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Seeds enable plants to germinate and to grow in situations of limited availability of
nutrients. The stable storage of different seed proteins is a remarkable presumption
for successful germination and growth. These strategies have been adapted and used
in several molecular farming projects. In this study, we explore the benefits of seed-
based expression to produce the high molecular weight spider silk protein FLAG using
intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced,
which is above the native size of the FLAG protein. The storage of seeds for 8 weeks
and 1 year at an ambient temperature of 15◦C does not influence the accumulation level.
Even the extended storage time does not influence the typical pattern of multimerized
bands. These results show that seeds are the method of choice for stable accumulation
of products of complex transgenes and have the capability for long-term storage at
moderate conditions, an important feature for the development of suitable downstream
processes.
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INTRODUCTION

Seeds have evolved because of their unique properties, providing important features to plants
to survive and to propagate even under harsh environmental conditions. Seeds enable plants
to germinate and to grow in situations of limited availability of nutrients. The presence of
storage products in seeds is necessary for their functionality. Among a plethora of compounds
of different classes, storage proteins play an important role. Throughout long periods of dormancy,
storage proteins remain intact (Golovina et al., 1997). Seeds and their compartments contribute
to the competiveness of different plant species. The stable storage of different seed proteins
is a remarkable presumption (Boothe et al., 2010). These strategies have been adapted and
used in several molecular farming projects [for review, see Stöger et al. (2005)]. Recombinant
antibodies, i.e., single chain Fv antibodies, have been produced in tobacco seeds under the
control of a seed-specific faba bean legumin promoter (Fiedler and Conrad, 1995). Storage
protein promoters, as well as other seed-specific promoters, such as the USP promoter in
dicots, are well suited for seed-based production combined with ER retention (Fiedler et al.,
1997). These seeds can be stored for at least 1 year without loss in the amount and activity
of the transgenic protein (Fiedler and Conrad, 1995). Stable storage at ambient conditions is
an important feature, because it allows the development of harvesting/downstream processing
strategies that do not need a long-term cooling chain or a direct production/extraction/purification
process.
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Spider-silk proteins have been a target of molecular farming
since 2001 (Scheller et al., 2001). The enormous interest in
this biopolymer is caused by its extraordinary properties, such
as high levels of toughness, tensile strength, and elasticity
(Vollrath and Knight, 2001; Craig, 2004). The capture spiral
silk, also called flagelliform silk, can be stretched extremely
far before rupture. This high level of elasticity is required
to ensure prey capture (Vollrath and Edmonds, 1989; Köhler
and Vollrath, 1995). The perfect dissipation of kinetic impact
energy of flying prey is a requirement for capture fibers to
withstand the relative high velocity of flying prey (Römer
and Scheibel, 2008). The flagelliform silk consists of only one
protein, called FLAG. The elastic properties are thought to
be based on the presence of a GPGGX consensus motif in a
high number of repeats. Helical GGX repeats are also typical
consensus repeats of this protein (Hayashi et al., 1999; Hayashi
and Lewis, 2000). These two consensus elements together are
responsible for the elasticity and flexibility of the flagelliform
silk (Ohgo et al., 2006). A common feature of all known silk
proteins from the arthropoda is a high molecular weight of
more than 250 kDa. This evolutionary convergence between
unrelated species is striking. Therefore, the enormous size of
all these proteins is anticipated as a necessary prerequisite
for the extraordinary mechanical properties (Lewis, 2006). In
spider silk proteins, motifs conducive for inter- and intra-
chain interactions are common, and chain end defects are
rare events (Ayoub et al., 2007). The recombinant production
of spider silk proteins in pro- and eukaryotic expression
systems limits the maximal size of these proteins. Here, the
genetic instability of these highly repetitive proteins and the
limited availability of frequently used amino acids, as well
as the corresponding t-RNAs, are possible reasons. Synthetic
spider silk proteins of native size can only be produced by
a metabolically modified Escherichia coli strain (Xia et al.,
2010). More slowly growing organisms, such as plants, are
used to overcome these protein size limitations associated
with t-RNA and amino acid availability. The maximal size
achieved was approximately 100 kDa (Scheller et al., 2001,
2004). Post-translational multimerization methods have been
chosen to further increase the size of recombinant spider silk
protein derivatives. Purified spider silk-ELP fusion proteins
from tobacco leaves were enzymatically multimerized by
transglutamination. Layers formed by highly cross-linked spider
silk-ELP fusion proteins were associated with a high elastic
indentation modulus and, therefore, higher toughness and
stiffness of layers formed by multimerized plant-based spider
silk protein derivatives were expected (Weichert et al., 2014).
We developed a general system for the production of highly
repetitive proteins in plants. Protein trans-splicing by inteins
was used to assemble protein subunits in planta (Yang et al.,
2003; Kempe et al., 2009); for review see Evans et al. (2005).
Inteins are autocatalytically excised from precursor proteins
and fuse the flanking exteins together (Perler, 1998). A few
of inteins from bacteria have been described (Perler et al.,
1994). An intein from cyanobacteria (Pietrokovski, 1996) has
been demonstrated to function in plants (Evans et al., 2000;
Yang et al., 2003; Kempe et al., 2009). A comprehensive

