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There is increasing global demand for food, bioenergy feedstocks and a wide
variety of bio-based products. In response, agriculture has advanced production,
but is increasingly depleting soil regulating and supporting ecosystem services. New
production systems have emerged, such as no-tillage, that can enhance soil services
but may limit yields. Moving forward, agricultural systems must reduce trade-offs
between production and soil services. Soil functional zone management (SFZM) is a
novel strategy for developing sustainable production systems that attempts to integrate
the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct
functional zones within crop row and inter-row spaces. By incorporating decimeter-scale
spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity
and integrate complementary soil processes at the sub-field level. Such integration
maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth
and yield (provisioning services); and adjacent zones of ‘soil building’, that promote
soil structure development, carbon storage, and moisture regulation (regulating and
supporting services). These zones allow SFZM to secure existing agricultural productivity
while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the
specific properties of SFZM may enable sustainable increases in provisioning services
via temporal intensification (expanding the portion of the year during which harvestable
crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how
increases in crop yields within SFZM systems could create self-reinforcing feedback
processes with desirable effects, including mitigation of trade-offs between yield
maximization and soil ecosystem services. Through the creation of functionally distinct
but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple
goods and services in agricultural systems, allowing sustainable temporal intensification
while protecting and enhancing soil functioning.

Keywords: crop yield, ecosystem services, precision tillage, soil biodiversity, soil management, temporal
intensification, trade-offs, zonal tillage
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INTRODUCTION

Intensification of agriculture has been vital for increasing global
food supply and alleviating hunger for millions of people
(Godfray et al., 2010). In addition, intensification is key to
meeting growing demand for bioenergy feedstocks and a wide
variety of bio-based products (Jordan et al., 2007; McCormick
and Kautto, 2013). However, agricultural intensification has also
resulted in damage to the environment. In particular, soils in
many regions of the world have been degraded by intensive
agricultural practices (Mäder et al., 2002; Tilman et al., 2002;
Heenan et al., 2004), and this has led to increased societal demand
for more sustainable agricultural production systems (Foley et al.,
2011; Kremen and Miles, 2012). In response, new management
strategies have emerged, including soil-focused approaches such
as no-tillage, which aim to improve soil regulating and supporting
ecosystem services by reducing soil disturbance (Hobbs et al.,
2008; Baveye et al., 2011; Palm et al., 2014). However, no-tillage
often results in reduced yields (Giller et al., 2009; Pittelkow
et al., 2015), highlighting trade-offs between soil and provisioning
services. Such trade-offs are highly problematic, given that global
demand for food and other agricultural products is expected to
rise considerably by 2050 (Godfray et al., 2010; Tilman et al.,
2011). Furthermore, to limit the need to convert additional lands
to agriculture (i.e., extensification), the world’s existing crop
production systems must become more productive (Foley et al.,
2011; Bommarco et al., 2013; Godfray and Garnett, 2014).

One option for securing the productivity of existing
agricultural land while also enhancing delivery of soil ecosystem
services is by integrating the high productivity of intensive field
crop production systems (including intensive tillage) with the
improvements in soil quality associated with stringent limitations
on tillage. Herein, we present evidence that a novel approach to
management of field crop agroecosystems – soil functional zone
management (SFZM) – can promote such integration. As detailed
below, SFZM entails the creation and management of distinct
yet complementary soil functional zones that have potential
to reduce trade-offs between short-term productivity and soil
quality.

We believe SFZM to be a previously unrecognized strategy
for expanding the range of ecosystem service production
from field crop agroecosystems. Several forms of SFZM (e.g.,
ridge tillage and strip tillage) have been studied extensively
in terms of their effects on a range of crop and soil
attributes. Here, we expand upon this level of analysis and
understanding through a broad exploration of ecosystem service
production and underlying agroecological processes in SFZM,
drawing on a wide range of evidence and identifying critical
knowledge gaps in understanding of SFZM. In our analysis,
we focus first on supporting and regulating services, and then
examine the potential of SFZM to increase productivity of
agricultural systems (i.e., enhance provisioning services). In
particular, we consider the role of SFZM in supporting temporal
intensification, which aims to enhance provisioning services by
expanding the annual time period in which harvestable crops are
grown. We consider the potential dynamics of agroecosystems
under SFZM, and the role of these dynamics in improving

the sustainability of temporal intensification. We focus on
the dynamic implications of ‘virtuous cycles’ (self-reinforcing
feedback processes with desirable effects) that may occur in
SFZM. Such feedback processes may serve to reduce trade-offs
between provisioning, supporting, and regulating services in
temporal intensification.

SOIL FUNCTIONAL ZONE
MANAGEMENT

Soil functional zone management is a novel concept of field
crop agroecosystem management that seeks to create distinct,
yet functionally complementary soil zones through non-uniform
management of tillage and crop residues. These zones can be
tailored for a variety of different functions or ecosystem services
and can be permanent or change locations between seasons.
At its most basic, SFZM involves a zone of ‘active turnover’,
managed to optimize conditions for seed germination and crop
growth; and an adjacent ‘soil building’ zone, which is managed
to protect soil organic matter (SOM), enhance soil water holding
capacity and provide habitats for soil organisms. At present,
the two most widely practiced implementations of SFZM are
ridge tillage and strip tillage (Figure 1). While SFZM does
not necessarily involve novel management practices (e.g., ridge
tillage has been practiced since the 1980s), it provides a novel
framework for enhancing ecosystem service production in field
crop agroecosystems.

