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As the world population grows and resources and climate conditions change, crop
improvement continues to be one of the most important challenges for agriculturalists.
The yield and quality of many crops is affected by abscission or shattering, and
environmental stresses often hasten or alter the abscission process. Understanding
this process can not only lead to genetic improvement, but also changes in cultural
practices and management that will contribute to higher yields, improved quality and
greater sustainability. As plant scientists, we have learned significant amounts about
this process through the study of model plants such as Arabidopsis, tomato, rice,
and maize. While these model systems have provided significant valuable information,
we are sometimes challenged to use this knowledge effectively as variables including
the economic value of the crop, the uniformity of the crop, ploidy levels, flowering
and crossing mechanisms, ethylene responses, cultural requirements, responses to
changes in environment, and cellular and tissue specific morphological differences can
significantly influence outcomes. The value of genomic resources for lesser-studied
crops such as cranberries and grapes and the orphan crop fonio will also be considered.
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INTRODUCTION

Historically, humans have selected crop plants with delayed abscission for generations, as early
fruit drop or seed shatter limited effective collection of the fruits, grains, or legumes (Harlan, 1992;
Plants and Society, 2006). In general, we know the process of abscission results in shedding of
organs as a developmentally programmed event; however, abscission may also occur in response
to pathogens, environmental cues or other stresses. Early studies on abscission focused on the
anatomical and physiological characterization of the abscission zone (Addicott, 1982; Sexton and
Roberts, 1982). These studies have shown that the abscission zone consists of a few to multiple
cell layers and is distinguished by small densely cytoplasmic cells. During the abscission process,
there is breakdown of the middle lamella of cells within the separation layers. Although historically,
there have been several proposed models for genes regulating abscission, scientists are still unclear
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FIGURE 1 | Model of abscission. Simple schematic depicting process of abscission (adapted from Patterson, 2001). Four basic stages are depicted: Stage 1:
Determination of the abscission zone, Stage 2: Competence of abscission zone to respond to abscission signals, Stage 3: Activation of abscission or cell separation
event leading to organ detachment, and Stage 4: Transdifferentiation of the proximal layer creating a protective layer for plant. (For a more comprehensive model with
gene pathways, see Estornell et al., 2013).

as what are the key players and how plant hormones, like
ethylene, jasmonic acid (JA), abscisic acid, and auxin affect the
regulation of gene expression during the process (Figure 1).
There is strong evidence for interplay between the plant
hormones ethylene and auxin in regulating abscission timing,
where the former enhances the process and the latter inhibits
(Abeles and Rubinstein, 1964; Jensen and Valdovinos, 1967;
Addicott, 1982; Osborne, 1989). In addition, early researchers
also focused on elucidating the role of cell degrading enzymes
including the polygalacturonases and cellulases during the
abscission process (Abeles, 1969; del Campillo and Bennett,
1996; del Campillo, 1999). Model systems including rice, maize,
Arabidopsis, and tomato have provided new valuable genetic
information on abscission and shattering, and knowledge of these
genes associated with abscission has the potential to radically
change approaches to studying abscission (Lewis et al., 2006;
Estornell et al., 2013; Niederhuth et al., 2013).

Abscission in Monocots
In the grasses (maize, sorghum, and rice), initially two
transcription factors were identified as associated with the
regulation of shattering, qSH1 and SH4 (Konishi et al., 2006;
Li et al., 2006). SHAT1, an APETELA2 transcription factor,
has also been identified as a gene that also affects shattering
(Zhou et al., 2012). These genes are key factors in eliminating
most shattering in members of the Poaceae family. In addition,
homeodomain-leucine zipper transcription factors (HD-Zip
TFs) and genes associated with growth regulation including
auxin and ethylene responses from sorghum and maize are
expressed in floral abscission zones (Chew et al., 2013; Dwivedi
et al., 2014). Most recently, BRITTLE RACHIS1 and 2 were
identified in barley and shown to be responsible for seed shatter
(Pourkheirandish et al., 2015). Especially interesting is the fact

that BRI1, 2 are hypothesized to act as receptor and ligand and
BRI2 has been shown to have homology with the Arabidopsis
protein IDA that is also hypothesized as a receptor ligand
(Butenko et al., 2003; Pourkheirandish et al., 2015). Orphan
grain crops such as Digitaria exilis (fonio), Eragrostis tef (teff),
and Eleusine coracana (finger millet) often have major losses
due to early or unregulated shattering, and thus could highly
benefit from breeding for delayed abscission and abscission
associated genes through introgression of favorable alleles. While
genes such as qSH1, SH4, and SHAT1 have been shown to
regulate shattering in domesticated rice, recent studies also show
that panicle structure may also be critical (Ishii et al., 2013).
Thus, undue attention to only specific genes or a single trait
rather than multiple gene traits, might result in less effective
selection.