description of in vivo applications of intein-mediated protein
splicing is given by Topilina and Mills (2014). Hauptmann
et al. (2013) demonstrated that multimers of at least the native
size of the spider silk protein FLAG could be produced by
intein-based trans-splicing and purified from tobacco leaves.
Purified and desalted FLAG multimers formed microfibers
after drying, thus demonstrating their potential as future
biomaterials.

Several applications of spider-silk-derived biopolymers in the
field of engineering and technology are discussed in the literature
(Kluge et al., 2008; Hardy and Scheibel, 2009). A possible
medical application is the use of spider silk particles for the
controlled delivery of protein drugs (Hofer et al., 2012). The
Ancient Greeks used cobwebs for wound healing when covering
bleeding lesions (Gerritsen, 2002). Spider silks can enhance
axonal regeneration (Radtke et al., 2011), serve as a scaffold
for human cell growth (Widhe et al., 2010), and support the
proliferation of fibroblasts and keratinocytes (Wendt et al., 2011).
Cytocompatibility is an important prerequisite for any medical
use of biomaterials. A plant-produced synthetic spidroin fused
with a hundred repeats of elastin-like-peptides (ELP) has been
shown to be non-toxic and to enhance the proliferation of human
chondrocytes and prevent dedifferentiation (Scheller et al., 2004).
Cytocompatibility assays with plant-produced spidroin-ELP
biopolymers gave no indication of spidroin-derived cytotoxicity,
and no hemolytic effects have been detected (Hauptmann et al.,
2015).

In the present paper, we questioned whether the benefits
of seed-based production could be extended to the production
of high molecular weight spider silk proteins. High molecular
weight spider silk proteins could have superior mechanical
properties combined with non-cytotoxic and non-hemolytic
behavior.We also considered whether intein-based trans-splicing
also functions in seeds, and we demonstrated that spider silk
proteins of native size could be produced in seeds.

MATERIALS AND METHODS

Construct Design
The 1149 bp unknown seed protein (usp) promoter
(Zakharov et al., 2004) was PCR-amplified using 5′-
CGAGTCGACATTTTTACATGATATAATG-3′ and 5′-CGT
CCATGGACTGGCTATGAAGAAATTATAATC-3′ primers.
The resulting PCR product was introduced into the HincII
and NcoI restriction sites of a pRTRA 15-based plasmid
described by Hauptmann et al. (2013). This plasmid contained
the complete IntC::Flag::IntN gene construct, including the
LeB4 legumin signal peptide, ER retention signal KDEL,
the c-myc-tag and the CaMV35S terminator. The synthetic
InteinC::Flag::InteinN (IntC::Flag::IntN) gene construct was
based on Flag genemotifs from publicly availableNephila clavipes
cDNAs (GenBank accession nos. AF027972 and AF027973) and
the Intein-encoding sequence from Synechocystis sp. gene DnaB
(UniProtKB/Swiss-Prot accession no. Q55418; Hauptmann
et al., 2013). The complete Flag expression cassette (USP-FIC)
was inserted into the binary vector pCB301-Kan (Xiang et al.,
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1999; Scheller et al., 2001) via the HindIII site, resulting in the
expression plasmid USP-FIC/pCB301-Kan.

