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The NAP (NAC-like, activated by AP3/P1) transcription factor belongs to a subfamily of
the NAC transcription factor family, and is believed to have an important role in regulating
plant growth and development. However, there is very little information about this
subfamily in Rosaceous plants. We identified seven NAP genes in the peach genome.
PpNAP2 was categorized in the NAP I group, and contained a conserved transcription
activation region. The other PpNAP genes belonged to the NAP II group. The expression
patterns of the PpNAP genes differed in various organs and developmental stages.
PpNAP1 and PpNAP2 were highly expressed in mature and senescing flowers, but
not in leaves, fruits, and flower buds. PpNAP3 and PpNAP5 were only expressed in
leaves. The PpNAP4 expression level was high in mature and senescing fruits, while
PpNAP6 and PpNAP7 expression was up-regulated in mature and senescent leaves
and flowers. During the fruit development period, the PpNAP4 and PpNAP6 expression
levels rapidly increased during the S1 and S4 stages, which suggests these genes
are involved in the first exponential growth phase and fruit ripening. During the fruit
ripening and softening period, the PpNAP1, PpNAP4, and PpNAP6 expression levels
were high during the early storage period, which was accompanied by a rapid increase
in ethylene production. PpNAP1, PpNAP4, and PpNAP6 expression slowly increased
during the middle or late storage periods, and peaked at the end of the storage period.
Additionally, abscisic acid (ABA)-treated fruits were softer and produced more ethylene
than the controls. Furthermore, the PpNAP1, PpNAP4, and PpNAP6 expression levels
were higher in ABA-treated fruits. These results suggest that PpNAP1, PpNAP4, and
PpNAP6 are responsive to ABA and may regulate peach fruit ripening.
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INTRODUCTION

The development and maturation of plant tissues involve
complex processes regulated by genetic, hormonal, and
environmental factors (Wang, 2008). The NAP transcription
factor is a member of a subfamily of the plant-specific NAC
(NAM, ATAF1, 2.CUC2) transcription factor family, which
is important in many vital biological processes during plant
growth and development (Sablowski and Meyerowitz, 1998;
Fernandez et al., 2006; Fan et al., 2015). Sablowski and
Meyerowitz (1998) determined that AtNAP is associated
with cell expansion in specific Arabidopsis thaliana flower
organs, while Guo and Gan (2006) reported that AtNAP is
important for leaf senescence. This was further supported
by a study that revealed AtNAP regulates leaf senescence
processes by directly binding to the promoter of SAG113 to
form an ABA-AtNAP-SAG113 PP2C regulatory chain that
controls stomatal movement and water loss in senescing leaves
(Zhang and Gan, 2012). Other studies have demonstrated
that NAP affects leaf senescence in bamboo (Chen et al.,
2011), crocus (Kalivas et al., 2010), Festuca arundinacea (Guo
et al., 2010), Asarina procumbens (Fan and Zhao, 2014),
and rice (Ooka et al., 2003). Kou et al. (2012) reported that
AtNAP expression increased during silique senescence in
A. thaliana. Fernandez et al. (2006) observed that VvNAP may
be important for grapevine flower and fruit development. In
Citrus sinensis (L.) Osbeck, CitNAC expression was detected
only in the fruit peel and pulp during the fruit ripening
or senescence stages (Liu et al., 2009). Additionally, recent
studies showed that the NAP subfamily is also important for
regulating plant senescence and response to abiotic stresses
(Meng et al., 2009; Zhang and Gan, 2012; Huang et al., 2013).
The NAP transcription factor has been identified in various
plant species, including rice (Ooka et al., 2003), bamboo (Chen
et al., 2011), wheat (Cristobal et al., 2006), cotton (Meng
et al., 2009), grape (Fernandez et al., 2006), maize (Fan et al.,
2014), and soybean (Meng et al., 2007). However, the effect
of NAP on the development of Rosaceae plants has not been
studied.