Abscission in Dicots: Arabidopsis as
Model System
In dicots, Arabidopsis has served as the model system to
study abscission, and researchers have gained significant
insights concerning regulation of the abscission process. Genes
regulating development of the abscission zone and responses
to hormonal, environmental, and newly discovered endogenous
signals regulating abscission have been extensively studied.
There are many excellent reviews: (Roberts et al., 2000, 2002;
Aalen et al., 2006, 2013; Binder and Patterson, 2009; Van
Nocker, 2009; Liljegren, 2012; Estornell et al., 2013; Niederhuth
et al., 2013). While considerable inroads have been made
on understanding the genes involved in signaling, the exact
pathways are still being defined (Liljegren, 2012; Niederhuth
et al., 2013). These key players include IDA (Butenko et al.,
2003, 2009; Stenvik et al., 2008), HAESA (Jinn et al., 2000),
HAESA LIKE (Shi et al., 2011), NEVERSHED (Liljegren
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et al., 2009), and EVERSHED (Leslie et al., 2010). Additional
downstream signaling factors have also been identified and
include SERK1, BREVIPEDICELLUS/KNOTTED-LIKE FROM
ARABIDOPSIS THALIANA (BP/KNAT1; Wang et al., 2006; Shi
et al., 2011), and MAP kinases (Meng et al., 2012). Genes that
are critical for formation of the abscission zone in Arabidopsis
include BOP1 and BOP2, and the MADS BOX gene AGL15
(Fernandez et al., 2000; Hepworth et al., 2005; McKim et al.,
2008).

Additional transcription factors that have been identified
include FOREVER YOUNG FLOWER (FYF; Chen et al., 2011)
and the zinc finger protein Arabidopsis ZINC ZINGER PROTEIN
2 (Cai and Lashbrook, 2008). While these genes have been shown
to be involved in the abscission process, the actual function
during the abscission process is quite undefined. Similarly,
genes regulating organ boundary patterning and elasticity of
boundaries have been identified and while many have no
determined role, the F-box gene HAWAIIAN SKIRT has been
shown to disrupt normal patterning leading to fusion of sepals,
and consequently delayed abscission (Aida and Tasaka, 2006;
Gonzalez-Carranza et al., 2007b; Rast and Simon, 2008). An
additional F-box gene COI1 also delays abscission; however,
it has been determined that this delay is most likely due
to altered regulation of ethylene and auxin responses during
the process of abscission in response to the absence of JA
signaling rather than formation of the abscission zone (Kim
et al., 2013). And, while the role of JA during abscission was
initially a surprise, the role of other hormones such as ethylene
and auxin during abscission has been well characterized in
Arabidopsis (Patterson and Bleecker, 2004; Ellis et al., 2005;
Binder and Patterson, 2009; Ogawa et al., 2009; Basu et al.,
2013; Kim, 2014). These include ethylene synthesis genes
(ALLENE OXIDE SYNTHESIS), ethylene response genes (ETR1,
EIN2, and EIN3) and auxin-associated genes (ARF1, ARF2, and
AUX1).

Many genes regulating cell wall modifications have also been
identified and studied for their role in abscission in Arabidopsis
as well as other species. These include polygalacturonases
(Gonzalez-Carranza et al., 2002, 2007a; Kim and Patterson, 2006;
Kim et al., 2006), cellulases (del Campillo, 1999), expansions
(Cho and Cosgrove, 2000; Lashbrook and Cai, 2008), pectate
lyases, xyloglucans and glycosylase transferases (Lashbrook and
Cai, 2008; Wei et al., 2010; Singh et al., 2011). In addition,
determination of unique morphological characteristics of the
abscission zone have been characterized by multiple research
groups: cell number, scar formation, timing and the relationship
to environmental stresses, and developmental processes such as
pollination, fertility, and senescence (Sawicki et al., 2015). There
are also new studies indicating that alkalization of the cytosol
of cells within the abscission zone is particularly important
(Sundaresan et al., 2015). Last, cell death markers including
LZ ribonuclease and BFN1 nuclease have been characterized for
their roles during the abscission process (Farage-Barhom et al.,
2008; Bar-Dror et al., 2011). In summary, there are many genes
identified inArabidopsis that impact the process of abscission and
additional research will be needed before all the key players are
characterized.

