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While novel whole-plant phenotyping technologies have been successfully implemented

into functional genomics and breeding programs, the potential of automated phenotyping

with cellular resolution is largely unexploited. Laser scanning confocal microscopy

has the potential to close this gap by providing spatially highly resolved images

containing anatomic as well as chemical information on a subcellular basis. However,

in the absence of automated methods, the assessment of the spatial patterns and

abundance of fluorescent markers with subcellular resolution is still largely qualitative

and time-consuming. Recent advances in image acquisition and analysis, coupled with

improvements in microprocessor performance, have brought such automated methods

within reach, so that information from thousands of cells per image for hundreds of

images may be derived in an experimentally convenient time-frame. Here, we present a

MATLAB-based analytical pipeline to (1) segment radial plant organs into individual cells,

(2) classify cells into cell type categories based upon Random Forest classification, (3)

divide each cell into sub-regions, and (4) quantify fluorescence intensity to a subcellular

degree of precision for a separate fluorescence channel. In this research advance, we

demonstrate the precision of this analytical process for the relatively complex tissues of

Arabidopsis hypocotyls at various stages of development. High speed and robustness

make our approach suitable for phenotyping of large collections of stem-like material and

other tissue types.

Keywords: automated image analysis, confocal microscopy, Arabidopsis, hypocotyl, automated phenotyping,

code:matlab

INTRODUCTION

Rapid and cheap sequencing technologies have dramatically changed plant breeding and
functional genomics in the last decade. Availability of abundant genotyping data shifts the
focus within the frame of genetic screening from more efficient genotyping to automated
phenotyping technologies. Progress has been made on whole-plant phenotyping solutions,
which for example record plant growth, photosynthesis rates, or stress markers (Furbank
and Tester, 2011; Dhondt et al., 2013). Whole-plant phenotyping solutions have become
commercially available for indoors and outdoors use and are now an integral part of
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numerous large breeding programs (Cobb et al., 2013; Rahaman
et al., 2015). While such whole-plant phenotyping technologies
are useful to facilitate breeding for higher yield many important
qualitative and developmental traits cannot be assessed by these
macroscopic approaches. Especially, genetic screens for chemical
composition, anatomical, and mechanical properties of plant
raw materials still rely on laborious low-throughput manual
phenotyping. A wide range of molecular markers enable the
spatially highly resolved study of such traits. Many of these
markers can be fluorescently imaged, either through their own
inherent fluorescence, via fluorescent fusion proteins, stains,
probes, or through immunofluorescence. With the wide range
of fluorescence tools, Laser Scanning Confocal Microscopy
(LSCM) has become the method of choice to localize and
quantify fluorescent markers. LSCM imaging provides fast,
sensitive, inexpensive, spatially highly resolved images where
pixel intensity reflects target abundance over a wide dynamic
range. Fluorescent imaging of morphogen gradients in the
Drosophila embryo and of auxin transport proteins in the
Arabidopsis shoot and root tip have, for example, greatly
contributed to our understanding of pattern formation and
development (Gregor et al., 2007; Kierzkowski et al., 2013).
Nevertheless, many of these studies rely on comparison of
fluorescence intensity between manually defined regions of
interest (ROI; Nilufar and Perkins, 2014), e.g., between different
cell types. Obviously, manual segmentation into ROIs is labor-
intensive and underlies human subjectivity and inconsistency
that may severely limit the interpretability of LSCM data.

Computer-assisted quantification of fluorescent targets on a
cellular scale over large spatial ranges requires both accurate
automatic segmentation and quantification of fluorescence in
each individual segment (Luengo Hendriks et al., 2006). Multiple
fluorescence sources, including a counterstain for segmentation,
can be imaged simultaneously within a single field of view
enabling the correlation of the segmented image with a host
of other fluorescence targets. Whereas, for animal tissues the
application of automated imaging analysis has become popular
in the last decade and several software packages for such
an approach are freely available (Wiesmann et al., 2015), the
adaptation of automated image analysis is lagging behind in
plants. This may be related to the limited optical transparency
of most plant tissues and therefore a need of thin sectioning
of plant specimens resulting in low throughput. In animal
tissues the predominant strategy to segment tissues automatically
makes use of fluorescently labeled nuclei and region growing
algorithms, such an approach may fall short when a fluorescent
target is localized to the plasma membrane or the cell wall.
In plants, the few attempts to automatically segment tissue
have made use of the cell wall stain propidium iodide and the
plasma membrane marker FM4-64 (Federici et al., 2012; Pound
et al., 2012; Band et al., 2014; Yoshida et al., 2014). These live
stains are suitable for embryonic and meristematic tissue but
not for mature plant tissues, as the Arabidopsis hypocotyl and
stem, which contain terminally differentiated, dead cells with
disrupted plasma membranes and which are in comparison
to animal tissues of limited optical penetration depth. As an
alternative, Sankar et al. (2014) suggested a protocol based on

non-fluorescent differential interference contrast images (DIC).
However, applicability of this approach is limited by insufficient
accuracy, extensively long computing times and incompatibility
with confocal imaging.