Peach (Prunus persica) is an economically important crop,
whose typical climacteric fruit undergoes a program of
enhanced ethylene production and an associated increase in
respiration rate at the onset of ripening (Barry and Giovannoni,
2007). Therefore, peach fruit softening and senescence rapidly
occur after harvest, which makes storage and transport
difficult. This limits peach production. A more thorough
characterization of the physiological basis of peach fruit growth
and ripening will enable the development of effective strategies
to regulate these processes. Furthermore, peach, as a stone
fruit, exhibits a typical double sigmoid growth pattern during
fruit development, with distinct growth stages (S1–S4). The
S1 stage corresponds to the first exponential growth phase,
and is characterized by a rapid increase in cell division and
elongation. In the S2 stage, which proceeds more slowly than
S1, most of the dry matter is involved in pit hardening
and seed and embryo growth. The S3 stage represents the
second exponential growth phase, during which the fruit

rapidly increases in size. Fruit ripening occurs in the final
stage (S4) (Li et al., 1989; Tonutti et al., 1997; Soto et al.,
2013).

In this study, we identified seven members of the peach NAP
subfamily and analyzed their expression during leaf, flower, and
fruit development and senescence. We revealed that members of
this subfamily may function in the development and maturation
of flowers and fruits, and regulate fruit softening.

MATERIALS AND METHODS

Plant Materials
Peach tree (P. persica cv. ‘Qinguang 8’) samples were collected
from the Experimental Station of the College of Horticulture
at the Northwest A & F University in Yangling, Shaanxi,
China. Samples included flowers, leaves, and fruits. Flower
samples consisted of flower buds, blooming flowers, and
flowers 2 days after full bloom. Young leaves were those
that had just unfolded, and were collected from new shoots,
while mature and senescing leaves were collected from the
middle sections of new shoots. Young, mature, and senescing
fruits were collected 42, 107, and 131 days after full bloom
(DAFB), respectively. For fruit development analyses, young
fruits were hand-picked 25 DAFB, and samples were collected
every 15 days until the fruits reached commercial maturity
(i.e., fruits with light green or partially red peels and slightly
hard flesh). At least 20 fruits at each developmental stage
were used to determine fruit weight, diameter, and gene
expression.

For storage analyses, fruits with no visible defects were
randomly hand picked at commercial maturity and divided
into two groups. One group was soaked with 100 mM abscisic
acid (ABA) for 10 min at 25 ± 1◦C. The other group was
soaked with water and served as the control group. Each
group consisted of 120 fruits, which were kept in individual
plastic bags at 25 ± 1◦C. During the storage period, fruit
samples were collected every 2 days, until the flesh fully
softened. All samples were frozen with liquid nitrogen and stored
at −80◦C.

RNA Extraction and Reverse
Transcription
Total RNA was extracted using cetyltrimethylammonium
bromide (Chang et al., 1993), and reverse transcription was
completed using the PrimeScript RT Reagent Kit with gDNA
Eraser (Takara).

Identification of Peach NAP Subfamily
Members
Arabidopsis thaliana, Vitis vinifera, and Solanum lycopersicum
NAP gene sequences were used to search the peach genome
database1 with the NCBI BLASTp tool to identify peach genes
that were highly homologous to NAP subfamily genes.

1www.rosaceae.org/species/prunus_persica/genome_v1.0
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TABLE 1 | Peach NAP genes identified in this study.

Gene name Gene locus Chromosome no. Genbank accession no. Deduced polypeptide Signal

Length (aa) MW(kDa) PI peptide

PpNAPl ppa007445m 7 EMJ03289 383 42.91 8.23 −
PpNAP2 ppa009530m 1 EMJ 24523 288 33.19 7.01 −
PpNAP3 ppa020620m 4 EMJ15685 385 44.51 6.37 −
PpNAP4 ppa007577m 4 EMJ 12674 363 40.35 7.78 −
PpNAP5 ppa017586m 6 EMJ 09136 348 39.83 8.18 −
PpNAP6 ppa007314m 4 EMJ 12652 373 41.07 8.45 −
PpNAP7 ppa015363m 6 EMJ07423 356 40.46 8.25 −
Gene locus corresponds to annotation ID from peach (Prunus persica) genome data.

