
several phytoalexins (http://solcyc.solgenomics.net/) with
antimicrobial activity in response to pathogens, capsidiol and
debneyol (sesquiterpenes), scopoletin (a coumarin) and (2S)-
pinocembrin (a flavanone; Watson et al., 1985; Großkinsky et al.,
2011). Among these compounds, which biosynthesis is activated
by JA (De Geyter et al., 2012), scopoletin and its precursor ferulic
acid could contribute to the inhibition of the bacterial growth.
Although scopoletin increased by only 20% in the infected areas,
it inhibited bacterial growth at low concentrations (Figure 7). On
the other hand, ferulic acid is known to have antibacterial activity
against D. dadantii, as reported by Hassan and Hugouvieux-
Cotte-Pattat (2011) and confirmed by our own results (data not
shown). On the other hand, SA can play a non-hormonal role
in the plant (El-Mougy, 2002; Cameron and Zaton, 2004) by
accumulation in the apoplast where, according to our results, it
could have an antimicrobial activity againstD. dadantii 3937.

Hydroxycinnamic acids, such as caffeic or chlorogenic acid,
were found to inhibit growth of Erwinia carotovora in vitro
(Lyon and McGill, 1988) and they accumulate in potato varieties
resistant to soft rot (Thipathi and Verma, 1975). It is worth
noticing here that N. benthamiana accumulates high levels of
chlorogenic acid bound to the cell walls in response to viral
infection (Pineda et al., 2008). However, the infection with
D. dadantii did not cause an increase in the accumulation
of chlorogenic acid, indicating that the production of this
phytoalexin is not a general response to stress inN. benthamiana,
but rather dependent on the type of pathogen.

The infection by D. dadantii activates the synthesis of ABA,
SA and JA in N. benthamiana. ABA is known to activate the
defense response against E. carotovora sp. carotovora (Ton et al.,
2009). In an early phase of the infection, the accumulation
of ABA is triggered by PAMPs recognition, leading to SA-
dependent stomatal closure (Melotto et al., 2006). PAMPs also
lead to activation of mechanisms of photoprotection such as
NPQ (Göhre et al., 2012) in order to inhibit photosynthesis
and to divert carbon flux into secondary metabolism (Bolton,
2009). Based on the mechanistic model suggested by Ton et al.
(2009), in a later phase of the infection ABA could: (i) inhibit
the SA signaling pathway (explaining the large increase of the
SA pool size, but being most of it found as inactive form);
(ii) and activate the JA-inducible defenses, independent of the

jasmonic acid/ethylene (JA/ET) pathway, which in turn activates
the ABA signaling pathway, and JA-dependent functions. The JA
signaling pathway induces the expression of PAL, among others.
The increase in PAL activity leads to an increase in the synthesis
of phenolic compounds such as flavonoids, sesquiterpens, and
lignins. In particular, ferulic acid, scopoletin and lignins are
accumulated and would contribute to an increase in blue and
green fluorescence (Sharan et al., 1998; Kazan andManners, 2009;
De Geyter et al., 2012; Sun et al., 2014). Moreover, scopoletin, has
been found to accumulate in response to JA and responsible for
an increase in the blue fluorescence, in other Nicotiana species
(Sharan et al., 1998; Sun et al., 2014). All these findings would be
in agreement with the data here reported.

Altogether, the inhibition of photosynthesis and the activation
of secondary metabolism of N. benthamiana confer resistance
to D. dadantii when inoculated at low bacterial dose (closer
to natural infection conditions than HD). The adjustments in
secondary metabolism contribute to the inhibition of bacterial
growth and infectious cycle at different levels: by inhibiting
maceration and therefore limiting nutrients availability to
bacteria, and by inhibiting bacterial growth thanks to the
production of phytoalexins.
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FIGURE S1 | RGB images corresponding to the leaves shown in Figure 4A.

FIGURE S2 | Confocal epifluorescence micrographs of epidermal and
mesophyll layers of control leaf, infiltrated area and leaf tip (C-Ie, C-Im,
C-Te, and C-Tm); epidermal and mesophyll layers of high-density infected
leaves, infiltrated areas and leaf tips, at 1, 2, and 3 dpi (HD-Ie1-3,
HD-Im1-3, HD-Te1-3, and HD-Tm1-3); and epidermal and mesophyll layers
of low-density infected leaves, infiltrated areas and leaf tips, at 1, 2, 3, and
6 dpi (LD-Ie1-6, LD-Im1-6, LD-Te1-6, and LD-Tm1-6).
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