Soil functional zone management differs markedly from
conventional and no-tillage practices, which can both be
characterized as non-zonal, or uniform. For example, in a chisel
plow system, topsoil and crop residues are uniformly mixed,
creating a relatively homogenous soil environment across a tilled
field (Mannering and Fenster, 1983). In no-tillage, the soil is left
undisturbed and crop residues are retained, providing uniform
residue cover on the soil surface (Mannering and Fenster, 1983;
Hobbs et al., 2008; Figure 1). Despite advances in precision
agricultural application of fertilizer and agrochemicals, tillage is
still predominantly applied homogeneously (Lal, 2015).

Through creation and management of differentiated
soil zones (Figure 1), SFZM creates spatial heterogeneity
over small (<1 m) spatial scales. Relative to non-zonal
tillage, such enhancement of within-field heterogeneity
across space and time serves to enhance the range of soil
physical conditions and functional biodiversity within a row-
crop agroecosystem. Increasing heterogeneity can enhance
biodiversity by providing habitat and other key resources
to a wider range of organisms. This expansion of resource
diversity in space and time can support effective resource
partitioning and increased diversity of microhabitats, allowing
coexistence of soil organisms and increased functional
biodiversity (Ettema and Wardle, 2002; Kremen and Miles,
2012). In turn, increased functional biodiversity can support
provisioning services while simultaneously conserving or
enhancing a range of soil services, including organic matter
decomposition and nutrient turnover, soil carbon storage,
and pathogen suppression (Coleman et al., 2004; Birkhofer
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FIGURE 1 | Examples of typical soil functional zone management (SFZM) and uniform tillage systems.

et al., 2008; van der Heijden et al., 2008; Suzuki et al.,
2013).

Conventional soil management is typically characterized by
frequent and intense disturbance (e.g., tillage and agrochemicals)
combined with low plant resource diversity (e.g., monocultures
and minimal crop residue). These factors lead to reduced
abundances and diversity of soil organisms in conventional
systems compared with no-tillage and other systems with reduced
tillage and more diverse crop rotations (Wardle, 1995; Kabir,

2005; Culman et al., 2010; Postma-Blaauw et al., 2010). Moreover,
these factors selectively alter soil biotic communities, leading
to dominance by r-selected organisms (organisms adapted for
rapid reproduction and dispersal; Pianka, 1970; Verbruggen
and Kiers, 2010). For example, larger-bodied soil organisms
are reduced in abundance relative to smaller-bodied organisms,
leading to reductions in faunal and fungal biomass, and shifts
toward bacterial dominance (de Vries et al., 2006; Postma-Blaauw
et al., 2010). The adoption of no-tillage management has been
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demonstrated to improve the abundance and diversity of soil
communities, such that they more closely resemble undisturbed
grasslands (Postma-Blaauw et al., 2012; Säle et al., 2015). SFZM
entails limited and targeted disturbance across both space and
time, and maintenance of crop residues, thereby providing
undisturbed or minimally disturbed soil refugia (Figure 1). We
hypothesize that these refugia can support faunal and fungal
diversity in a similar way to no-tillage, and provide a base from
which slow-growing organisms with longer generation times (K-
selected organisms) might be able to recolonize disturbed areas.
In essence, we propose that SFZM, by expanding both habitat and
resources relative to conventional soil management, can enhance
both provisioning and soil regulating and supporting services by
enhancing soil biodiversity.

SFZM AND SOIL ECOSYSTEM
SERVICES

Securing high levels of agricultural production while
simultaneously improving regulating and supporting soil
ecosystem services requires management strategies that expand
the range of service production (Foley et al., 2011; Bommarco
et al., 2013). As outlined above, by providing spatial and temporal
heterogeneity in terms of tillage and crop residue distribution,
we hypothesize that SFZM is one such strategy. In the following
sections, we present and examine evidence that SFZM can, in
fact, enhance soil ecosystem service delivery.

Supporting Soil Services
Services Produced by Soil Biota
The creation of undisturbed refugia for soil microbiota,
particularly filamentous fungi, through targeted disturbance is
one pathway by which SFZM may increase the supply of
supporting soil services. Such refugia should impact carbon
(C), nitrogen (N), and phosphorus (P) cycling to the benefit
of above-ground productivity. Nutrient cycling among organic
and inorganic pools is driven by microbial turnover, with
fungi generally thought to be more effective at storing C
and N in organic matter than bacteria (Six et al., 2006),
while the higher turnover rate of bacteria promotes gross
mineralization and plant nutrient uptake (Schimel and Bennett,
2004). Filamentous, saprophytic fungi are also the dominant
decomposers of recalcitrant plant litter, producing more
degradative enzymes than bacteria (Treseder and Lennon, 2015).
Arbuscular mycorrhizal fungi (AMF), meanwhile, are well-
known to dominate plant P nutrition, and their central role
in C and N cycling is increasingly recognized (Hodge and
Storer, 2015). Thus, a combination of bacteria- and fungi-rich
communities is desirable for efficient nutrient cycling.