Multiple Sequence Alignment,
Phylogenetic Analysis, and Exon/Intron
Structure Determination
The NCBI BLAST tool2 was used to assess sequence
similarities. The open reading frames of PpNAP genes
were analyzed using the NCBI Open Reading Frame Finder
tool3. Multiple sequence alignment analyses were conducted
using the DNAMAN program, and graphical annotations
of consensus sequences were completed using the Weblogo
online tool4. A phylogenetic tree was generated using
the NJ method (with 1,000 repeats) of the MEGA 6.06
software. Genetic structure investigations were conducted
using the Gene Structure Display Server online tool5. Signal
peptides were analyzed with the SignalP program6 (version
3.0; Bendtsen et al., 2004). Protein molecular weights and
pIs were calculated using the ExPASy Compute pI/Mw
tool7.

Molecular Cloning of Peach NAP
Subfamily Members
To clone the PpNAP genes, Primer Premier 6.0 was used
to design gene-specific primer pairs according to the
peach genome sequence (Table 1). Using cDNA templates,
PCR was completed with the Phanta Super-Fidelity DNA
Polymerase (Vazyme) according to the manufacturer’s
recommended procedure. The PCR products were isolated
and purified with the MiniBEST Agarose Gel DNA
Extraction Kit Ver. 4.0 (Takara). Purified products were
inserted into the pMD-19T vector (Takara). Positive clones
were confirmed by blue/white plaque assays. Primers
for cloning and quantitative reverse transcription (qRT)-
PCR were synthesized by Sangon Biotech (Shanghai)
Co., Ltd, which also completed all DNA sequencing
reactions.

2http://www.ncbi.nlm.nih.gov/BLAST/
3http://www.ncbi.nlm.nih.gov/gorf/gorf.html
4http://weblogo.berkeley.edu/logo.cgi
5http://gsds.cbi.pku.edu.cn
6http://www.cbs.dtu.dk/services/SignalP/
7web.expasy.org/compute_pi/

Quantitative Reverse Transcription PCR
Assays
The qRT-PCR was conducted using the iQ5 real-time PCR
system (Bio-Rad). The gene-specific primers (Table 1) were
designed using the Beacon Designer 8.0 software (Premier
Biosoft International). Each primer pair (Tm 60◦C) was designed
to amplify an approximately 200-bp fragment. For each sample,
1 µL cDNA, 1 µL each primer, 2 µL double-distilled water, and
5 µL 2x SYBR Premix ExTaq II (Takara) were used in a total
volume of 10 µL. The two-step RT-PCR was completed using
the manufacturer’s recommended program, but the annealing
temperature was changed to 60◦C. Samples were heated at
95◦C for 10 s, cooled to 65◦C for 15 s, and finally heated to
95◦C at a rate of 0.1◦C s−1 for melting curve analyses. The
specific transcript accumulation was analyzed using the 2−��CT

method (Livak and Schmittgen, 2001). Peach 18S ribosomal
RNA was used to normalize data. The amplification, melt curve
and melt park of 18s ribosomal gene in all samples can be seen
in Supplementary Figure S1. Each sample was analyzed in
triplicate.

Flesh Firmness and Ethylene Production
Flesh firmness of five randomly selected fruits was measured
using the GY-4 firmness meter equipped with a 8-mm diameter
probe. A small epicarp segment was peeled from two places
of each fruit to enable probe attachment. Three biological
replicates were measured. Ethylene production was determined
as described by Liguori et al. (2004) using the Trace GC
Ultra gas chromatograph (Thermo Fisher Scientific). The oven,
injector, and detector temperatures were 90, 110, and 140◦C,
respectively.

Search for Cis-Acting Elements in the
Promoters of Peach NAP Genes
Upstream regions (2000 bp upstream of the transcription start
site) of selected peach NAP genes were used to search the
PlantCARE database for putative cis-acting elements (Lescot
et al., 2002).

Statistical Analyses
Gene expression levels were subjected to analysis of variance
using SAS. Values are provided as the mean ± standard error
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FIGURE 1 | Multiple sequence alignments of PpNAP proteins and NAP proteins from other plants. The accession numbers of the proteins homologous to
AtNAP are provided in Supplementary Table S2.

(n = 3). The overall least significant difference (p < 0.05) was
calculated and used to separate means.