Production of FLAG Overexpressing
Plants
The binary plasmid USP-FIC/pCB301-Kan was transformed
into the Agrobacterium tumefaciens strain C58C1 (pGV2260;
Deblaere et al., 1985) by electroporation. For stable transgene
expression in two different tobacco varieties, Nicotiana tabacum
cv. Samsun NN (SNN) and N. tabacum cv. Petit Havana,
plants were transformed by agroinfection based on the leaf-
disk method (Horsch et al., 1985) and elaborated by Floss
and Conrad (2010). Tobacco leaf disks were submerged for
1 h in overnight-grown, liquid, Agrobacterium culture and
plated on Murashige-Skoog (MS) agar for 2 days at 24◦C in
the dark. Infected explants were transferred to NBKC agar
(MS medium containing 0.2 mg/L α-naphthalene acetic acid,
1 mg/L 6-benzylaminopurine, 50 mg/L kanamycin, and 500mg/L
cefotaxime). Every 10–14 days, the plantlets were transferred to
fresh NBKC agar until differentiation. The developing transgenic
plants were cultured on MS agar containing 50 mg/L kanamycin
and were selected by immunoblotting using an anti-c-myc
antibody (Evan et al., 1985). Recombinant protein expressing
plants were grown in greenhouses to maturity for further
propagation. Seeds were analyzed by anti-c-myc immunoblotting
for overexpression of the target proteins.

Seed Material
Mature tobacco seeds, as well as developing seeds at defined
developmental stages [18 days after flowering (DAF), 21 DAF],
were harvested. Immature seed material was immediately frozen
in liquid nitrogen and stored at−80◦C. Mature seedmaterial was
stored at 15◦C with 49% humidity.

SDS-PAGE and Immunoblotting Analysis
For analysis of transgenic plants, seed material was ground in
seed extraction buffer (50 mM Tris pH 8.0, 200 mM NaCl,
5 mM EDTA, 0.1% Tween). SDS sample buffer (Gahrtz and
Conrad, 2009) was added in a 1:1 ratio. The homogenate was
incubated at 95◦C for 10 min and was cleared by centrifugation
(30 min, 4◦C, 12,000 rpm). The total protein content of the
supernatant was determined using the Bradford assay (Bio-Rad,
Germany). Seed extracts were separated by reducing SDS-PAGE
(3 or 4–10% polyacrylamide gradient), were electrotransferred to
a nitrocellulose membrane and immunodetection was performed
as described by Conrad et al. (1998) using anti c-myc antibodies
(Evan et al., 1985). Tobacco seed proteins were separated
by SDS-PAGE and stained by Coomassie Brilliant Blue R-
250 (SERVA GmbH, Germany). The accumulation analysis
in a semiquantitative manner was done by help of different
concentrations of an anti-TNF-VHH-100xELP standard (Conrad
et al., 2011). One c-myc tag is connected with 72 kDa protein,
whereas in all FLAG multimers one c-myc tag is always
connected with 37.6 kDa protein (Hauptmann et al., 2013).
A FLAG multimer band corresponding to a standard band,
therefore, always corresponds to about half of the protein

amount of the standard band. We roughly estimated the
FLAG content by counting the corresponding bands according
the different standard amounts and summarized the results
for every lane. Extracts from 200 seeds were separated in
each lane. We separated extracts from given numbers of
seeds per lane, estimated the fresh weight per seed (70 μg
per seed for cv. Samsun NN and 65 μg per seed for cv.
Petit Havana) and calculated the transgenic protein per fresh
weight.