Soil communities under conventional tillage generally
have altered structural, morphological, and functional profiles
compared to communities under no-tillage. Overall, tillage
lowers microbial biomass, enzyme activities, and nutrient cycling
rates (Kladivko, 2001; Balota et al., 2014). While tillage does
not necessarily alter fungal:bacterial ratios directly, as bacterial
biomass also tends to decrease with tillage (Strickland and

Rousk, 2010), lower levels of soil moisture under conventional
tillage do reduce fungal:bacterial ratios (Frey et al., 1999). As
well, tillage reduces AMF community diversity, creating lower
diversity subsets of no-tillage communities (Verbruggen et al.,
2012). Those AMF that remain are r-selected, producing more
reproductive spores and fewer soil-exploring hyphae than
K-selected AMF (Verbruggen and Kiers, 2010). The r-selected
AMF recover quickly from disturbance but are less efficient at
delivering resources to crops (Powell et al., 2009; Verbruggen
and Kiers, 2010).

Under SFZM, both disturbed and undisturbed regions are
directly adjacent to each other (Figure 1). The disturbed region
exposes labile organic matter and aerates the soil, providing
excellent conditions for nutrient turnover immediately after
disturbance (Martens, 2001), while the undisturbed region
creates a refuge for slower-growing, more sensitive filamentous
fungi and hyphae-intensive AMF. From this refuge, these
organisms can quickly re-colonize the mixed and aerated
disturbed region. The ‘refuge and recolonization’ process may
enhance organic matter production and nutrient cycling. Slow-
growing K-selected fungi contribute to long-term organic matter
pools through necromass production and through the formation
of protective soil aggregates (Six et al., 2006; Crowther et al., 2015;
Ludwig et al., 2015). As primary decomposers of crop residues,
they also have unique ability to access N-rich soil and C-rich crop
residues simultaneously, transporting C from residue to soil, and
N from soil to residue (Hendrix et al., 1986; Frey et al., 2000,
2003). Tillage disrupts the hyphal networks of these fungi, thereby
limiting the production of these services. However, disturbance
does enhance residue-soil contact to speed colonization by
decomposers. Therefore, the creation of two functionally distinct,
adjacent zones under SFZM – an undisturbed fungal refuge and
an area where residue is mixed well with soil – should facilitate
decomposition of crop residue and the formation of organic
matter.

Such refugia may explain enhanced P delivery to maize (Zea
mays L.) by AMF in SFZM systems (McGonigle andMiller, 1993).
P-limitation is a common problem for cereal production in many
temperate growing regions, especially on calcareous, P-fixing
soils (Holloway et al., 2001). In such a region, young maize plants
were found to accumulate greater quantities of P under SFZM
(ridge tillage) than under uniform tillage (chisel plow), which was
due to greater mycorrhizal activity in the ridge (McGonigle et al.,
1990; McGonigle and Miller, 1993, 1996). Based on more recent
studies of mycorrhizal P delivery to a variety of plant species,
increased P delivery may result from increases in the abundance
of Diversisporaceae (formerly Gigasporaceae). This family of
AMF developsmore extensive soil hyphae and is more effective at
delivering P to host plants than other AMF families (Glomeraceae
andAcaulosporaceae; Powell et al., 2009). Tillage strongly hinders
Diversisporaceae activity (Verbruggen and Kiers, 2010), but the
targeted disturbance of ridge top removal and later reformation
(Figure 1) likely enables them to persist in ridge tillage systems
(Ewing et al., unpublished).

In addition to fungi and bacteria, soil fauna may be
better protected in SFZM systems. Soil fauna contribute to
important agroecosystem services, including decomposition,
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nutrient cycling, bioturbation, and pest suppression (Coleman
et al., 2004; Birkhofer et al., 2008; Suzuki et al., 2013).
For example, soil macrofauna facilitate decomposition by
fragmenting and redistributing plant residues in the soil profile
(Brussaard et al., 2007; García-Palacios et al., 2013). It is
well-established that tillage acts as a strong physical filter
on soil faunal communities (Roger-Estrade et al., 2010). In
a vegetable production system, the combination of reduced
tillage (active turnover zone) and no-tillage (soil building zone)
in SFZM strip tillage systems maintained higher earthworm
and nematode populations compared to conventional, uniform
tillage systems (Overstreet et al., 2010). Furthermore, when strip
tillage was combined with strategic management of cover crop
residues, predatory mite and collembolan (fungivore) densities
and nematode community complexity increased compared to
conventionally managed systems (Wang et al., 2011).

Nitrogen Cycling
Soil functional zone management systems may also enhance crop
N nutrition by promoting greater synchrony between soil N
availability and crop N requirements. Crop N demand varies
over the growing season, and is greatest for row crops during
vegetative growth (Olson and Kurtz, 1982; Robertson, 1997),
which generally happens in mid- to late- summer.When fertilizer
N is supplied at the time of planting, the resulting asynchrony
with crop demand can encourage weed growth, lead to inefficient
crop use of fertilizer, and drive N loss from soils via denitrification
or leaching (Robertson, 1997; Crews and Peoples, 2005; Shanahan
et al., 2008). These problems can be addressed by management
that synchronizes N supply with peak crop N demand.