RESULTS

Identification of Peach NAP Subfamily
Members
Seven NAP genes were detected in the peach genome with
query IDs of ppa007445m, ppa009530m, ppa020620m,
ppa007577m, ppa017586m, ppa007314m, and ppa015363m,
which corresponded to PpNAP1, PpNAP2, PpNAP3, PpNAP4,
PpNAP5, PpNAP6, and PpNAP7, respectively. These peach
NAP genes contain a conserved NAC domain structure at the

N-terminus, and the domain can be divided into A, B, C, D,
and E subdomains. The conserved amino acid sequences in
the A, B C, D, and E subdomains were LPPGFRFHPTDEELI
VHYL, IIAEVDIYKFDPWELP, EWYFFSPRDRKYPNGARP
NRAAVSGYWKATGTDK, VGVKKALVFYKGRPPKGYKT-
DWIMHEYRL, and SMRLDDWVLCRIYKK, respectively
(Figure 1). Furthermore, according to Fan et al. (2015), the
NAP subfamily could be divided into two groups (NAP I and
NAP II). Because of the presence of the relatively conserved
transcription activation region, PpNAP2 was included in the
NAP I group, while the other PpNAP genes were included in
the NAP II group (Figure 1). The PpNAP genes were highly
homologous to NAP genes from other species. Similar to other
NAP genes, PpNAP1–6 consisted of three exons and two introns,
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FIGURE 2 | The structures of PpNAP genes. The numbers 0, 1, and 2 represent introns in phases 0, 1, and 2, respectively.

while PpNAP7 contained two exons and one intron (Figure 2).
The deduced polypeptide sequences ranged from 288 to 385
amino acids, with predicted molecular weights between 33.19 and
44.51 kDa. The predicted pIs of PpNAP genes were from 6.37 to
8.45. None of the identified peach NAP genes contained signal
peptide sequences according to SignalP analysis (Table 1).

Phylogenetic Analysis of the Peach NAP
Subfamily Members
To evaluate the evolutionary relationships among NAP subfamily
members, cluster analyses were completed using the amino
acid sequences encoded by the identified PpNAP genes and
by NAC genes from potato, tomato, pepper, orange, grape,
rice, A. thaliana, and bamboo using the MEGA 6.06 software.
Phylogenetic analyses revealed that all PpNAPs are clustered in
the NAP subfamily (Figure 3). PpNAP2 was similar to citrus,
A. thaliana, and western balsam poplar NAPs, while PpNAP4
and PpNAP6 were similar to NAPs from grape and wheat. In
contrast, PpNAP3, PpNAP5, and PpNAP7 were not particularly
similar to NAPs of other plants. Additionally, the deduced amino
acid sequences were more highly conserved among PpNAP4,
PpNAP5, PpNAP6, and PpNAP7, while the similarities among
PpNAP1, PpNAP2, and PpNAP3 were less than 28%.

PpNAP Gene Expression in Various
Organs at Different Developmental
Stages
To investigate the potential functions of PpNAP genes during
peach development, transcription level changes in different
organs were analyzed using qRT-PCR. The PpNAP expression
patterns were different among various organs and developmental
stages (Figure 4). The PpNAP expression levels in leaves were
lower than those in flowers and fruits. The expression of PpNAP6
and PpNAP7 rapidly increased in maturing and senescing leaves.
The PpNAP1, PpNAP4, and PpNAP5 genes were more highly
expressed in young and senescent leaves than in mature leaves.
In contrast, PpNAP3 transcript levels were high in mature leaves,
while PpNAP2 expression remained relatively stable and at low
levels (Figure 4A).

The expression levels of PpNAP1 and PpNAP6 were rapidly
up-regulated in blooming and 2 DAFB flowers. PpNAP2,
PpNAP4, and PpNAP7 were highly expressed in blooming

flowers, but expressed at very low levels in flower buds. Similarly,
PpNAP3 and PpNAP5 expression were almost undetectable in
flowers at all developmental stages (Figure 4B).

The PpNAP4 and PpNAP6 expression levels were higher than
those of the other PpNAP genes in fruits. The higher expression
levels were most obvious for PpNAP4 in mature and senescent
fruits and PpNAP6 in young and senescing fruits. PpNAP1 and
PpNAP2 were expressed at low levels, while PpNAP3, PpNAP5,
and PpNAP7 expression was barely detectable (Figure 4C).