Abscission in Dicots: Tomato as Model
System
Abscission in tomato has also been studied quite extensively,
as tomato has been considered a model crop that is relatively
easy to work with: true breeding (self pollinated), moderate
sized genome (900 Mb), excellent isogenic stock collections, well
characterized genetics, excellent physiological research studies,
and easily transformed. Genome information, gene expression,
and information about isogenic genetic stocks are available
through the tomato functional genomics database (TFGD),
the Sol Genomics network (http://solgenomics.net/) and NCBI.
While there is considerable knowledge about genes regulating
abscission within the pedicel in jointed tomatoes JOINTLESS
(Mao et al., 2000; Nakano et al., 2013; Guan et al., 2014; Ito
and Nakano, 2015), there is still relatively little understood
concerning regulation of abscission at the fruit pedicle junction.
These distinctions are valuable in terms of marketing different
types of tomatoes (cluster on the vine versus slicing) and in
shipping. In jointed tomatoes (see Figure 2) abscission within
the pedicel or at the knuckle has been shown to be regulated
by numerous MADS Box genes, auxin associated genes and
several novel transcription factors (Mao et al., 2000; Nakano
et al., 2013; Guan et al., 2014; Ito and Nakano, 2015; Ma
et al., 2015). Researchers have also extensively studied the role
of cell wall hydrolytic enzymes and polysaccharides including
cellulases, polygalacturonases, pectinases, xyloglucans, arabinans,
and galactans during tomato fruit abscission (del Campillo and
Bennett, 1996; Kalaitzis et al., 1997; Iwai et al., 2013). Many
of the cell-wall associated genes are members of large gene
families; and thus, efforts to alter the abscission process through
modification of these genes have not yielded significant changes.
In addition not all ethylene associated genes that have been
shown to affect abscission in Arabidopsis delay abscission in
tomato. While mutations in ETR1, ETR2, and ETR3 all delay the
process of abscission in Arabidopsis, only the mutated ortholog
of ETR1 (NEVERRIPE) delays abscission in tomato; and they all
are primarily associated with fruit ripening (Lanahan et al., 1994;
Klee, 2002). Historically, breeders have focused on fruit size,
color, and flavor rather than abscission. Perhaps the marketing of
increased tomato varieties in markets and the new emphasis on
local produce, abscission in cluster tomatoes may warrant further
study on abscission in tomatoes.

Approaches to Study Abscission in Both
the Grasses and Dicots
Many of the genes found inmaize, rice, andArabidopsis are highly
conserved and plant breeders have embraced this knowledge to
direct research programs toward utilizing genomic approaches.
With the tools and knowledge to identify and engineer alternative
plant species, will these efforts prove productive? There is
no doubt that as the world population grows and resources
and climate conditions change, it is critical that we continue
to increase crop production and develop more sustainable
agricultural practices. While there are 100s of crops to consider,
this manuscript will use examples such as tomato (an annual
vegetable crop), grapes (a perennial fruit tree crop), cranberries
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FIGURE 2 | Abscission in fonio, cranberry, grapes, and tomatoes. (A–F) Images of fonio illustrating the developing plant (A), a mature inflorescence (B), and
scanning electron micrographs of the abscission zone of a mature seed (C–F). (G–I) Images of cranberry illustrating the developing fruit (G) and sections revealing
the fruit abscission zone (H,I). (J–L) Images of grape illustrating a fruit cluster (J) and sections revealing the fruit abscission zone (K,L). (M–Q) Images of tomatoes
illustrating the abscission zones in tomatoes. A variety of cultivars were observed and pictured are two cluster varieties: Principe Borghese (M), and Ladybug (N).
(O–Q) Illustrate freehand sections of the pedicel abscission zone attached directly to the developing fruit. Black and white arrows show fruit/pedicel abscission zones
and red arrows show the “knuckle” abscission zone.