The key to N synchrony may be to manage N supply
in both space and time (Shanahan et al., 2008). This is a
central feature of SFZM, especially when redistribution of plant
residues into the crop row is involved, such as under ridge
tillage (John et al., 2004). Under a range of row crops and
crop rotations, ridge tillage creates higher concentrations of
soil organic C (SOC; Shi et al., 2012), potentially mineralizable
N, microbial N (Müller et al., 2009b) and microbial biomass
(Bezdicek et al., 2003; Grigera et al., 2007; Müller et al., 2009b)
on the ridge-tops of crop rows compared with inter-rows. This
spatial concentration of resources and microbial biomass leads
to increased microbial activity in the crop row (Clay et al., 1995;
Liebig et al., 1995; Müller et al., 2009a), and increases rates of N
mineralization (Figure 2; Kane et al., 2015). Thus, ridge tillage
appears to synchronize potentially mineralizable N supply with
crop demand in both space and time, resulting in greater crop N
uptake (Gordon et al., 1993; Kane et al., 2015). Similar increases
in N mineralization have been observed in the inter-row spaces
of strip tillage systems of both maize and orange trees (Citrus
sinensis L.) Osbeck; Johnstone et al., 2009; Balota and Auler,
2011), but strip tillage was not found to improve N synchrony in
a cabbage (Brassica oleracea L.) system (Haramoto and Brainard,
2012). This may indicate that the redistribution of plant and soil
residues that occurs during ridge tillage is the key to unlocking the
N synchrony potential of SFZM. Furthermore, to the extent that
SFZM encourages nutrient recycling ecosystem services, then
synchronized N can be supplied from internal sources (crop

FIGURE 2 | Potentially mineralizable N (PMN) at different depths and
positions (CR: crop row; IR: inter-row) in two maize-soybean cropping
systems during mid-summer. Error bars represent ± 1 SE. Adapted from
Kane et al. (2015).

residue, cover crop, or weed residues), reducing the need for
fertilizer inputs.

Potential Trade-Offs
Despite the wide range of benefits that may result from
SFZM, undesirable effects may also arise, creating trade-offs
associated with SFZM. Undesirable effects include the potential
for increased populations of some pests due to less frequent
and less intense tillage operations (Chaplin-Kramer et al., 2011).
For example, incidence of Rhizoctonia root rot and parasitic
nemadotes increased in no-tillage systems with residue retention
compared with conventional tillage (Schroeder and Paulitz, 2006;
Govaerts et al., 2007). However, when used in combination with
other pest management practices, like diverse crop rotations,
SFZM strategies that include an intra-seasonal tillage event,
such as ridge tillage, can help disrupt pest populations while
maintaining natural enemy populations (McKeown et al., 1998).
Pruess et al. (1968) observed clustering of western corn rootworm
(Diabrotica virgifera Le Conte) eggs in furrow positions and
delayed larval development following an intra-seasonal ridging
event. They suggested the ridging event relocated the previously
uniformly dispersed eggs into the furrow while also burying
the eggs under surface debris, lowering soil temperatures, and
slowing larval development (Pruess et al., 1968). Additional
research on the effects of timing of intra-seasonal tillage on
pest and natural enemy populations will be necessary to further
minimize pest management trade-offs associated with SFZM.

Regulating Soil Services
Soil Structure, Moisture, and Carbon Storage
The accumulation of SOM in agricultural systems has important
implications for soil structure development (Bronick and Lal,
2005; Lal, 2009). SOM is a primary building block of aggregates –
it serves to bind and stabilize soil micro-aggregates, which in
turn coalesce to form macro-aggregates (Tisdall and Oades,
1982; Bronick and Lal, 2005; Lützow et al., 2006; Karami et al.,
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2012). Soil tillage and residue management affect aggregate
development through their collective influence on SOM quality
and accrual. Previous studies have found that SFZM systems
increase organic matter (OM) in surface soil layers (0–15 cm)
relative to conventional tillage (Angers et al., 1995; Unger, 1995).
In turn, SFZM systems, much like no-tillage systems, have been
found to increase aggregate stability and average size relative
to conventional tillage (Kladivko et al., 1986; Mikha and Rice,
2004; Zibilske and Bradford, 2007). The relative improvements
to soil structure in these studies were attributed to minimal
tillage-induced disturbance to larger, more fragile aggregates.

The physical encapsulation of OMwithin soil aggregates plays
an important role in the accumulation of soil C (Balesdent et al.,
2000; Grandy and Robertson, 2007; Plaza et al., 2013). The OM
contained within macro-aggregates is labile and particulate in
nature, while micro-aggregate C is more stable, having undergone
microbial processing (Elliot, 1986; Plaza et al., 2013; Zhang et al.,
2013). Macro-aggregates are highly sensitive to management,
with their stability depending largely on plant roots, fungal
hyphae, tillage intensity, and microbial activity (Six et al., 2000;
Rillig and Mummey, 2006; Zhang et al., 2013). In conventional
systems, where macro-aggregate structures are regularly broken
down, labile forms of C are released from physical protection
resulting in rapid SOM depletion (Grandy and Robertson, 2006,
2007; Panettieri et al., 2015). The reduction in soil disturbance
under SFZM increases soil aggregate formation, and the process
of concentrating crop residues in inter-row positions has been
found to increase concentrations of SOM (Unger, 1995).

The improvement of soil structure via enhanced aggregate
formation under SFZM provides regulating services by
facilitating rainfall infiltration and enhancing soil water holding
capacity (Figure 3; Franzluebbers, 2002; Zibilske and Bradford,

FIGURE 3 | Water holding capacity at three water potentials in the top
2.5 cm of soil after 13 years of conventional tillage (CT), no-tillage
(NT), and ridge tillage (RT). Error bars represent ± 1 SE. Reproduced from
Zibilske and Bradford (2007).