In hypocotyl and stem, emerging models for wood formation
and stem cell research in plants (Jouannet et al., 2015), derivatives
of stem cells differentiate into several different cell types of the
xylem (inner tissue) and phloem (outer tissue). New divisions
of stem cells push daughter cells either toward the in- or out-
side, and, with increasing distance from the stem cells, derivatives
gradually differentiate. A morphogen-like gradient of the plant
hormone auxin has been suggested to regulate stem cell activity
and differentiation from cell expansion to cell wall thickening
(Uggla et al., 1996; Bhalerao and Fischer, 2014). Changes in
morphology and wall composition are indicative for the degree of
differentiation and cell type (Liebsch et al., 2014). Compositional
changes in the walls of stems have been successfully monitored
with the help of monoclonal antibodies against specific wall
epitopes (Hall et al., 2013). However, exploitation of such data is
currently hampered by manual segmentation, classification and
quantification of fluorescent signals. As a consequence, genetic
improvement of woody feedstock, e.g., decreased lignin content
in xylem fibers, is limited by the absence of automated high-
throughput phenotyping tools.

Here, we provide an image analysis pipeline, which (i)
accurately segments hypocotyls and stems into individual cells
and subcellular regions, (ii) assigns each segment to a cell
type, (iii) quantifies fluorescence intensity of the cell wall
counterstain and, from a separate channel, quantifies several
aspects of fluorescence intensity from cell wall epitopes for each
individual segment and cell type, and also (iv) extracts a wealth
of morphometric data. The pipeline is coded in a single software
environment (MATLAB) and the data can easily be exported and,
for example, be used in modeling or multivariate statistics. Short
processing times permit large data sets, as required for mutant
screens or association mapping, to be analyzed.

MATERIALS AND METHODS

Preparation of Plant Material
Wild-type (Col-0) and knat1bp−9 seeds were planted on soil
with 18:6 h (light:dark) at 21 ◦C. Germination times were
recorded and hypocotyls excised from plants at 21 and 31
days after germination (dag). Hypocotyls were identified as
the 5mm region below the cotyledons. The 5mm hypocotyls
were immersed in 150 µL 1X PME (stock 2X PME: 50mM
PIPES, 2 mM MgSO4, 2mM EGTA) fixation buffer, within
0.2 ml dome-cap thermal cycler tubes (Thermo Scientific,
www.thermoscientificbio.com). Hypocotyls were then subjected
to three consecutive 21◦C cycles of 5 min vacuum infiltration
at 68 kPa, and washed three times in 1X PME (21◦C, 68 kPa)
prior to storage at 4◦C in 1X PME. Segments were individually
encased in 1 cm3 blocks of 5% agar at 65◦C, and stored at
4◦C to set. Transverse sections (40 µm thick) were cut from
segments using a VT100S vibrating microtome (Leica), separated
from agar encasement using a sable hair (“00”) brush, then
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blocked for at least 1 h in 5% bovine serum albumin in 1X
TBST (10mM Tris, 0.25M NaCl, 0.1% Tween). Sections were
mixed to randomize developmental difference, and randomly
allocated from each biological replicate pool, together with 100
µl fresh blocking solution, to wells of a 96-well plate (Ibidi,
www.bdbiosciences.com). Blocking solutions were swapped with
5µl 1:36 dilutions of the LM10 antibody (Complex Carbohydrate
Research Center, University of Georgia, US) using gel- loading
tips, then sections were incubated at 4◦C for 16 h. Hypocotyls
were washed twice in 100 µL 1X TBST, then incubated
for 1 h at 21◦C in the dark in 10 µl of 2 µg/µl Alexa
FluorTM 488 donkey anti-rat IgG (H + L) (Agrisera, Sweden).
Sections were again washed twice in 40 µL 1X TBST prior to
counter- staining with 0.015% Calcofluor White (Sigma-Aldrich,
www.sigmaaldrich.com). Sections were again washed twice in
100 µL 1X TBST to remove excess counter-stain and unbound
secondary antibody.

Confocal Imaging
Hypocotyl sections were imaged using a confocal laser scanning
microscope Zeiss LSM780 point-scan system at 1024 × 1024
pixels (pixel size, 0.6–0.83 µm) with a 10X objective (a plan-
apochromat objective with a numerical aperture of 0.45) within
the 96-well plate (Ibidi, Germany) fitted with 180 µm-thick
coverslip bottoms. Immunofluorescence of AlexaFluor 568 was
excited with a 561 nm laser, and emitted light filtered at
575–600 nm. Calcufluor White was subsequently scanned on
an independent channel with a 405 nm laser and emission
observed at 420–430 nm. Images were saved as “LSM” files
with file names that included plate location, antibody, genotype,
tissue type, and biological replicate separated by underscores (ex.
C08R6_LM10_Col_21-day-old_Hyp_BR1) to permit automated
cataloging in the supplied MATLAB analysis pipeline.

Image Analysis–General
The following methods describe the analytical steps taken, and
do not serve as an operation manual for processing images.
Instead, refer to Supplemental Presentation 2 (“Precision Cell
Classification and Quantification Manual”) and Supplemental
Video 1 in Presentation 1 (https://vimeo.com/148871821,
password: Matlab4Segment) for details on system configuration,
experimental setup, parameter optimization and data processing.
The image analysis pipeline was implemented in MATLAB
using the MATLAB Image Processing toolbox and the DIPimage
toolbox (http://www.diplib.org/).