PpNAP Gene Expression Profiles During
Fruit Development
To confirm the accuracy of the predicted cDNA sequences
and further explore the biological functions of PpNAP1,
PpNAP2, PpNAP4, and PpNAP6 in fruit, we designed specific
primer pairs using the peach genome sequence for cloning
and expression analyses in mature ‘Qinguang 8’ fruits. The
cDNA sequences of PpNAP2, PpNAP4, and PpNAP6 were
consistent with the corresponding genome sequences, while
that of PpNAP1 was 48 nucleotides longer than expected
(see Supplementary Material). The expression of Pp-ACO1 is
strictly related to the transition between the pre-climacteric and
climacteric stage. We have analyzed the expression of Pp-ACO1
during developmental stage, and the result showed the obvious
enhance of Pp-ACO1 expression at S4 stage (Supplementary
Figure S2).

The qRT-PCR results revealed that PpNAP4 expression in
the mesocarp rapidly increased during the S1 fruit development
stage (25–55 DAFB; Figures 5A,D), increased slowly during
S2 and S3 (55–102 DAFB; Figures 5A,D), and significantly
increased during S4, where it was maintained at a high level
(102–121 DAFB; Figures 5A,D). In contrast, PpNAP6 expression
rapidly increased during S1, but decreased in S2, remained
stable during S3, and increased during S4 (Figures 5A,E).
The expression levels of PpNAP1 and PpNAP2 were low
during fruit development, with elevated expression levels only
during S3 (85–100 DAFB) and S1 (25–55 DAFB), respectively
(Figures 5A–C).

PpNAP Gene Expression Profiles During
Fruit Ripening and Softening
The firmness, ethylene production, and PpNAP expression of
commercially mature ‘Qinguang 8’ fruits were measured during
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FIGURE 3 | Phylogenetic tree of PpNAP with NAC transcription factors from different plants. The unrooted phylogenetic tree was constructed using the NJ
method of the MEGA 6.06 program. GenBank accession numbers are provided in Supplementary Table S3.

fruit storage. In the first 2 days after harvest (DAH), fruit firmness
decreased slowly, while from 2 to 8 DAH, fruit firmness declined
rapidly (Figure 6A). Ethylene production doubled from 0 to
2 DAH, increased slowly from 2 to 6 DAH, and then decreased
considerably (Figure 6B).

During storage, the PpNAP1, PpNAP4, and PpNAP6
expression levels exhibited similar trends. Expression increased
during the early storage period and was highest at 2 DAH,
which coincided with the first peak of ethylene release. The
expression levels subsequently declined to varying degrees. This
was followed by an increasing trend from 4 or 6 DAH to 10 DAH

(Figures 6C,E,F). PpNAP4 and PpNAP6 expression levels were
highest at the end of the storage period (Figures 6E,F). In
contrast, PpNAP2 expression was maintained at a low level
throughout the storage period, with highest expression levels at
4 DAH (Figure 6D).

Effects of ABA Treatment on PpNAP
Gene Expression, Ethylene Release, and
Fruit Firmness
The firmness of the ABA-treated fruits was lower than that of
the control fruits in the first 2 DAH, after which the firmness
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FIGURE 4 | Quantitative reverse transcription PCR analysis of selected
peach NAP genes in leaves (A), flowers (B), and fruits (C) with different
developmental stage. The value for each sample is the mean of three
replicates. Vertical bars indicate standard error. The primer sequences are
provided in Supplementary Table S1. Bars correspond to the
mean ± standard error (n = 3). Asterisks indicate significant differences in
young leaves (A), flower buds (B), and young fruits (C) at p < 0.05 according
to the Student’s t-test.

of the treated and control fruits decreased significantly, with
treated fruits softening faster. The maximum storage periods
for treated and control fruits were 6 and 10 days, respectively
(Figure 6A).

After ABA treatment, the release rate of endogenous ethylene
sharply increased and peaked at 2 DAH, with higher peak rates
for treated fruits than for controls (Figure 6B). The PpNAP1,
PpNAP4, and PpNAP6 expression levels increased following ABA

treatment for the duration of the storage period (Figures 6E,F).
PpNAP2 expression increased following ABA treatment at 2 and
6 DAH (Figure 6D).