2007). SFZM systems have been shown to conserve soil moisture
more effectively than conventional tillage systems (Drury et al.,
2006; Zibilske and Bradford, 2007; Williams et al., under review).
This feature may be particularly important in terms of adapting
agricultural systems to drought stress. Droughts are predicted
to increase in frequency and severity with climate change
(Gornall et al., 2010; Trenberth et al., 2014). No-tillage has been
highlighted as a drought management option due to its ability to
conserve soil moisture (Lal, 2004; Powlson et al., 2014). SFZM,
because it features zones of no or reduced tillage, may therefore
play a crucial role in buffering agricultural systems against
drought, while minimizing trade-offs with provisioning services
associated with no-tillage (Pittelkow et al., 2015). Put another
way, SFZM may help build resilience to climate change while
protecting long-term agricultural productivity.

In addition, we hypothesize that the heterogeneous soil
environments created by SFZM allow development of greater
fungal biomass by providing refugia from tillage disturbance (see
Services Produced by Soil Biota above); fungal hyphae play an
important role in the formation and stability of soil aggregates
(Wilson et al., 2009; Peng et al., 2013; Lehmann and Rillig,
2015). Recent studies lend support to this hypothesis, as reduced
tillage systems have been shown to promote greater fungal
biomass and diversity relative to conventional tillage systems
(van Groenigen et al., 2010; Säle et al., 2015). Furthermore,
crops grown under ridge tillage have shown greater mycorrhizal
colonization compared with crops grown under uniform tillage
systems (McGonigle and Miller, 1993; McGonigle et al., 1999).
Thus, by providing greater long-term protection of SOC by
enhancing aggregate formation, SFZM could potentially reduce
the release of CO2 and other greenhouse gasses back to the
atmosphere, thereby helping to mitigate the contribution of
agriculture to climate change.

Additional Regulating Services: The Case of Weed
Control
Soil functional zone management may also provide regulating
services that contribute to the suppression of weeds. Non-
herbicidal weed suppression services will become increasingly
valuable as populations of weeds that are resistant to glyphosate
and other herbicides continue to become more abundant. The
problem of herbicide resistant weeds is especially acute in
conventional no-tillage systems, and particularly in those systems
that rely on herbicide resistant crops, because of their exclusive
reliance on herbicides for weed control (Mortensen et al., 2012).
SFZM, through a variety of mechanisms, may reduce weed
density and growth, shift the competitive balance from weeds
to crops, and provide more opportunities for integrated weed
management than conventional no-tillage or other uniformly
managed systems.

One way that SFZM can contribute to the management of
weeds is through promotion of AMF. AMF can suppress the
development of both AMF host and non-host weed species
(Jordan et al., 2000; Vatovec et al., 2005), thereby reducing
crop yield losses to weeds (Rinaudo et al., 2010; Veiga et al.,
2011). Several studies have found negative correlations between
AM colonization and crop growth in no-tillage systems relative
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to conventional tillage, which has been attributed to cooler
temperatures in no-tillage crop rows as a result of residue cover
(McGonigle and Miller, 1996; McGonigle et al., 1999). SFZM
may overcome such drawbacks by removing crop residues from
crop rows and concentrating them in relatively undisturbed
inter-rows (Figure 1). This uncoupling of soil temperatures
and residues from areas of soil disturbance allows soil in
row positions to warm more rapidly early in spring, while
preserving an extensive AMF mycelial network for rapid root
colonization in inter-rows (Johnson et al., 1997). Maize grown
under ridge tillage has been shown to have increased mycorrhizal
colonization and enhanced early season crop performance
relative to no-tillage (Vivekanandan and Fixen, 1991; McGonigle
and Miller, 1993). When AMF colonize multiple hosts they
can increase nutrient transfer to the host that provides the
most carbohydrates (Lekberg et al., 2010; Kiers et al., 2011). As
such, by improving crop establishment and vigor relative to no-
tillage, SFZM can alter interactions between crops and weeds via
AMF, improving crop nutrition and performance, and inhibiting
weed development. Such improvements have been demonstrated
in a strip tillage system, where tomato (Solanum lycopersicum
L.) performance was improved by AMF when in competition
with bahiagrass (Paspalum notatum Flügge; Sylvia et al., 2001).
However, further research is needed to quantify the contribution
of AMF to weed suppression in addition to crop performance
within SFZM systems.

Soil functional zone management may enhance weed
suppression in other ways, particularly when integrated with
cover crops. Cover crops present in inter-rows can suppress
weeds through resource and light competition (Liebman and
Dyck, 1993; Teasdale, 1996), disruption of weed life cycles (Moyer
et al., 2000), physical suppression by cover crop residues (Moore
et al., 1994), and release of phytotoxic chemicals (Kruidhof et al.,
2009; Teasdale et al., 2012; Samedani et al., 2013). Release of
phytotoxic chemicals from cover crop residues can also have
negative effects on crop species (Kruidhof et al., 2011; Soltys
et al., 2012), and this can be particularly true in uniform tillage
systems. SFZM, particularly in ridge tillage systems, removes
residues from the crop row and concentrates them in inter-row
positions (Hatfield et al., 1998; Figure 1). Therefore, by actively
managing the placement of phytotoxic cover crop residues, SFZM
can minimize some of the potential trade-offs associated with the
use of cover crops. The process of concentrating crop residues
also promotes survival of soil pathogens in inter-row positions, by
increasing inter-row soil moisture content (Cook and Haglund,
1991; Page et al., 2013; Manstretta and Rossi, 2015); weed seeds
on or near the soil surface in inter-row positions are then subject
to pathogen attack (Caesar, 2005), while crop seeds in the row
avoid such attack.

