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Rapistrum rugosum (turnip weed) is a common weed of wheat fields in Iran, which is
most often controlled by tribenuron-methyl (TM), a sulfonylurea (SU) belonging to the
acetolactate synthase (ALS) inhibiting herbicides group. Several cases of unexplained
control failure of R. rugosum by TM have been seen, especially in Golestan province-
Iran. Hence, there is lack of research in evaluation of the level of resistance of
the R. rugosum populations to TM, using whole plant dose-response and enzyme
assays, then investigating some potential resistance mechanisms Results revealed that
the resistance factor (RF) for resistant (R) populations was 2.5–6.6 fold higher than
susceptible (S) plant. Neither foliar retention, nor 14C-TM absorption and translocation
were the mechanisms responsible for resistance in turnip weed. Metabolism of TM
was the second resistant mechanism in two populations (Ag-R5 and G-1), in which
three metabolites were found. The concentration of TM for 50% inhibition of ALS
enzyme activity in vitro showed a high level of resistance to the herbicide (RFs
were from 28 to 38) and cross-resistance to sulfonyl-aminocarbonyl-triazolinone (SCT),
pyrimidinyl-thiobenzoate (PTB) and triazolopyrimidine (TP), with no cross-resistance to
imidazolinone (IMI). Substitution Pro 197 to Ser 197 provided resistance to four of five
ALS-inhibiting herbicides including SU, TP, PTB, and SCT with no resistance to IMI.
These results documented the first case of R. rugosum resistant population worldwide
and demonstrated that both RST and NRST mechanisms are involved to the resistance
level to TM.

Keywords: Rapistrum rugosum, ALS-inhibiting herbicides, dose-response, 14C-TM, TSR and NTSR-mechanisms

HIGHLIGHT

Rapistrum rugosum (L.) is a common weed of wheat and rapeseed in Iran, which is most often
controlled by tribenuron-methyl (TM).

For years, this herbicide has been used for controlling this weed but recently there have been
some reports indicating unexplained control failure of R. rugosum by TM, especially in the wheat
fields.

Different TM resistance levels between the R. rugosum populations were found. ALS mutation
(Pro197Ser) is likely to be the cause of the cross resistance found in those populations to four
of the five families of the ALS inhibitors group. Moreover, highest levels of resistance, at whole
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plant level, were found in those populations that showed two
different mechanisms of resistance: enhanced metabolism and
punctual ALS mutations.

These results documented the first case of R. rugosum resistant
population worldwide and demonstrated that the addition of
resistant site target and non-resistant site target mechanisms are
responsible to the highest resistance level to TM.

INTRODUCTION

Extended use of herbicideapplications will inevitably result in
a rapid evolution of weeds with herbicide resistance. This has
meant that weed researchers challenges and those interested
in inventory control techniques have faced many challenges.
Actually, while talking about the chemical control of weeds, three
main issues should be highlighted: first is the weeds’ resistance
to the action mechanisms of available herbicide; second, the
negative impact of the regulatory and economic means in phasing
out the older herbicides, and in particular some specific herbicide
mechanisms of action (MOA); and third, the inaccessibility of
new herbicides, especially herbicides with a new mode of action
(Ruegg et al., 2007). The application of most of the known
herbicides causes enzyme inhibition, and just a few of them
disrupt other processes such auxin response or cell division.
This limits the herbicide targets to a few groups of the plant
genes. It has resulted in the increase in number of resistant weed
species, which along with the absence of new herbicides, have
made the traditional chemical weed control programs largely
ineffective. For instance, there are now 461 cases of herbicide-
resistant biotypes in 247 species covering all herbicide modes -
of – action (Heap, 2015). It would seem that, in the near future,
there will be inadequate chemical control methods for several
weed species of the major row crops (Stewart, 2009).