RESULTS

FLAG Multimers are Stably Accumulated
in Tobacco Seeds
A synthetic FLAG gene coding for a monomer of 37.6 kDa
(Hauptmann et al., 2013) was cloned into a seed-specific
expression vector providing ER retention by providing a signal
peptide and the N-terminal KDEL motif (Figure 1A). The
seed-specific expression was driven by the USP promoter
proven for overexpression of transgenic proteins in seeds
(Fiedler et al., 1997). The synthetic FLAG protein sequence
is based on N. clavipes FLAG sequence motifs (Hayashi
and Lewis, 2000; Hauptmann et al., 2015). The expression
cassette was cloned into a suitable shuttle vector (pCB301-
Kan, see Materials and Methods), agrobacteria were transformed
and stably transformed tobacco plants were produced by an
appropriate protocol (see Materials and Methods). Two different
tobacco variants, N. tabacum cv. Petit Havana and N. tabacum
cv. Samsun NN, were transformed. N. tabacum cv. Petit
Havana plants flower more early and, therefore, seeds ripen
also earlier than N. tabacum cv. Samsun NN seeds (8 days;
Figure 2B). We wanted to see if this benefit of shorter seed
propagation time influences the accumulation levels and/or
multimerization. Among 45 Samsun NN T0 transformants 26
showed transgene accumulation and among 55 Petit Havana T0
transformants 18 showed transgene accumulation. The different
accumulation levels in T1 seeds are exemplarily shown in
Figure 1B. In general, more lines with T1 seeds accumulating
transgenic proteins comparable to line 28 (nine lines) have
been identified in Samsun NN compared to Petit Havana
(one line; data not shown). Distinct multimeric bands starting
with potential FLAG dimers and ending with multimers above
the separation power of a 4–10% polyacrylamid gradient
SDS-PAGE (above 500 kDa) are visible, which shows, that
intein-based splicing functions well in ripe seeds and that
at least native-sized spider silk proteins could be produced.
Two lines, USP-FIC 28 (N. tabacum cv. Samsun NN) and
USP-FIC 49 (N. tabacum cv. Petit Havana), were selected
as the best high producers from each construct and were
further propagated by self-pollination. Equal amounts of seed
extract from each of the five sublines were investigated
according to the expression of FLAG multimers (Figure 2).
Multimeric proteins from the monomer molecular weight up
to much more than 500 kDa were detected in each lane.
The transgene inheritance and the accumulation level were
stable in both lines. According to the accumulation level,
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FIGURE 1 | Expression of synthetic FLAG multimers in tobacco seeds. (A) Schematic representation of the plant expression cassette for seed-specific
expression of intein-based assembled high molecular weight synthetic FLAG. Abbreviations: USP, unknown seed protein promoter; SP, legumin B4 signal peptide;
KDEL, ER retention sequence; IntC/IntN, C- and N-terminal intein sequences of the Synechocystis sp. DnaB; GS-linker, flexible (GGGGS)3 spacer; c-myc,
immunodetection tag. (B) Extracts of T1 seeds of four different transformed tobacco plants expressing the FLAG-Intein-c-myc protein (USP-FIC) and of
corresponding wild type cultivar Nicotiana tabacum cv. Samsun NN were separated by gradient SDS-PAGE (4–10% PAA ) with 30 μg total soluble seed protein
loaded per lane reflecting 4.1 seeds (USP-FIC 28), 4.0 seeds (USP-FIC 14), 4.7 seeds (USP-FIC 10), and 3.9 seeds (USP-FIC 5). FLAG multimers were
immunodetected by Western blotting based on the c-myc tag. c-myc standards (a) 0.5 ng, (b) 1 ng, (c) 2 ng of anti-TNF-VHH-100xELP (Conrad et al., 2011); WT,
wild type.

the best line was a N. tabacum cv. Samsun NN line. We
analyzed the accumulation level in seeds of the lines USP-
FIC 28 (T3 seeds) and and USP-FIC 49 (T2 seeds) in a
semiquantitative manner (see Materials and Methods; Figure 4).
We applied extract amounts related to seed numbers and
calculated the accumulation of transgenic multimers in relation
to the fresh weight. We roughly estimated 190 μg FLAG
multimers per g seed (fresh weight) for USP-FIC 28 and
20 μg FLAG multimers per g seed (fresh weight) for USP-
FIC 49. To learn more about the protein splicing process in
developing seeds, we harvested seeds from transgenic plants with
different genetic backgrounds and different seed propagation
times (see above) during the ripening process to analyze the