(a perennial fruit crop), and fonio (an annual grass native toWest
Africa). These crops have been selected to provide a perspective
on both well-studied crops and less developed crops (Figure 2).

Crop Examples
Fonio – An Orphan Grass: Challenges and Success
Our major grain crops including maize, wheat, and barley
have been selected for delayed abscission by early gatherers for
thousands of years. In addition, some millet varieties that have
been cultivated for centuries have reduced shatter (Zohary and
Hopf, 2000; Brink and Belay, 2006). However, uncontrolled seed
shatter in fonio Digitaria exilis and many of the orphan grain

crops is one of the growers’ greatest concerns and a major
limiting factor in their potential for expansion as food crops.
These orphan grain crops are often drought and disease resistant
and small plots are routinely grown in many communities.
Addressing seed shattering in crops such as fonio could increase
yields by more than a third, providing farmers significant
additional income (Foltz, personal communication). Of major
importance is that this could be done with out adding fertilizer.
In contrast to other commonly grown grains, fonio requires little
or no inputs; thus not requiring additional investment by farmers.
For example, in Mali, yields of common millet could be improved
with fertilizer applications, yet this would require investment;
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and, predicted profits from a 50% increase in yield due to these
added resources would not exceed the predicted profits from
improved fonio with reduced shattering. As the world population
grows and climate conditions change, resource management is
critical and thus attention to breeding and management practices
for small orphan grains has become extremely important.

Currently, fonio is grown extensively in Guinea, Gambia,
Senegal, Mali, Burkina Faso, Benin, Senegal, Togo, Nigeria, and
the Dominican Republic. In most of West Africa, fonio is grown
primarily by smallholders on plots typically of one hectare or
less; and harvest must be performed within a couple days of
full grain development due to seed shatter. Abscission, or seed
shatter in fonio has not been studied in the past; and thus,
one of the first challenges has been to characterize flowering
and the abscission process. We have observed that flowering
in fonio is tightly regulated, as initially reported by Kwon-
Ndung and Misari (1999), Cruz (2004), Cruz et al. (2006),
Tekete (2006), and Cruz and Béavogui (2011). This photoperiodic
control of flowering and seed development results in the narrow
window for harvest. We also believe that abscission in fonio is
both environmentally and developmentally regulated, and grains
abscise with the first heavy rainfall after reaching full maturity.
These observations propelled us to identify genetic factors
regulating abscission as modification of weather or flowering
time was less achievable.

Since there was initially no sequence data on fonio, we
performed a single Illumina sequence run to generate a snapshot
of the transcriptome of a Niatia seedling (one of the most
common commercially available lines). The run yielded 38
million reads that we mapped directly onto to the rice genome
and the rice transcriptome, as well as assembled de novo. We
aligned contigs from the transcript assembly with the sequence of
several known shattering genes and their homologs in maize, rice,
and sorghum, and found extensive fonio sequence similarities
with the rice shattering gene qSH1, members of the Agamous-
related family of genes such as JOINTLESS 1-3, SH2, and SH3,
the free-threshing locus Q of wheat, as well as the Arabidopsis
abscission-associated gene NEVERSHED (Liljegren et al., 2009;
Sang, 2009). Using this sequence information we have been
able to PCR amplify portions of the qSH1 homolog from fonio
genomic DNA. While this provides proof of principle, it still
needs to be determined if selection for mutants in qSH1 would
provide a delay in seed shatter. As fonio seed is quite small
like Arabidopsis, a targeted approach to screen mutagenized seed
similar to iTILLING could be utilized (Bush and Krysan, 2010).

Overall, there are gains to be made through targeted gene
selection in fonio and other small orphan grains; but the
challenges still remain. Selection of cultivars/lines to study is one
of the first questions, as historically each community has their
own local lines. Some lines are diploid and others thought to
be tetraploid. In addition, fonio is self-pollinated and potentially
apomictic; and thus, crosses between lines are challenging.
Techniques for pollination of finger millet have been developed
by the Devos and Bennetzen labs at the University of Georgia
and are being applied to crossing fonio. Communication with
remote villages and farmers as well as distribution of new seed
and management practices will also be challenging. However,

despite these concerns, crops like fonio have significant potential
for increases in yield by understanding the abscission process and
breeding for genes regulating seed shatter.