Experimental Setup for Image Analysis
A working title for the experiment was entered to automatically
generate a time-stamped folder to deposit analysis output
(Supplemental Figure 5A). The target image files for the
experiment that existed within a user-defined source folder
were automatically cataloged within the database “ExperInfo”
(Supplemental Figure 5). This database recorded file location and
levels for experimental factors (age, tissue type, genotype) for
each image file.

Training Set Generation
Three to four training set images occupying a separate folder
were selected that presented the range of morphological variation
expected to be encountered in the experimental (testing)
image set. These images were imported into MATLAB, and
users prompted to enter parameters for image smoothing and
segmentation (Supplemental Table 1). After data smoothing of
the CFW channel (Supplemental Figure 5), tissue centers were
manually selected via a user interface (Supplemental Figure 5),
triggering the segmentation algorithm to generate ROIC (entire
cell), ROIL (cell lumen), and ROIW (cell wall) for all objects.
Prior to delineate the cell borders by Watershed segmentation,
Gaussian filtering with a variance of 1 pixel was applied in order
to remove background noise. Oversegmentation was corrected by
merging regions where the difference in intensity between their
minima and the first pixel on the watershed dam touching the
two regions was <10. Lumen boundaries within each watershed
region were precisely identified by applying Otsu’s thresholding
(Otsu, 1979). In some cases, we cropped the image to restrict
the amount of tissue or the range of cell types to be examined.
This restricted the ROICs to those that fell within the cropped
region, and also restricted computation of ROIL and ROIW
to those within the cropped region (Supplemental Figure 1).
Measurements for all ROIs were saved for later access by the
classification algorithm. The number of cell types and their
names were subsequently defined, then selected within each
training image (Supplemental Figure 5E). A graphical output
of the selections was recorded (example in Figure 2) along
with a MAT-file containing the locations and dimensions of
those ROIs. In an iterative process (Supplemental Figures 5F–
G), features (Table 1) and cell classes were selected and Random
Forest classification (Breiman, 2001) executed for the chosen
training set (cell selections). This model was then used to
generate class predictions and confidence interval scores for
all ROIs in the training set images. An overlay of the entire
classification on the original cell selections was generated for each
training image (data not shown), along with classification result
at varying confidence interval thresholds (as in Figures 6D–F).
Each training set iteration was outputted to a distinct time-
stamped folder for subsequent evaluation. The “ExperInfo”
database was updated to include a record of all iterations, their
parameters, and the locations of the model data sufficient for
classification of test images. Quantitative data for the CFW
channel were saved but not further utilized in the experiment.
Immunofluorescence quantitation was not performed in the
training set generation.

Quantification of Test Images
Test images that were suitable for classification by a common
training set iteration were processed in a similar manner as
the training set (smoothing, defining tissue centers, segmenting)
based upon parameters defined for the chosen training
set (Supplemental Figures 5H–I). In an iterative approach,
classification of the testing set was explored with different
training set iterations (as in Figure 3). Quantification data
and diagnostic plotting of the CFW channel similar to the
training set iterations were stored in time-stamped folders. To

Frontiers in Plant Science | www.frontiersin.org 3 February 2016 | Volume 7 | Article 119

http://www.bdbiosciences.com
http://www.sigmaaldrich.com
https://vimeo.com/148871821
http://www.diplib.org/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hall et al. Automated Cell Classification and Quantification

TABLE 1 | Features available in Random Forest classification analysis pipeline.

Featurea Descriptionb

m.cx X coordinate of cell center, origin top-left corner of image (µm)

m.cy Y coordinate of cell center, origin top-left corner of image (µm)

Xnew X coordinate of cell center, origin center of image (µm)

Ynew Y coordinate of cell center, origin center of image (µm)

radialV Radial coordinate of cell center, origin center of image (µm)

angleV Angular coordinate of cell center, origin center of image (radian)

m.majoraxes Length of major axis (first principal component axis) of cell (µm)

m.eccenticity Square root of [1-(Length of minor axis (second principal component axis)∧2/(Length of major axis)∧2)]

m.theta The angle between major axis and horizontal axis (radian)

s.area Number of cell pixels (µm∧2)

perimeter Length of cell perimeter (µm)

s.radius.mean Average value of radius of cell (distance from object border to the center of object) (µm)

s.radius.min Minimum value radius of cell (µm)

s.radius.max Maximum value radius of cell (µm)

extv Multiplication of Length of major and minor axes (µm∧2)

inclV Acute angle between radial vector of cell (originating form center of image to center of cell) and major axis of cell (radian)

P2A Circularity of the cell (ratio of Perimeter to Area)

MedianROIC Median of ROIC intensity

MeanROIC Average of ROIC intensity

m.theta.real Angle between radial vector of cell (originating form center of image to center of cell) and first (major) principal component of cell (radian)

MedianROIW Median of ROIC intensity

MeanROIW Average of ROIC intensity

aFeature name as it appears in the diagnostic plotting.
bBrief description of the measurement, including appropriate units.

quantify the signal intensities attributable to the immunolabeling,
immunofluorescence channel images were then segmented
using ROIC, ROIL, and ROIW generated from the CFW
channel segmentation which acted as a mask. In addition,
the ROIs were divided into four quadrants (Figure 1E) for
higher resolution-based quantification of signal as detailed in
Table 2. These data were exported in to separate time-stamped
folders for later access. Importantly, the locations of MAT-files
containing quantification data for each image were stored in
the “ExperInfo” database for access during data assembly and
export.