Generally speaking, mechanisms of resistance to herbicides
can be divided into two groups: target-site (TSR) and non-
target-site mechanisms (NTSRs). Target-site resistance occurs
due to mutations in the genes of the encoding proteins,
when they are targeted by the herbicide (e.g., changing the
binding sites of herbicide) or by overproduction of the target
enzyme (gene overexpression or amplification). On the other
hand, in non-target site resistance, there are no significant
changes at the protein sequence or protein expression level,
although this subject is more complicated and less known
in both a biological and genetic context. In any case, it
might be said that, theoretically, non - target - site resistance
could minimize the amount of active herbicide reaching
the target site (e.g., decreased foliar uptake or translocation
out of treated sections, increased herbicide sequestration, or
enhanced herbicide metabolism; Yuan et al., 2007). Enhanced
herbicide metabolism in weeds is usually found by measuring
14C-herbicide and its 14C-metabolites in intact plants in the
absence and presence of cytochrome P450 inhibitors (De Prado
et al., 2005; Yasuor et al., 2010). The major metabolites
are identified by TLC or HPLC using standard non-toxic
metabolite-derived herbicide itself (Christopher et al., 1992;
De Prado et al., 2005). A few cases of resistance-metabolism

to acetolactate synthase (ALS)-inhibitor herbicides have been
detected and studied in weed species (Yu and Powles,
2014a,b).

It is obvious that the most widely made use of the
herbicide will result in the rapid evolution of resistant weeds.
An early detection of herbicide resistance in a weed biotype
suspected of resistance requires a series of tests that could
show plant response to different doses of herbicide. These
experiments should study the response of whole plants suspected
of resistance rather than susceptible biotypes in the range
of herbicide doses in a greenhouse assay. A dose-response
experiment is often conducted to determine the level of
resistance and obtain a glimpse of a potential resistance
mechanism.

As there are positive attitudes and efforts toward control of the
spread of resistance in the plants, it seems quite necessary to gain
better and more comprehensive understanding of the resistance
mechanisms. Discovering the basic mechanisms of resistance
is the first step in the attempt to solve problems and develop
novel remedies for resistant weed management in agricultures
(Stewart, 2009). However, many more efforts must be made in
this direction.

Thus, it has been noted that there are many cases of ALS
inhibitor-resistance in rice and wheat because many of the ALS
inhibitor resistant weeds in corn, soybean, and cotton can be
controlled by glyphosate in Roundup Ready crops. Actually, it has
been proved that ALS is the common target site of five herbicide
chemical groups: sulfonylurea (SU), imidazolinone (IMI),
triazolopyrimidine (TP), pyrimidinyl-thiobenzoates (PTB), and
sulfonyl-aminocarbonyl-triazolinone (SCT).

There are evidence that prove the resistance to ALS-
inhibiting herbicides allege that this most often results from
a single amino acid substitution in the ALS enzyme as a
target based in mechanism of resistance. There are five
highly conserved amino acids in the ALS gene. In every
case investigated, target-site resistance to ALS-inhibiting
herbicides has been attributed to a change in one of the
eight amino acids located in these regions including Ala-
122, Pro-197, Ala-205, Asp-376, Arg-377, Trp-574, Ser-653,
and Gly-654. Substitutions in these ALS amino acids have
been implicated in herbicide resistance in field selections
from natural weed populations with target-site resistance.
Mutations in these eight amino acids disrupt herbicide
binding thus converting the susceptible enzyme into the one
resistant to the herbicide (Corbett and Tardif, 2006). Different
mutations result in various cross-resistance patterns. For
example, the Trp- 574-Leu substitution confers resistance
to all families of ALS-inhibiting herbicides in many weed
species, while the Ala-122-Thr substitution endows weed
resistance to IMI but not to SU herbicides (Powles and
Yu, 2010; Beckie et al., 2012). Few cases have been found
in which the accumulation of TSR and NTSR increases
resistance mechanisms in plants. The only known and well-
studied case has been a population of Lolium rigidum found
resistant to chlorsulfuron after seven consecutive years of
treatment with low doses of herbicide in Australia. Only 4%
of individuals of this population had two mechanisms of
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resistance, enhanced rates of chlorsulfuron metabolism and
ALS mutations the rest are only possesses metabolism and they
are individuals with weak resistance level to chlorsulfuron
(Christopher et al., 1992; Burnet et al., 1994; Yu et al.,
2008).