Sequence Analysis of NAP Promoters for
Fruit-Specific Expression
PlantCARE database were used to identify cis-acting elements in
the promoter regions of four NAP genes specifically expressed in
fruit. The detected cis-acting elements were categorized in the
following four classes: (1) involved in the perception of plant
hormones, such as ABA, ethylene, methyl jasmonate, salicylic
acid, and gibberellic acid; (2) related to expression elements
specific to particular tissues, such as endosperm, seed, and
shoot; (3) involved in transcription activation and enhancement,
such as the TATA-box, CAAT-box, and 5′ untranslated region
pyrimidine-rich stretch; and (4) associated with responses to
environmental and physiological stimuli, such as drought, low
temperature, heat stress, anaerobic conditions, light, fungal
elicitors, and other stresses (Table 2).

Among the identified cis-acting elements associated with
hormone-related responses, the ABA-responsive element was
present (one to eight copies) in all studied promoters, while
the coupling element 3 was detected only in the PpNAP1 and
PpNAP2 promoters. The CGTCA and TGACG cis-acting element
motifs responsive to methyl jasmonate were detected (one to four
or five copies) in all promoters except for that of PpNAP1, while
the MADS-domain site CArG-box was present in all promoters
(one to three copies).

DISCUSSION

Identified NAP Subfamily Members and
Sequence Analyses
The NAP is a transcription factor with crucial roles in many
biological processes during plant growth and development (Fan
et al., 2015). In this study, we identified seven NAP genes in
the peach genome that were homologous to NAP genes from
three other plant species. However, Fan et al. (2015) reported
that there are four NAP genes in peach, corresponding to
the PpNAP1, PpNAP2, PpNAP4, and PpNAP6 genes identified
in our study. We detected three more NAP genes, namely
PpNAP3, PpNAP5, and PpNAP7. Multiple sequence alignments
revealed that the seven peach NAP proteins contained the five
typical NAC subdomains, and were very similar to other NAP
proteins (Figure 1). Phylogenetic analyses indicated that all seven
PpNAP genes clustered in the NAP subfamily, with only PpNAP2
belonging to the NAP I group, while the others belonged to the
NAP II group. This suggests the function of PpNAP2 may differ
from that of the other members.

Tissue-Specific Expression of PpNAP
Genes
The expression levels of the identified peach NAP genes were
measured in leaves, flowers, and fruits, as well as during
maturation and senescence. The results indicated the genes had
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FIGURE 5 | Average fruit weight after full bloom (A), quantitative reverse transcription PCR analysis of selected peach NAP genes during fruit
development (B–E). Bars correspond to the mean ± standard error (n = 3). The overall least significant difference (p < 0.05) was calculated and used to separate
means.
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FIGURE 6 | Firmness (A), ethylene production (B) and expression levels of selected peach NAP genes in control and ABA-treated fruits during the
storage period (C–F). Bars correspond to the mean ± standard error (n = 3). The overall least significant difference (p < 0.05) was calculated and used to separate
means.
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different expression patterns, which suggests they may have
different roles in various physiological pathways. PpNAP1 and
PpNAP2 had relatively high expression levels in blooming flowers
and flowers 2 DAFB, but low levels in leaves, fruits, and flower
buds (Figures 4A–C). Therefore, these genes may be involved in
regulating flower maturation and aging. PpNAP3 and PpNAP5
expression was observed in leaves, but was almost undetectable
in flowers and fruits (Figures 4A–C), which indicates they
may be associated with leaf development. The expression of
PpNAP4 was rapidly up-regulated and maintained at high levels
during fruit maturation and senescence (Figure 4C), suggesting
that this gene may play a key role in regulating peach fruit
ripening and softening. PpNAP6 and PpNAP7 expression levels
were up-regulated in mature and senescent leaves and flowers
(Figures 4A,B). Therefore, they may be associated with the
maturation and senescence of leaves and flowers. These results
suggest that the expression of PpNAP genes depends on tissue
type, which is supported by the results of related studies in other
plants. For example, the expression of VvNAP was observed only
in grapevine flowers and fruits, and not in vegetative organs such
as leaves, shoots, or roots (Fernandez et al., 2006). The expression
patterns ofAtNAP differed among stamens, fertilized flowers, and
developing siliques in A. thaliana (Sablowski and Meyerowitz,
1998). InMikania micrantha, the MmNAP gene was observed to
be specifically expressed in stems, petioles, shoots, and leaves, but
not in roots (Li et al., 2012).