Data Review and Assembly
The final step in the pipeline is to assemble the data for
export based upon information stored in “ExperInfo” regarding
which images were processed, and where the associated data
is stored. From a user prompt, we selected the levels of each
factor (ex. specific antibodies from the “antibody” factor),
and files with those properties were concatenated into a
common file (“DataRawCompile”) to be used in downstream
(multivariate) analysis in MATLAB or another environment.
We assembled a pipeline that facilitates iterative summary
plotting of spatial maps of features for any image present in the
assembled data set. “DataRawCompile” was then used to generate
means and standard deviations for each cell class within each
image (as in Figures 5, 6). The pipeline also permits iterative
comparative plotting of the summary statistics (bar plots) for

any combination of images present in the output data set. The
structure of the output file “DataRawCompile” is detailed in
Supplemental File 2.

RESULTS

Automated Image Segmentation of
Confocal Counterstain Channel
Embryonic and meristematic plant tissues have been successfully
segmented with the help of propidium iodide. However, since
propidium iodide is not retained in the cell wall of dead
cells, this fluorescent stain is not suitable as a counterstain for
segmentation of mature or fixed plant tissues. As an alternative
to propidium iodide, we tested calcofluor white (CFW), which
binds to cellulose and chitin in cell walls of plants, fungi and
bacteria. In order to visualize boundaries between cells we
counterstained cell walls of 21-day-old Arabidopsis hypocotyls
with CFW and acquired images with a CLSM in a separate
reference channel (Channel 1). CFW fluorescence was restricted
to cell walls and not detected in cell lumen. After smoothing
the reference channel, the watershed segmentation algorithm
identified the outer boundaries of cells.Watershed damsmatched
cell-cell boundaries closely with little over-segmentation, and the
ROIs for entire cells, denoted ROIC,matchedmorphology closely
(Figures 1A,B). The lumen boundary within each watershed
region was precisely identified using Otsu’s threshold algorithm
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FIGURE 1 | Segmentation of counterstain channel. (A) Two-channel confocal image of transverse section with watershed boundaries overlaid for entire image

and xylem to cambium transition (inset) (B) Image segmentation into ROIC (entire cell) objects with random color assignment (C) Segmentation of the lumen of each

cell (ROIL) with zoomed region depicted in (A; inset). (D) Cell wall regions (ROIW) derived from difference of ROIC and ROIL with zoomed region depicted in (A). (E)

Example of quadrant definition for ROIC, with anticlinal quadrants “1” and “2” (yellow and blue) and periclinal quadrants “3” and “4” (green and red) for ROIL being

defined by radial axis (red lines to tissue origin). (F) Sample of overlay of smoothing and segmentation parameters for diagnostic purposes.

to define ROIL (Figure 1C). Cell wall regions, referred to as
ROIW, could be derived as the set difference of ROIC and
ROIL (Figures 1D,F), thus giving us two distinct regions of
the cell (wall/ROIW and lumen/ROIL). With the help of a
manually selected center of tissue, ROIC, L, and W were sub-
divided into interior/exterior and left/right (lateral) quadrants in
order to study polar or axial distribution of fluorescent signals
(Figure 1E).

Manual Selection of Training Set Cells for
Classification Model
Supervised learning algorithms have been shown successful for
classifying image segments corresponding to individual cells
into cell type categories (Field et al., 2010; Sankar et al., 2014).
These algorithms require the creation of training sets, i.e., in
our case manually assigned classification of cells into groups
of user-defined cell types. ROICs of reference images provide
sufficient context for manual classification of representative
cells for each of the cell types. We defined six different cell
types in 21-day-old hypocotyls: xylem vessels and parenchyma,
cells of the cambial zone, phloem fibers, phloem, and cortical
cells (Figure 2A). For each class, cells were chosen that best
represented the class, avoiding selection of cells that lay on vague
boundaries between cell types or exhibited morphology that were
intermediate between cell classes.

During development, organ types such as the Arabidopsis
hypocotyl undergo substantial change in tissue composition

(additional cell types) and architecture (e.g., cell morphology
and relative position in the tissue context). With Arabidopsis
hypocotyls, there is added complexity in 31-day-old hypocotyls
with the addition of new cell types in the outer xylem (xylem
II), demanding another, optimized training. For 31-day-old
hypocotyls, we defined eight different cell types that included
xylem I vessels, xylem I parenchyma, xylem II vessels, xylem
II fibers, cambium, phloem fibers, phloem parenchyma, and
cortex (Figure 2B). These selections were used as the basis for
subsequent trials to determine the combination of cell types and
features to use for classification.