Woody Perennial Dicots: Cranberries and
Grapes-Challenges and Successes
Historically berry drop or abscission has not been a trait that
either grape or cranberry growers have focused on improving.
However, with the recent focus on conservation of water and
resources and the introduction of new cold-hardy hybrid grapes
(Vitis vinifera × Vitis riparia and Vitis vinifera × Vitis labrusca)
berry drop has become an issue in both crops. With wine grapes,
early abscission results in lower sugar content and higher acidity,
and thus a poorer quality wine in general. Alternatively, in table
grapes it is evenmore important to retain high quality full clusters
after harvest. Uncontrolled berry drop decreases both value
and quality. Curiously, increased berry drop in some cultivars
such as “Sunpreme” may prove fruitful for raisin producers, as
some growers are now taking advantage of berry abscission to
reduce harvest costs (Romero, 2015). In cranberry, there has
been minimal research regarding abscission, but it is believed
that cultural and environmental factors such as limited nutrient
availability and extreme heat conditions can cause fruit drop.
Growers have placed a new emphasis on management of water
and sustainable production in response to climate change and
new environmental stresses. Consequently, the loss of fruit is
an important issue as fruit growth and abscission is most likely
dependent on transport of water, nutrients and other factors
across this zone (Sawicki et al., 2015).

We searched available databases for both grapes and
cranberries for orthologs to 15 genes previously identified
in Arabidopsis that have been characterized as regulating
the abscission process or associated with unique stages of
development in the abscission process (Supplementary Table
S1). In grapes (Vitis vinifera), we selected orthologs for ten
genes (NCBI); and are currently looking at gene expression
during the abscission process in four hybrid cultivars of cold-
hardy Wisconsin grapes. In cranberry, joint efforts across the
United States have recently yielded a transcriptome and nuclear
genome assembly (Polashock et al., 2014) and a nuclear genome
assembly (Fajardo et al., 2014). We used both of these cranberry
generated databases to search for abscission genes.While matches
for all fifteen of the genes we searched for were identified in
both grape and cranberry genomes, too many close matches to
identify a single ortholog was frequently an issue (Supplementary
Table S1). In general, the high homology of both cranberry and
grape genes to known abscission-related genes from Arabidopsis
suggests that there may be shared functions and similar signaling
pathways regulating the abscission process. Identification of
the best candidate ortholog, transcription factors and unique
aspects of development associated with each species may make
altering abscission more challenging. Ultimately, improving our
understanding of both early and late fruit abscission in these
fruit crops using molecular tools combined with traditional
breeding, morphological and physiological studies will lead to
better management practices and improved quality and greater
yields.
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SUMMARY: WHY THE SUCCESS IN
SOME CROPS AND NOT OTHERS?

Building our knowledge on abscission in crop plants continues
to be an important challenge not only not to prevent unwanted
abscission but also to promote early abscission, as in many cases
early bud removal and accelerated fruit abscission promotes
improved root development, a more vigorous plant, and higher
quality fruit and flowers. The rapid advances in molecular
techniques and availability of quality sequence information on
most species has spurred interest and promoted new research
on the cloning and engineering known genes. While many of
these genes will definitely have similar functions in many crops,
researchers must always pause and remember the developmental
biology of their plant such as flowering time, pollination, fertility,
fruit development, life cycle, and senescence. Crops may vary
as to whether they abscise at the abscission zone associated
directly with the fruit or at an independent zone within the
pedicel; and thus knowing the biology and marketing traits
of the crop must be considered. In addition, developmental
programs may mask other traits; and thus, a gene altering
the abscission process may have no effect in specific genetic
backgrounds. This is the case in the recently discovered role
of panicle structure in rice and the hidden role in abscission
(Ishii et al., 2013). Clearly, it is essential that breeders and
molecular biologists work together providing an understanding
of the unique development of each species as well as the
targeted genes or pathways of interest. Similarly, it will also be
critical to consider genome size, ploidy, and genetic relationships
amongst lines as well as between species. Our progress may be

slow at times; but a concerted combined effort promises new
insights.
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