recombinant protein accumulation. The USP promoter causes
the expression of transgenic proteins in tobacco seeds from
10 DAF, with a first maximum at day 17 (Fiedler et al.,
1997). Therefore, we selected 18 DAF, 21 DAF and ripe
seeds (Figure 3), extracted them and analyzed the extracts
on a 4–10% polyacrylamid gradient SDS-PAGE and c-myc
immunodetection based on extracts from 31.2 seeds per lane
independent on plant and age of the seeds to normalize the
results according to the fast growing seed protein amount
during ripening. In both genetic backgrounds, there was a
smear at approximately 100 kDa at 18 DAF and several
distinct bands at 21 DAF, but at this time point, they do only
partly reflect the expected pattern of different multimerization
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FIGURE 2 | Accumulation of FLAG multimers in seeds of two different
tobacco varieties. (A) Analysis of ripe T3 seeds of N. tabacum cv. SNN
USP-FIC line 28/10 and T2 seeds of N. tabacum cv. Petit Havana USP-FIC
line 49 by gradient SDS-PAGE (4–10% PAA) with 20 μg total soluble seed
protein per lane, Western blotting and immunodetection based on the c-myc
tag; kDa, kilodalton. (B) Transgenic USP-FIC line 49 with a genomic
background of N. tabacum cv. Petit Havana as well as the corresponding wild
type plants showed a faster vegetative growth and flowered 8 days earlier
than Samsun NN-genome-based FLAG overexpressing plants of USP-FIC line
28/10 and its corresponding wild type plants.

stages in Petit Havana (monomer, dimer and trimer, labeled
in Figure 3), whereas in Samsun NN ripening seeds a
prominent band at the size of the smear shown in lane 1 is
visible.

Transgenic Tobacco Seeds Containing
FLAG Multimers Could be Stably Stored
Without Loss of the Transgenic Proteins
One major benefit of seed-based production of functional
proteins as antibody fragments is the stability of these proteins
in shape and function over a long time at room temperature
during seed storage (Fiedler and Conrad, 1995). We wanted to
test whether the spider silk multimers are also stable at ambient
temperature. T3 seeds of USP-FIC 28/10/11 (N. tabacum cv.
Samsun NN) and T2 seeds of USP-FIC 49 (N. tabacum cv.
Petit Havana) were stored at 15◦C and 49% humidity (standard
conditions for tobacco seed storage at the Genebank Gatersleben)

FIGURE 3 | Intein-mediated formation of high molecular weight FLAG
proteins in ripening tobacco seeds. FLAG precursor proteins under the
control of the USP promoter were analyzed in developing tobacco seeds at
18 DAF (1), 21 DAF (2) and in ripe tobacco seeds (3). Extracts from 31.2 seeds
were loaded per lane. Seed extracts were separated by gradient SDS-PAGE
(4–10% PAA), and FLAG proteins were visualized by immunodetection based
on the c-myc tag. DAF, days after flowering; kDa, kilodalton; WT, wild type.

for 8 weeks, extracted and analyzed (Figure 4). For both types
of seeds, we showed that the storage of seeds for 8 weeks at
ambient temperature did not influence the pattern of multimeric
bands. We also stored T1 USP-FIC 28 (N. tabacum cv. Samsun
NN) seeds for 1 year at the ambient conditions mentioned
above and analyzed spider silk accumulation in comparison to
freshly harvested T2 seeds of the same line. Even after this
extended storage time, a typical pattern of multimerized bands
and a high accumulation level were observed (Figure 4C).
These results indicate that seeds are the method of choice
for stable accumulation of products of complex transgenes,
including the capability of long-term storage at moderate
conditions.