Feature Computation and Pre-Selection
Given accurate identification of cell boundaries (ROIC), lumen
(ROIL), and cell wall (ROIW), abundant, precise morphometric
data can be derived that collectively provide a rich set of features
to classify segments into different cell type categories. Using
the DIPimage package, we measured 22 different features that
could be derived from ROIs, covering aspects of position within
the tissue, shape, and fluorescence intensity for each segment
(Table 1). Many of these ROI measures correlate well with
tissue morphology while some of these features, such as “m.cx”
and “m.cy” (xy-coordinates), provide non-sense information
with respect to cell identity in a radially symmetrical organ
(Supplemental Figures 2A,B). Feature selection is generally
considered an important step to improving the accuracy of
classification (Janecek et al., 2008). With the exception of
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TABLE 2 | Fluorescence measures available for quantification in analysis pipeline.

Measurea Associationb Descriptionc

Mean/radial(1) Each ROI (C,L, or W) Mean signal of radial region “1” (see Figure 1E), computed for each of ROI (C,L, or W)

Mean/radial(2) Each ROI (C,L, or W) Mean signal of radial region “2” (see Figure 1E), computed for each of ROI (C,L, or W)

Mean/tangentrail(3) Each ROI (C,L, or W) Mean signal of tangential region “3” (see Figure 1E), computed for each of ROI (C,L, or W)

Mean/tangentrail(4) Each ROI (C,L, or W) Mean signal of tangential region “4” (see Figure 1E), computed for each of ROI (C,L, or W)

Std/radial(1) Each ROI (C,L, or W) Standard deviation signal of radial region “1” (see Figure 1E), computed for each of ROI (C,L, or W)

Std/radial(2) Each ROI (C,L, or W) Standard deviation signal of radial region “2” (see Figure 1E), computed for each of ROI (C,L, or W)

Std/tangentrail(3) Each ROI (C,L, or W) Standard deviation signal of tangential region “3” (see Figure 1E), computed for each of ROI (C,L, or W)

Std/tangentrail(4) Each ROI (C,L, or W) Standard deviation signal of tangential region “4” (see Figure 1E), computed for each of ROI (C,L, or W)

Size/radial(1) Each ROI (C,L, or W) Area signal of radial region “1” (see Figure 1E), computed for each of ROI (C,L, or W); a morphological measure

Size/radial(2)’ Each ROI (C,L, or W) Area signal of radial region “2” (see Figure 1E), computed for each of ROI (C,L, or W); a morphological measure

Size/tangentrail(3) Each ROI (C,L, or W) Area signal of tangential region “3” (see Figure 1E), computed for each of ROI (C,L, or W); a morphological measure

Size/tangentrail(4) Each ROI (C,L, or W) Area signal of tangential region “4” (see Figure 1E), computed for each of ROI (C,L, or W); a morphological measure

LumenRPA Derived, ROIL Ratio of periclinal to anticlinal ROIL

Lumensignal Derived, ROIL Total signal per ROIL

PvD Derived, ROIL Punctateness vs. diffuseness of ROIL

WallRPA Derived, ROIW Ratio of periclinal to anticlinal ROIW

Wallsignal Derived, ROIW Total signal per ROIW

CellRPA Derived, ROIC Ratio of periclinal to anticlinal ROIC

Cellsignal Derived, RO1C Total signal per ROIC

LumenRPAmean Derived, ROIL Ratio of periclinal to anticlinal ROIL

Lumensignalmean Derived, ROIL Total signal per ROIL

WallRPAmean’ Derived, ROIW Ratio of periclinal to anticlinal ROIW

Wallsignalmean Derived, ROIW Total signal per ROIW

CellRPAmean Derived, ROIW Ratio of periclinal to anticlinal ROIC

aName of fluorescence measure as it appears in diagnostic plotting.
bRegions of interest (ROIs) to which the measure applies. Those marked as “derived” are computed from other measures generated from the ROIs.
cDescription of how each measure is computed.

excluding “m.cx” and “m.cy” measures, we lacked a priori
evidence to eliminate other variables without first examining
their importance to successful classification. It was therefore
necessary to take an iterative approach of feature selection, based
upon the output of the classification, to arrive at an optimal set of
features.

Classification
We then chose to compare two different supervised learning
algorithms: Support Vector Machine (SVM), originally designed
for binary classification problems, and Random Forest,
developed specifically for multiclass problems. We tested
the accuracy of the classification outputs employing all the
above-mentioned features. Random Forest outperformed SVM
using normalized measures, distance-scaled measures, and
untransformed measures (Supplemental Figure 3). Interestingly,
the Random Forest model with the untransformed data resulted
in the best fit. We therefore focused on Random Forest for the
optimization of the classification procedure.

As a first step of optimization we assessed the impact of
removing features on the classification result, using 21-day-old
hypocotyls as a guide. In the first case we admitted the 18 features
into the model, all except the Cartesian coordinates (“m.cx,”
“m.cy,” “Xnew,” and “Ynew”). The Random Forest model yielded

rank scores of the importance of these features (Figure 3A),
indicating that the radial displacement from the center of the
tissue (“radialV”) was the most discriminate feature underlying
the radial organization of the tissue types. Other features that
contributed substantially to the discrimination between the
different cell types were median fluorescence intensity of ROIC
and ROIW (“medianROIC,” “medianROIW”) and the size of the
luminal area (“s.area”). The incline angle (“inclV”), which was
used as a discriminating feature by Sankar et al. (2014), played
a minor role. We used spatial mapping of features (Supplemental
Figure 2) to remove six features that we considered redundant
with others. Again, “radialV” was dominant, followed by cell wall
and cell intensity (“medianROIW,” “medianROIC,” respectively;
Figure 3A). Finally, we reduced the selection to five features that
were ranked highest in the 12-feature set. Again, “radial” was
dominant, while rankings for the remaining features remained
similar to those in the 12-feature set (Figure 3A).