The concentration of crop residues in inter-rows under SFZM
may further control weeds by smothering and reducing light
penetration to the soil, reducing weed emergence (Forcella and
Lindstrom, 1988; Kruidhof et al., 2009). The re-ridging event in
ridge tillage, where residues and soil are moved from the inter-
row and concentrated on ridges (Figure 1), can also serve to
smother weeds growing in the crop row (Buhler, 1992). The
combination of concentrated crop residues and reduced thermal

time accumulation in SFZM systems may provide an additional
weed control mechanism.

SFZM AND PROVISIONING SERVICES

In our presentation of SFZM hitherto, we have sought to
establish that improvements in soil regulating and supporting
services can be achieved while maintaining existing levels of
agricultural output. The successful integration of conventional,
intensive agricultural management approaches with more
environmentally sustainable practices such as no-tillage would
represent amajor advance in agronomy. However, given expected
increases in global demand for food and other agricultural
products by 2050 (Godfray et al., 2010; Tilman et al., 2011), and
the need to limit conversion of additional lands to agriculture, it
is not sufficient for the world’s existing crop production systems
to maintain current levels of production; they must become more
productive (Foley et al., 2011; Bommarco et al., 2013; Godfray and
Garnett, 2014).

Temporal Intensification
One way of increasing the productivity of existing agricultural
land is through temporal intensification, which aims to expand
the annual time period in which harvestable crops are grown.
Practices aimed at temporally intensifying agriculture are being
increasingly implemented around the world (Ray and Foley,
2013). These include increasing crop harvest frequency per unit
area and time by double or triple cropping (Heaton et al., 2013;
Ray and Foley, 2013), and earlier planting of cultivars with longer
maturation times (Sacks and Kucharik, 2011).

Temporal intensification may improve soil services by
reducing or eliminating periods when soil is left bare or fallow.
By replacing bare-soil fallows with live plant communities during
some or all of the year, temporal intensification can provide a
range of soil related regulating and supporting services, such as
reduced rates of soil erosion and nutrient leaching (Dabney et al.,
2001; Dean andWeil, 2009), increased microbial community size
and activity (McDaniel et al., 2014; Tiemann et al., 2015), and
weed suppression (Davis and Liebman, 2003; Carrera et al., 2004).
In addition, temporal intensification provides opportunities to
increase crop rotational diversity (Moore and Karlen, 2013).
These factors enhance crop residue, root and exudate production,
providing increased C resources for microbial processing (Kong
et al., 2011; Tiemann et al., 2015), with subsequent soil quality
benefits including long-term C storage and improved soil
structure (Grandy and Robertson, 2007; Schmidt et al., 2011;
Poeplau and Don, 2015; Tiemann et al., 2015).

Despite the potential benefits of temporal intensification, there
are also large potential drawbacks, including reductions in the
yields of each crop when multi-cropping is used for temporal
intensification (Tonitto et al., 2006; Johnson et al., 2015). Such
reductions may be severe if soil resources are exhausted or tied
up by previous crops or their residues, or if harvest of one crop
delays planting of the next crop. Such delays and the lack of
operational flexibility they incur can severely limit production
capacity. Other potential drawbacks include damage to soil
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structure from increases in soil cultivation intensity (Grandy and
Robertson, 2006), and greater nutrient leaching and depletion of
water resources due to increased fertilization and irrigation (Ju
et al., 2009; Ray and Foley, 2013). Soil biodiversity may also be
reduced by temporal intensification due to the deleterious effects
of increased soil cultivation and elevated input of agrochemicals
(Helgason et al., 1998; Mäder et al., 2002). Loss of soil biodiversity
may curtail ecosystem functions that generate soil ecosystem
services (Bardgett, 2005).

To mitigate these potential downsides while still realizing the
inherent benefits of temporal intensification, novel management
systems are needed. These systems must enable increases in
the amount of product that can be extracted over a given
time period while simultaneously protecting soil functional
biodiversity and building soil quality. We contend that SFZM
is a particularly promising strategy for achieving sustainable
temporal intensification because it involves the creation of
functionally distinct yet complementary soil zones. Through the
integration of conventional, intensive management and reduced
tillage practices, these zones are optimized for crop productivity
(active turnover zone) and soil protection (soil building zone).

Dynamics of SFZM: Potential for a
Virtuous Cycle Linking Yield and Soil
Quality
We base our hypothesis of joint enhancement in provisioning
and other ecosystem services via SFZM on a virtuous cycle
model that links above-ground and below-ground processes
(Figure 4). Specifically, we propose that SFZM engenders a
self-reinforcing feedback process that couples improvements in
soil regulating and supporting services (below-ground cycle)
with improvements in provisioning services via increased field
working days (above-ground cycle).

Above-Ground Processes in the Virtuous Cycle
A key component of sustainable temporal intensification is
increasing the period of time during which crops can be grown
and harvested on existing agricultural land. In real terms, this
translates into a need for increased field working days, which can
be achieved by enabling earlier soil cultivation and planting, by
supporting crop growth later in the season, or by a combination
of both.