Recently, Rapistrum rugosum (L.) resistance has been reported
by Derakhshan and Gherekhloo (2012). It is a common weed
of wheat and rapeseed in Iran, which is most often controlled
by TM. For years, this herbicide has been used for controlling
this weed but recently there have been some reports indicating
unexplained control failure of R. rugosum by TM, especially
in the wheat fields. First case of R. rugosum resistant to ALS-
inhibitors (chlorsulfuron) was detected in Australia in 1996,
but mechanisms responsible of this resistance were not studied
(Adkins et al., 1997). The main objective of this work was a
survey of R. rugosum resistance in Iran wheat fields, and the
specific objectives to determine: (1) the level of TM resistance of
the different populations detected (2) the resistance mechanisms
involved and (3) the molecular pattern of ALS resistance
determined and thereby distinguish the resistant populations and
cross resistance motif.

MATERIALS AND METHODS

Seed Source
Suspected resistant seeds used in this study were collected from
the Golestan province of Iran in the spring of 2011, 2012, 2013,
and 2014. The suspected seedswere collected and bulked from the
fields with the following characteristics: first, fields with a history
of repeated leaf-applied TM herbicide use for 4 or 5 successive
years. Second, the field where the farmers were not satisfied with
the efficiency of the herbicide in their wheat fields so that after
using it, the field was with this weed. The susceptible reference
populations were collected from the no-herbicides infected fields.
All seeds were air-dried and stored in paper bags at 4◦C until use
in experiments.

Screening Test
For primary screening of a suspicious resistant population, the
experiment was arranged in a completely randomized design
with three replications (one pot per replicate). After breaking
the seed dormancy [seeds were floated in 2000 ppm gibberellic
acid (GA) for 24 h then kept in Petri dishes containing moist
filter paper for 24 h in a refrigerator at 4◦C in the dark], five
germinated seedswere planted in suitable plastic pots. Four weeks
after planting, at the three- to four-leaf stage, TM was applied
at the recommended rate of 15 g a.i. ha−1 using a calibrated
sprayer with a flat-fan nozzle (TeeJet 8001) to deliver 250 L
ha−1 of spray solution at 200 kPa. One untreated control for
each seed population was considered. Plants were harvested
4 weeks after herbicide application and the dry shoot weight was
recorded. To examine the differences between populations, data
were expressed as percentages of untreated control. Also, the
numbers of dead and surviving plants were counted and visual
phytotoxicity rating was scored according to the EWRC method
(European Weed Research Council; 1 = completely inhibition,

9= no effect; Sandral et al., 1997). Data were subjected to analysis
of variance (ANOVA), and comparison of means based on a LSD
test procedure at the 0.05 significance level. Due to presence of
zero values in the original data, we have performed logarithmic
data transformation prior to ANOVA. Then, the original data
were displayed for means comparison in the table.

TM Plant Response
To consider the resistance factor (RF), the seed sources
presenting 50% of surviving plants or with 80% relative dry
weight of the untreated control in the screening test were selected.

The dormancy seeds have been broken and then were sown in
suitable pots and placed in the greenhouse under natural sunlight
(winter 2014 at Gorgan university). Plants with three to four true
leaves were sprayed using a standard and calibrated sprayer as
previously mentioned. TM rates were based on a logarithmic
scale of 0, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 times the recorded
post-emergence commercial rate of utilization.

Above-ground biomass from the plants in each pot was
harvested 4 weeks after treatment (WAT) and dried at 60◦C for
48 h. Dry biomass data were expressed as a percentage of the
untreated control within each population.

TM Spray Retention
This assay was performed according tomethodology described by
Gauvrit (2003). A solution of 15.0 g TM ha−1 (Granstar 75 WG)
mixed with a solution of 100 mg L−1 of fluorescein in 10 ml of
5 mM NaOH was applied on plants at the three to four-leaf stage
in a laboratory spray chamber equipped with a flat fan nozzle
(TeeJet 8002 EVS) calibrated to deliver 250 L ha−1 at a pressure
of 200 kPa.

After the impregnated solution had dried on the foliage
(>10 min), the plants were cut off at ground level, and immersed
for 30 s in 50 ml 5 mMNaOH to wash the tissue. The tissues were
dried in an oven at 60◦C for 72 h. The absorbance of fluorescein
was measured using a spectrofluorometer at 490 exc/510 emi
nm. The retention was expressed in μL of TM solution g−1

dry matter. The experiment was conducted in a completely
randomized design using seven plants from each population
as replications. Data obtained were subjected to ANOVA, and
comparison of means based on an LSD procedure at the 0.05
significance level with Statistix 9.0.