The Random Forest algorithm, as with other classification
methods, classifies all objects. This invariably results in
misclassified objects. However, the Random Forest model
assigns a “confidence interval score” to each object such that
misclassifications can be largely avoided through filtering. We
tested the performance of confidence filtering at 50, 70, and
90% confidence by examining misclassification in cells that were
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FIGURE 2 | Training set selection from ROIC segmentation result. (A)

Representative 21-day-old wild-type hypocotyl tissues showing selections for

xylem I vessels (red), xylem I parenchyma (green), cambium (navy blue),

phloem fibers (yellow), phloem parenchyma (light blue), cork (purple), and

epidermis (orange). (B) Representative 31-day-old wild-type hypocotyl tissues

showing xylem I vessels (red), xylem I parenchyma (green), xylem II vessels

(navy blue), xylem II fibers (yellow), cambium (light blue), phloem fibers (purple),

phloem parenchyma (orange), and cortex (olive).

color-coded according to class in an overlay of the original
reference channel, considering 18-, 12-, and 5-feature selection
sets (Figures 3B–J). It is evident from these panels that increased
confidence filtering reduces selection of cells in boundaries of
differing cell types such as the cork and phloem parenchyma.
The incidence of misclassifications is diminished by confidence
filtering where cell types are interspersed, such as with xylem
vessels and xylem parenchyma. Conversely, removing low-
ranked and seemingly redundant features can lead to increased
misclassification (inset of Figures 3B–J).

Training Set Versatility
A common scenario in developmental biology is the need
to survey (to “phenotype”) many genotypes. Automated
quantitative morphometrics and fluorescence channel screening
offer a means to circumvent the logistic bottleneck in quantifying

traits from microscopic tissues. Yet it is not efficient to develop
distinct testing sets for each genotype (as with a screen of a
mutagenized population). To examine the potential of using
a common training set for genotypes with greatly differing
tissue organization and morphometric characteristics, we chose
to carry out a reciprocal examination between wild type (Col-
0) and the knat1bp−9 mutant which exhibits irregular radial
organization of tissues in the hypocotyl (e.g., reduced xylem fiber
formation) and altered luminal areas of xylem vessels (Liebsch
et al., 2014). In this examination, we produced 12-feature training
set models for each, and then compared result for each genotype
(Figure 4). For the wild-type test image (Figures 4A,B), the
knat1bp−9 training set classified the vast majority of cortical,
phloem parenchyma, phloem fiber, xylem I fiber and vessel cells
correctly. However, at the boundary between xylem I and xylem
II, relatively more misclassifications or absent classification (low
confidence) of vessels and fibers occurred in the wild-type tissue
with the knat1bp−9 training set. Similarly, the wild-type training
model on knat1bp−9 performed well on the classification of all
cell types except for xylem fibers and vessels at the boundary
between xylem I and II relative to the knat1bp−9 training set
(Figures 4C,D). Generally, with the wild-type training set the
boundary between xylem I and II is moved toward the outside of
knat1bp−9 hypocotyls (Liebsch et al., 2014) and misclassification
at the boundary most likely represent the dominant nature of
“radius” in the classification model. Yet, such misclassifications
compose a small proportion of the classified cells that present
a wealth of information for comparative morphometrics and
fluorescence quantification.

In order to see if automated classification could be used as the
basis to conduct comparative morphometrics of genotypes, we
chose to examine cell area (“s.area”) of xylem vessels of wild type
(Col-0) and the knat1bp−9 mutant, as knat1bp−9 is known to have
smaller cell areas (Liebsch et al., 2014). In this case, three separate
sections from the same specimen were quantified, filtered on 70%
confidence interval, and the means of all remaining regions of
“s.area” measures computed with standard deviations (Figure 5).
In line with previously published data (Liebsch et al., 2014),
Xylem-II vessels of knat1bp−9 were significantly smaller than in
wild type providing evidence that multi-genotype morphometric
comparisons are feasible.

Fluorescence Quantification
With robust, accurate classification and subdivision of ROIs to
predefined classes, each ROI (and sub-ROI) provides a mask to
conduct a variety of measurements of fluorescence (Table 2).
While sub-region-specific ROIs provide a high resolution of
fluorescence distribution, relative or summative distribution
of these intensities can be more informative. As a result,
“derived” measures are computed from values in sub-regions
(1–4) of various ROIs. For the purpose of demonstration,
we probed tissues with an antibody specific to xylan in
the secondary cell wall. A fluorescent secondary antibody
permitted visualization of epitope localization. Fluorescence
was quantified by computing pixel-wise intensities of each
ROI, then “derived” measures were subsequently plotted as
spatial maps (Supplemental Figure 4). In 21-day-old hypocotyls,
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FIGURE 3 | Feature selection effects on classification for representative 21 dag wild-type hypocotyl. (A) Random Forest scores for features chosen in 18-,

12-, and 5-feature classification iterations. (B–D) Classification results for 18-feature classification with 50, 70, and 90% confidence interval filtering, respectively.