Accumulation of Spider Silk Multimers in
the ER does not Influence Seed Ripening
and Major Seed Protein Content
We did not observe an obvious influence of the spider
silk transgene on the development of neither Samsun NN
nor Petit Havana lines (Figure 2B). High accumulation of
anti-hapten scFv in the ER of tobacco seed cells (until
2.6% TSP) did not influence the tobacco seed proteins in
ripe tobacco seeds (Phillips et al., 1997). Therefore, we also
analyzed the major proteins in ripe T3 seeds of the line
USP-FIC 28 and ripe T2 seeds of the line USP-FIC 49
compared to the seed proteins of their corresponding wild type
cultivars. The major seed protein analysis by polyacrylamid gel
electrophoresis and Coomassie staining gives no arguments for
any influence of the spider silk accumulation to seed development
(Figure 5).
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FIGURE 4 | Stability analysis of multimeric FLAG proteins in transgenic tobacco seeds. Accumulation of high molecular weight FLAG multimers from T3

seeds of USP-FIC 28/10/11 (cv. Samsun NN) stored for 8 weeks at 15◦C and 49% humidity (A) and T2 seeds of USP-FIC 49/9 (cv. Petit Havana) stored under
identical conditions. (B) Seed extracts were separated by gradient SDS-PAGE (4–10% PAA). Line USP-FIC 28/10/11: 1.4 seeds per lane, (2) 2.8 seeds per lane, (3)
5.6 seeds per lane; Line USP-FIC 49/9: (1) 1.7 seeds per lane, (2) 3.4 seeds per lane, (3) 6.8 seeds per lane. c-myc immunoblot standards: (4) 0.1 ng, (5) 0.25 ng (6)
0.5 ng, (7) 1.0 ng, (8) 2.0 ng of anti-TNF-VHH-100xELP. (C) Stability of FLAG multimers in the T1 seeds of transformed T0 plant USP-FIC 28 after 1 year of storage at
15◦C and 49% humidity compared to the FLAG accumulation pattern in seed extracts of freshly harvested T2 seeds of selected heterozygous USP-FIC 28/plants.
Seed extracts were separated by gradient SDS-PAGE (3–10% PAA) with 20 μg total soluble seed protein per lane and visualized by immunodetection based on the
c-myc tag. kDa, kilodalton.

DISCUSSION

Seeds can provide stable expression of therapeutic proteins, as
shown for several antibodies, antibody derivatives, and vaccines
(Stöger et al., 2005). In this paper, we show that large-sized
spider silk multimers can be efficiently produced in seeds. We
demonstrate stable inheritance and seed-specific expression over
three or two generations, respectively, in transgenic lines in two
different genetic backgrounds, N. tabacum cv. Samsun NN and
N. tabacum cv. Petit Havana. Whereas N. tabacum cv. Samsun
NN needs more time to start flowering, the recombinant protein
accumulation level in seeds is better than in N. tabacum cv. Petit
Havana according to the best-expressing plant or according to
the general pattern of expressing lines. The seed ripening process
itself is not influenced. The patterns of major seed proteins are
not different between ripe wild type seeds and ripe transgenic
seeds in Samsun NN as well as in Petit Havana (Figure 5). The

USP promoter has been described as a seed-specific promoter
(Bäumlein et al., 1991), but the expression analysis of transgenic
tobacco plants by sensitive enzyme activity assays showed minor
expression in several other organs and cells (Saalbach et al.,
1994). Nevertheless, high mainly seed-specific expression has
been shown for recombinant antibodies (Phillips et al., 1997;
Floss et al., 2009). The USP promoter is continuously driving the
accumulation of transgenic proteins from 10 to 28 DAF (Fiedler
et al., 1993, 1997), but this should not negatively influence
the final content of transgenic proteins in seeds. As shown in
Figures 1–3, multimers larger than 460 kDa in size are routinely
produced. This is essentially above the known native size of
the FLAG protein (Ayoub et al., 2007). The positive influence
of the molecular weight on the mechanical properties of plant-
produced spider silk proteins has already been demonstrated
(Hauptmann et al., 2013; Weichert et al., 2014). Such large-sized
spider silk proteins can produce fibers and networks with better
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FIGURE 5 | Analysis of endogenous seed proteins in transgenic
tobacco seeds. Extracts from ripe seeds of two transgenic lines (USP-FIC
28/10/15 and USP-FIC 49/9) and their corresponding wild type cultivars were
prepared. Total amounts of 5 μg total soluble protein were separated by
SDS-PAGE (12% PAA) and visualized by Coomassie staining.