Existing SFZM systems (e.g., ridge and strip tillage), which
remove crop residues from crop row positions prior to planting,
have been demonstrated to produce seedbed environments
that warm and dry rapidly in early spring (Hatfield et al.,
1998; Licht and Al-Kaisi, 2005). These seedbeds have similar
hydrothermal properties to conventional tillage systems, which
in turn have improved hydrothermal properties relative to no-
tillage systems, i.e., are warmer and drier, resulting in improved
seedling emergence relative to no-tillage (Cox et al., 1990; Kovar
et al., 1992; Dwyer et al., 2000). Planting date has a large
influence on crop productivity, and delays in planting due to
climate fluctuations can severely reduce yields (Deryng et al.,
2014). On poorly drained, finely textured soils, or during periods
of excessive rainfall, ridge tillage can also improve seedbed

FIGURE 4 | Proposed ‘virtuous cycles’ of SFZM. SFZM improves soil
hydrothermal and fertility properties (buffering) (1), enabling earlier crop
planting and a longer, more stable growth period, even in the face of variable
weather patterns (2). This extended growing season supports greater yields
from double cropping, crop residue harvest, and more effective cover crop
production (3). An extended period of living plant cover enhances crop
residue, root, and exudate production (4), resulting in higher soil microbial
efficiencies (5) that drive the conversion of residues and microbial biomass into
SOM (6). These biologically derived organic matter inputs improve soil quality
and health by increasing aggregation, water holding capacity, and
plant-available nutrients (7), which together confer and reinforce the soil’s
capacity to buffer against variability in rainfall and temperature (1).

hydrothermal conditions above that of conventional tillage,
leading to earlier planting, greater accumulation of thermal time
and improved yields (Cox et al., 1990; Eckert, 1990; Fausey, 1990).
This provides the basis for an important premise of the virtuous
cycle model (Figure 4): that SFZM increases field working days
by allowing cultivation and planting to occur earlier in the season
compared to when these operations could occur, for example,
in an adjacent field managed with no-tillage approaches. SFZM
would also likely outperform conventional tillage in terms of field
working days in poorly drained soils or in years with wet springs
(Figure 4, points 1 and 2).

Soil functional zone management can also extend the growing
season by continuing to support crop growth later in the season.
Existing SFZM systems concentrate soil moisture into crop inter-
row positions (Müller et al., 2009b; Shi et al., 2012), substantially
increasing soil moisture above that of conventional systems and
maintaining it at levels similar or equivalent to no-tillage (Drury

Frontiers in Plant Science | www.frontiersin.org 8 February 2016 | Volume 7 | Article 65

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Williams et al. Soil Functional Zone Management

et al., 2003, 2006). These moisture-rich inter-rows may provide
an important water resource during critical periods of crop
development (Alvarez and Steinbach, 2009). Thus, by altering
soil hydrothermal properties, SFZM can increase field working
days at both ends of the growing season; allowing soil to be
cultivated and/or planted earlier in the season, and maintaining
soil moisture in inter-rows that can sustain crop growth later in
the season or support planting of winter double crops. In other
words, SFZM creates functionally distinct zones that together
provide greater soil buffering to climate variability; SFZM buffers
against extremes in soil temperature and moisture, and thereby
provides a longer, less variable growth period (Figure 4, points 1
and 2).

The extension of the growing season afforded by SFZM
enables greater utilization of solar radiation both at the beginning
and end of the growing season, particularly in northern
temperate regions. Longer seasons also allow greater capture
of light energy and accumulation of hydrothermal time for
both summer and winter crops in double cropping systems,
increasing yield potential (Chen et al., 2011; Figure 4, point 3).
The conservation of soil moisture through late summer in SFZM
would also provide a water resource for the establishment of
winter crops in double cropping systems, which are currently
hampered by growing season duration. By extending the growing
season, SFZM has the potential to reduce risks of seasonal
crop yield reductions due to delayed harvest under temporal
intensification. In addition, the ability of SFZM to enhance soil
water conservation could potentially reduce requirements for
additional irrigation, as required in some temporally intensified
systems (Ray and Foley, 2013).

Temporal intensification may itself also help agriculture
become more resilient to climate change. For example, double
cropping, facilitated by SFZM, may shift phenologies of some
crops, enabling them to avoid peak summer temperatures during
critical development phases, when excessive heat can cause severe
yield reductions (Seifert and Lobell, 2015). Moreover, SFZM
may be particularly suited to support the production-enhancing
aspect of temporal intensification because of new technologies
for utilizing agricultural biomass from crop residues, and winter-
annual cover crops. In the past, biomass crops and crop residues
did not contribute to the food supply; however, a variety of
new technologies now enable conversion of this biomass into
a wide range of foodstuffs for direct and indirect human
consumption, as well as biomass feedstocks for bioenergy and
bioproducts (Chen and Zhang, 2015). In addition, by enhancing
prospects for temporal intensification, SFZMmay help reduce the
conflict between food and biofuel production by enabling double
cropping, potentially supplying both biofuels and food from the
same field in the same season (Dale et al., 2010; Figure 4, point 3).