Possible Roles of NAP Subfamily
Members in Fruit Development and
Softening
During fruit development, the PpNAP4 and PpNAP6 expression
levels increased rapidly in stages S1 and S4. However, in the
S2 stage, PpNAP4 expression slowly increased while PpNAP6
expression levels decreased (Figure 5). During the S3 stage,
PpNAP4 and PpNAP6 expression levels stabilized. Because of the
association of the NAP gene with cell division and expansion of
stamens and petals (Sablowski andMeyerowitz, 1998), our results
suggest that PpNAP4 and PpNAP6 are likely involved in the first
exponential growth phase and fruit ripening.

During the fruit ripening and softening process, the expression
of PpNAP1, PpNAP4, and PpNAP6 increased considerably in
the first 2 DAH, which was accompanied by an increase in
ethylene production. Furthermore, the expression of PpNAP1,
PpNAP4, and PpNAP6 tended to increase during the middle or
late storage periods, and was highest at the end of the storage
period. These results are consistent with those for AtNAP (Kou
et al., 2012), VvNAP (Fernandez et al., 2006), and CitNAC (Liu
et al., 2009). Therefore, the functions of PpNAP1, PpNAP4, and
PpNAP6 are probably similar to those of AtNAP, VvNAP, and
CitNAC, and involve activities related to peach fruit ripening and
senescence.

The accumulation of ABA plays a key role in the regulation
of peach fruit ripening and senescence (Zhang et al., 2009b),
and stimulates ethylene biosynthesis and ripening in tomato
fruits (Zhang et al., 2009a). Peach fruits treated with ABA
during the S4 fruit development stage exhibited accelerated

ripening and up-regulated expression of the ethylene biosynthesis
genes ACS1 and ACO1 (Soto et al., 2013). Compared with
control fruits, ABA-treated fruits softened faster and released
more ethylene, ultimately resulting in a shorter maximum
storage period. These results are similar to those observed
for tomato (Zhang et al., 2009a), and suggest that ABA may
stimulate ethylene biosynthesis. Additionally, the expression
levels of PpNAP1, PpNAP4, and PpNAP6 increased in ABA-
treated fruit (Figures 6A,B), which was similar to the response
of AtNAP in ABA-treated siliques (Kou et al., 2012). In
rice and A. thaliana leaves, NAP gene expression was also
induced by exogenous ABA (Chen et al., 2014; Yang et al.,
2014). Therefore, the ABA-responsive PpNAP1, PpNAP4, and
PpNAP6 genes may regulate peach fruit ripening and softening.
However, the specific regulatory mechanism requires further
characterization.

Analysis of Promoter Sequences of
Selected Peach NAP Genes
Because of their involvement in regulating transcription, gene
promoters contain important cis-acting elements (Zhu and
Li, 1997). To characterize the possible regulatory mechanisms
of NAP genes during fruit development, maturation, and
softening, we analyzed the promoters of four fruit-specific
NAP genes. Several motifs associated with responses to
phytohormones and environmental factors were detected. These
motifs included the ABA-responsive element and coupling
element 3, the CGTCA and TGACG motifs associated with
responses to methyl jasmonate, and the TCA-element related
to responses to salicylic acid (Table 2). Exogenous ABA
can up-regulate NAP expression in A. thaliana and rice
(Liang et al., 2014; Yang et al., 2014). Zhou et al. (2013)
reported that OsNAP can regulate leaf senescence by affecting
jasmonic acid signaling pathways, and that overexpressing
OsNAP increases the production of endogenous jasmonic acid
in rice. Other studies have demonstrated that hormones,
including ABA, jasmonic acid, and salicylic acid, have important
regulatory roles during fruit ripening and softening (Creelman
and Mullet, 1995; Zhang et al., 2003, 2009a). Therefore,
it can be inferred that PpNAP genes regulate peach fruit
development and softening by influencing specific hormone
signal transduction pathways. Moreover, genes containing the
MADS-box motif have key roles in flower and fruit development
and maturation (Adamczyk and Fernandez, 2009; Smaczniak
et al., 2012). We also observed that one to three copies
of the MADS-domain site CArG-box were present in the
promoters of fourNAP genes, indicating that PpNAP andMADS-
box genes may interact to regulate peach fruit development
and ripening. However, the specific regulatory mechanisms
of PpNAP genes that affect peach fruits require further
study.
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