mechanical properties by electrospinning as well as materials
with superior properties for medical applications (Hauptmann
et al., 2013, 2015). Two counteracting facts influence the
documentation of this multimerization processes. On the one
hand, the c-myc-tag is multimerized together with the FLAG
protein, thus causing stronger signals in larger multimers. On
the other hand, the efficiency of the electrotransfer process
decreases with increasing molecular weight, especially above
200 kDa. The accumulation of FLAG multimers of maximally
190 μg/g fresh weight we roughly estimated fits well into
accumulation levels reported for seed expression as 160 μg/g
fresh weight for recombinant antibodies in barley seeds (Hensel
et al., 2015), 46 μg/g fresh weight for recombinant antibodies
in rice grains (Vamvaka et al., 2015) and 6.9 μg/g fresh weight
for recombinant antibodies in tobacco seeds (Floss et al., 2009).
Leaf expression of a recombinant antibody in tobacco driven
by a ubiquitous promoter at optimized growth conditions was
about 45 μg/g fresh weight (Sack et al., 2015). Larger scale
production of seeds, at best in protein-rich seeds such as
legumes, combined with the development of a suitable down-
stream process can provide enough material for the directed
enrichment of fractions above 200 kDa, reflecting the native
size. The process of trans-splicing requires reassociation of the
intein fragments before splicing occurs (Topilina and Mills,
2014). Whereas the intein-based self-excision and ligation is
expected to occur immediately after the translation and folding
(Aranko et al., 2014), the reassociation may need more time,

and we expect a concentration-dependence of this process.
In addition, exteins can chemically or structurally influence
the active site of inteins (Eryilmaz et al., 2014). During the
formation of the multimers, several reassociation and splicing
events occur on the same protein chain but not necessarily
at the same time. This may explain the smear of proteins
with slightly differing molecular weights at 18 DAF (Figure 3).
At 21 DAF, distinct bands occur, but the expected pattern
of multimerization is only visible in ripe seeds. In the faster
developing Petit Havana seeds at 21 DAF bands corresponding
to monomers, dimers and trimers were identified (Figure 3).
Generally, the accumulation level per seed is much lower
at 18 and 21 DAF than in ripe seeds. In pre-experiments,
the construct was transiently expressed in N. benthamiana
by the co-expression of a seed-specific transcription factor
(FUSCA 3) binding to elements in the USP promoter (Mönke
et al., 2004). Even 6 days after treatment with agrobacteria,
strong expression, distinct bands and an expected pattern are
visible (Supplementary Figure S1). These two observations
are arguments that a certain transgene accumulation level is
necessary for the intein-based protein splicing in planta. This
level is provided by continuous promoter activity combined
with stable accumulation in the ER provided by ER retention
(Fiedler et al., 1997). ER retention has been proven for the
accumulation of different spider silk proteins (Scheller et al.,
2001; Hauptmann et al., 2013; Weichert et al., 2014). Yang
et al. (2005) analyzed the accumulation of a synthetic spider
silk dragline protein of 64 kDa in the apoplast, the vacuole
and the ER lumen in Arabidopsis seeds and leaves. The highest
accumulation levels have been reported for the ER lumen. The
authors recommend seed-specific expression and ER targeting
for plant-based spider silk protein expression as a result of
their Arabidopsis experiments. We showed here, that this holds
true also for spider silk multimers of native size in tobacco
seeds. One of the goals of the experiments presented here was
to test whether spider silk multimers in seeds are stable at
room temperature without a decline in protein accumulation
and without a change in the multimerization pattern. The data
presented here show stability in the amount and multimerization
pattern for 8 weeks storage at 15◦C and 49% humidity. In
addition, long-term storage of T1 seeds for 1 year at these
conditions resulted in a completely identical size distribution of
the multimers and clear bands; thus, no indications of proteolysis
were found. Further work should include the development of
transgenic lines in protein-rich seeds. Here, the suitability of
the USP promoter and ER retention has already been proven
(Zimmermann et al., 2009). The high stability in seeds is a
major advantage for the development of a suitable down-stream
process.
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