Below-Ground Processes in the Virtuous Cycle
By enabling an extension to the period of living plant cover,
SFZM can also promote increases in the production of root
exudates and crop residues (Figure 4, point 4). At the most
basic level, the production of microbial biomass is governed
largely by input quality and microbial physiological traits, such
as microbial C-use efficiency (Sinsabaugh et al., 2013; Wieder

et al., 2014, 2015). Root exudates and plant residues are primary
sources of these C inputs, and drive microbial activity, biomass
and community composition (Rasse et al., 2005; Hartmann et al.,
2009; Rousk and Frey, 2015). Root exudates, in particular, are
highly labile, and contain more reduced C compounds and
lower C:N ratios, encouraging higher microbial C-use efficiency
(Manzoni et al., 2012). Microbial activity is reduced by periods
of sustained soil moisture deficiency (Borken and Matzner,
2009), causing reductions in soil nutrient availability (Emmett
et al., 2004; Larsen et al., 2011). In addition, repeated wet-
dry cycling leads to pulses of soil C and N mineralization,
potentially accelerating SOM mineralization over time (Borken
and Matzner, 2009). This diminishes soil water holding capacity
and increases susceptibility to future soil moisture deficits. Thus,
management that produces improved conditions for microbial
growth (e.g., adequate water and temperature, plus greater
quantities of root exudates), as can be achieved by SFZM,
may sustain greater microbial activity and efficiency, thereby
enhancing nutrient turnover processes (Figure 4, point 5).

Traditional soil models suggest that it is not possible to
maintain soil quality under conditions of intensifying production
and greater extraction of soil resources, because removal of crop
residues and intensification of tillage and fertilization will deplete
SOM (Janzen, 2006; Grandy and Robertson, 2007). This may not
be the case in agroecosystems managed to create distinct soil
functional zones. Existing SFZM systems, such as ridge tillage,
have been found to be similar to no-tillage systems in that
they support greater microbial biomass than conventionally tilled
systems (Angers et al., 1992; Müller et al., 2009b; Zhang et al.,
2013). Emerging experimental and theoretical evidence shows
that dead microbial biomass (i.e., necromass) is a significant
fraction of SOM (Grandy and Neff, 2008; Schmidt et al., 2011;
Cotrufo et al., 2013; Frey et al., 2013; Wieder et al., 2014). The
continuous and rapid turnover of living microbial biomass can
produce, over time, a considerable amount of necromass (Liang
and Balser, 2011), which stabilizes SOM (Simpson et al., 2007;
Schmidt et al., 2011; Miltner et al., 2012; Cotrufo et al., 2013;
Gleixner, 2013; Figure 4, point 6).

Although microbial biomass can be rapidly mineralized by
soil organisms due to its favorable energy yield and low C:N
ratio (Blagodatskaya et al., 2014), microbial necromass and
other microbial by-products can also be selectively preserved
via interactions with soil minerals and incorporation into soil
aggregates (Lützow et al., 2006; Throckmorton et al., 2015;
Figure 4, point 7). In fact, microbial necromass, metabolites, and
decomposition products account for the majority of stabilized
SOM (Simpson et al., 2007; Grandy and Neff, 2008; Kleber
and Johnson, 2010; Schmidt et al., 2011). The accumulation
of stabilized SOM within soil aggregates in turn improves
infiltration of precipitation and increases soil water holding
capacity (Franzluebbers, 2002; Zibilske and Bradford, 2007;
Figure 4, point 7). By encouraging the development of greater
microbial biomass, SFZM may halt declines of SOM observed
under conventional tillage, and instead contribute positively
to SOM accumulation and soil structure development while
simultaneously supporting greater yield extraction through
temporal intensification.
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CONCLUDING REMARKS

Development and implementation of novel agroecological
management systems that allow increases in provisioning
services (yield) while simultaneously enhancing regulating and
supporting ecosystem services are urgently needed. As our review
shows, SFZM offers a strategy for integrating the production
benefits associated with intensively tilled field crop production
systems with the soil ecosystem service benefits associated with
no-tillage. In short, SFZM offers the potential to achieve the
best of both approaches. The soil heterogeneity produced by
SFZM enhances soil functional biodiversity, and allows farmers
to harness this biodiversity to elicit desirable ecosystem functions
at appropriate times and places. This can lead to greater resource-
use efficiency and closer synchrony between soil processes and
crop physiological demands. Moreover, the ability of SFZM to
favorably alter soil hydrothermal properties allows extension of
the growing season, both at the beginning and end. This opens
opportunities for increasing agricultural production via temporal
intensification. Coupled with improvements to soil regulating
and supporting services, SFZM therefore offers a vehicle for
optimizing multiple ecosystem goods and services in agricultural
systems.

Widespread adoption and refinement of SFZM depends on
progress on several fronts. Further research on all aspects
of SFZM systems will be required to ensure that service
delivery can be optimized to meet specific needs of farmers
and society in particular cropping systems and geographies. As
well, progress on adoption and refinement of SFZM systems
is likely to be strongly affected by societal demand for the
full range of regulating and supporting ecosystem services
that such systems may be able to provide (Mitchell et al.,
2016). The case of ridge tillage in maize-soybean production
in central North America is instructive: despite its economic
viability (Archer et al., 2002), this form of SFZM is not
widely used in the US. In this region, it appears that the
perceived value of ecosystem services resulting from ridge
tillage do not provide a sufficient incentive for its widespread
adoption. However, new incentives are appearing, such as the
rapidly growing interest in management systems that promote
“soil health” (Lehman et al., 2015), increasing innovation in

incentives for agricultural soil C storage (Funk et al., 2015),
and more stringent demands for nutrient-use efficiency and
other ecosystem services from sustainability-oriented supply
chains (Davidson et al., 2014). If there is significant societal
demand for the full range of ecosystem services from SFZM,
the collective ingenuity of farmers and agricultural engineers can
be expected to drive rapid development and implementation of
SFZM. This is evidenced by the widespread adoption of zonal
tillage techniques in the Central Valley region of California (USA)
in response to imperatives to improve resource-use efficiency and
environmental performance of production systems in this region
(Mitchell et al., 2016).
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