(E–G) Classification results for 12-feature classification with filtering as in (B–D). (H–J) Classification result for 5-feature classification with filtering as in (B–D), and

(E–G) sets. Inset for (B–J) depict a sub-region of tissue where misclassifications (asterisks) of xylem-I vessel elements occurs.

secondary cell walls occur exclusively in the xylem vessels,
thereby providing a clear case of cell type-specific fluorescence to
validate the quantification methodology (Figure 6). Comparison
of fluorescence channel (Figure 6B) with a spatial heatmap
of fluorescence intensity (“derived_wallsignal”) mapped
to ROIC (Figure 6C) demonstrates that the quantification
replicates the spatial distribution of fluorescence in the source

image. As evidence that the signal is predominantly in the
walls, the “derived_lumensignal” values are only moderate
in the outermost (youngest) vessels and completely absent in
older vessels (Supplemental Figure 4). This is likely due to
presence of epitope within the lumen, as it is defined by the
segmentation process, of living xylem vessel cells during wall
assembly.
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FIGURE 4 | Reciprocal classification of genotypes from training set

iterations of either genotype. Thirty-one-day-old hypocotyls of wild-type

(Continued)

FIGURE 4 | Continued

(A,B) and knat1bp−9 (C,D) genotypes classified with training sets of either

knat1bp−9 (B,D) and wild-type (A,C) 31-day-old hypocotyls. (A–D)

Classifications passing the 70% confidence interval threshold. Insets in wild

type (A,B) and knat1bp−9 (C,D) are arbitrarily chosen regions at the boundary

between Xylem I and II that demonstrate the effect of selection of training set

iteration on classification result (classification of selected cells of clear identity

are indicated as correct [checkmarks], not classified [“+” sign], and

misclassified [“x”]).

FIGURE 5 | Quantitative morphological difference between wild-type

and knat1bp−9 genotypes. Relative sizes of secondary cell-walled xylem II

vessels (“X-II-Ve”) for technical replicates (separate immunolabeled sections) of

representative 31-day-old hypocotyls of wild type and knat1bp−9, with

12-feature classification iteration. Genotype-specific training sets were applied

for classifications. Error bars represent standard deviations of relative areas of

all cells passing the 70% confidence interval filtering. *t-test, wild type vs.

mutant, p < 0.05.

As proof-of-concept that the classification provides a
meaningful basis to group cells for fluorescence characterization,
we next examined the means of fluorescence intensities
(“derived_wallsignal”) values for all cells of each cell class,
filtering at 50, 70, and 90% (Figures 6D–G, respectively). From
this series, it is clear that the xylem vessels are the dominant
cell type that exhibits a fluorescence signal. Not evident with
visual examination of the spatial map of “derived_wallsignal”
(Figure 6C), the xylem parenchyma exhibits a weak signal,
too. As increasing stringency reduces the contribution of the
xylem parenchyma to the overall signal, we presume that
misclassification is the primary cause of signal bleed into that
cell type. Yet, stringent filtering (Figure 6G) does not eliminate
this signal entirely and thus parenchymal cells of the xylem still
retain signal where we expect none (no xylan in this cell type).
One explanation for the signal is that there is inaccuracy in
establishing the watershed boundaries between cell types that
differ greatly in cell wall thickness (Figure 1A, inset).
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FIGURE 6 | Quantification of second channel (fluorescence) for a representative tissue (21-day-old wild-type hypocotyl) labeled with xylan-specific

antibody (LM10). (A) Overlay image of CFW counterstain channel (magenta) and LM10 immunolabel (green) channel. (B) Isolated immunolabel channel after

background fluorescence correction. (C) Heatmap of wall signal (grayscale; white, strong signal; black, no signal) for ROIL objects. Classification result and relative

wall signal for 50 (D), 70 (E), and 90% (F) confidence filtering. (G) Quantification of relative fluorescence intensity. Error bars represent the standard deviations of

means of relative signal intensities. Three biological replicates.

High Throughput Data Processing Package
This methodological proposal presents the reader with a
MATLAB-based data analysis pipeline (Supplemental File
1) that provides the complete set of scripts necessary to
prepare quantitative data from a complete fluorescence imaging
experiment for downstream (multivariate statistical) analysis,
while also providing a wealth of images and plots of diagnostic
value (Figure 7, detailed in Supplemental Figure 5). Importantly,
this set of scripts employs the MATLAB Image Processing
toolbox as well as the DIPimage toolbox (http://www.diplib.org/)
together providing flexibility and efficiency in a variety of
standard image analysis procedures. However, it is the unique
assemblage of novel custom scripts using the Random Forest
classification model that provide the core analytical steps for
generating quantitative data from raw images of plant tissue.
Importantly, the core scripts are nested within a graphical
user interface that minimizes command line interaction and
prompts the user with all of the important parameters for

image processing, segmentation, classification and filtering
(Supplemental Table 1).

DISCUSSION

Here, we provide an image analysis toolkit to accurately segment
all the cells in transverse sections of hypocotyls, to precisely
classify the individual segments into 6 to 8 cell type classes with
a specified degree of certainty (confidence interval scores) and
to extract precise morphometric data and fluorescence intensity
of two different channels for each cell type. By analyzing the
distribution of fluorescence emitted by a xylem-vessel-specific
marker we obtained accurate segmentation and classification
of xylem vessels and parenchymatic cells. This is a relevant
improvement over previous attempts of automated cell type
classification, which could not distinguish between xylem vessels
from parenchyma (Sankar et al., 2014; Montenegro-Johnson
et al., 2015). These recent methods relied heavily on spatial
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FIGURE 7 | Schematic of data processing pipeline showing main processing steps for training set development (A–D), image quantification (E–K), and

data assembly and export (L–O). (A) Counterstain channel of two-channel image is first smoothed and segmented on one of the training set images. (B) The user

then defines the number of cell classes, provides names for cell classes, and select cells for each class in each of the training set images. The cell selections are

stored for the experiment. (C) The user is presented with spatial maps of the features and chooses which features to use in the classification. This data is stored as an

“iteration” for the chosen training set. (D) The classification is carried out on the chosen features to produce a model to be used in classifying images of an

experimental treatment class in (E–K). (E) The user selects a set of images that will use a common training set iteration, then (F) images are similarly processed (as in

A) and (G) measurements for the features chosen in the training set iteration are computed for all ROIs obtained by the segmentation in (F). (H) Cell classification is

carried out using the model generated by the chosen training set iteration and (I) spatial maps are generated for 50, 70, and 90% confidence intervals. Classification

and confidence scores are stored for each image along with morphological measures used in classification. (J) After similar image pre-processing as the counterstain

channel, fluorescence measures listed in ROIC.
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localization of cell types within the tissue. However, using
coordinates as a sole criterion for the classification can obviously
not discriminate between different spatially dispersed cell types,
as xylem vessels. Furthermore, the relative location of a cell to
the manually selected origin of coordinates can change during
development, e.g., the cambium is progressively pushed away
from the center of the hypocotyl. Our approach is not only based
on the position of each cell within the tissue context but also
on features such as cell wall thickness or shape and is therefore
expected to be less sensitive to variation in growth than strategies
relying on coordinates only.

Automated image analysis is required for large screens
involving hundreds of samples, like mutant screens and
association mapping. Whereas, segmentation should not be
affected by the morphologic variation across the samples,
classification might require time-consuming extension of
trainings sets. Application of a training set derived from wild
type on hypocotyls of knat1bp−9, a mutant which is characterized
by severely distorted radial organization, indicated that applying
stringent confidence filtering can reduce misclassifications in
the mutant efficiently. However, the boundaries between xylem
I and II cell types were inaccurately recognized when using a
wild-type training set on mutant hypocotyls. This underlies the
dominant nature of the radius feature, which measures the radial
displacement of a segment from the center of the hypocotyl.
Omission of the radius feature, improvements to training
sets (image and cell choices) or simply scaling of “radius” are
promising means to improve the classification of cells at the
boundary between xylem I and II.

Although plant cell walls are considered to be dynamic
structures, deposition of wall components is usually stable and
irreversible; as opposed to changes in the abundance of short-
lived gene products, which can occur in the range of minutes.
This, together with easy fixation and efficient preservation of
walls as compared to the cytoplasm, makes chemical cell wall
properties a good marker for irreversible decisions in cell
differentiation. The onset of cell death in xylem vessels is, for
example, marked by the lignification of secondary vessel walls
(Smith et al., 2013). Our image analysis toolkit permits the
analysis of large numbers of commercially available antibodies
against different cell wall epitopes. Alternative methods, which
offer theoretically the same spatial resolution, to assess the
chemical composition of walls of single cells are vibrational
spectroscopy and ToF-SIMS (Gorzsás et al., 2011; Gerber et al.,
2014; Felten et al., 2015). However, long acquisition times, rather
poor image quality and absence of automated image analysis are
obstacles that have not yet been overcome by these spectroscopic
methods. While in specific cases methods of spatially resolved

spectroscopy can provide important chemical information they
are, in contrast to the here presented method, not suitable for
larger genetic screens or highly resolved time courses.

Here, we present proof-of-concept studies employing images
from Arabidopsis hypocotyls. While we expect that automated
segmentation of similarly processed plant material, irrespective
of the species, should be feasible with no or little adaptation to the
script, there may be a need to optimize tissue fixation, sectioning
and mounting for other materials than transverse sections of

Arabidopsis hypocotyls or stems. On the other hand, application
of our pipeline in the analysis of epitope distribution in whole-
mount samples, e.g., root tip, or in live imaging of fluorescent
markers should be within reach. Images derived from whole-
mount samples or live imaging may, however, be more difficult
to segment due to lower signal to noise ratios.

In its current form, our data analysis pipeline efficiently
and accurately provides a wealth of morphometric data for
automatically categorizing cell types of transverse sections of
Arabidopsis hypocotyls at various growth stages. Furthermore,
our pipeline provides a robust means to accurately quantify
immunofluorescence for specific cell types, filterable by
confidence scores for individual cells. This manuscript, along
with the accompanying script package, thus presents an
initial exploration into the application of this MATLAB-
based analytical approach of segmentation, classification and
quantification of confocal images; one that foreseeably quantifies
any number of fluorescence targets on separate channels in more
sophisticated fluorescence-based experiments on living or fixed
tissues.
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