14C-TM Absorption and Translocation
Resistant and susceptible plants of four R. rugosum populations
were grown as described above. An herbicide solution was
prepared with commercial products based on the recommended
dose (15 g ha−1 dissolved into 250 L ha−1) and mixed with 14C-
TM to prepare an emulsion with a specific activity of 833.33 kBq
μL−1. This emulsion was applied to the surface of the second
expanded leaf from each population in 1 μL droplet using a
microapplicator (Hamilton PB 6000 dispenser, Hamilton, Co.,
Reno, NV, USA). At 24, 48, 72, and 96 h after application (HAT)
plants were harvested in batches of three plants and separated
into treated leaf (TL), remainder of shoots (RS), and roots (Ro).
The surface of the treated leaves was washed with 1mL of acetone
plus water (1:1 V/V) solution. The washes from each batch
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were mixed with 2 mL of scintillation fluid (Ultima GoldTM;
Perkin-Elmer, Packard Bioscience BV), and the radioactivity was
determined by liquid scintillation spectrometry (LSS; Beckman
LS 6000 TA, Beckman Instruments, USA). The plant sections
were stored individually in combustion cones (Combuste-Cone,
Flexible: Perkin-Elmer, Packard Bioscience BV), dried at 60◦C for
48 h and combusted in a sample oxidizer (Packard 307, Packard
Instruments, Meriden, CT, USA). The released 14CO2 was
trapped and counted in 18 mL of Permafluor and Carbo-Sorb E
(1:1, V/V; Perkin-Elmer, BV Bioscience Packard) in scintillation
vials. The total radioactivity in the samples was determined by the
LSS. The absorbed radioactivity of the herbicide was calculated
according to the following formula:

% absorption =
[ 14C in combusted tissue
(14C in combusted tissue + 14C in leaf washes)

]
× 100.

The translocation of 14C-TM was expressed as a percent from
absorbed radioactivity. It was expressed in each part of the plant,
with respect to the total radioactivity present within the plant
after 96 h. The experiment was repeated twice.

The 14C-tribenuron methyl translocation was visualized using
a Phosphor Imaging (Cyclone, Perkin Elmer, Packard Bioscience
BV). After the mentioned period of time had passed, whole plants
were washed, fixed on filter paper (25 cm × 12.5 cm), dried at
room temperature for 4 days, and placed on a film with phosphor
crystals (AGFA CURIX) for 6 h. Three plants were used for each
population.

14C-TM Metabolism
Metabolism studies with 14C-TM were performed in order to
verify whether there were any differences between the different
populations of R. rugosum that could explain the resistance to
tribenuron methyl detected in this weed (Cruz-Hipolito et al.,
2013).

Plants that grew under the same conditions explained before
were used and subjected to the same experimental procedure
employed for testing absorption and translocation, except that
each treated leaf was washed 96 h after application of the labeled
herbicide solution to wash away the radioactivity not absorbed on
the adaxial surface.

Entire plants were divided into roots and leaf tissues, and
stored at −40◦C until extraction. Frozen leaf tissues were ground
in a mortar with 3 mL of a solution of distilled water + methanol
(4:1 v/v). The homogenate residue was washed twice with 3 mL
of a solution of methanol + distilled water (4:1 v/v) and placed
in a centrifuge at 20000 g and 4◦C during 10 min (Avanti J-25
with a rotor JA.20, Beckman Instruments, Inc., Fullerton, CA,
USA). Both supernatants were mixed and the total radioactivity
was quantified with aliquots of 100 μL using a liquid scintillation
counter (Beckman LS 6500 TA, Beckman Instruments, Inc.,
Fullerton, CA, USA).

Mixtures of supernatants were dried at room temperature
under a flow rate of liquid nitrogen (0.25 atm). The dry
extract was suspended in 200 μL of isopropanol. The 14C-
tribenuron methyl and its metabolites was separated by thin layer
chromatography (TLC) on a plate 20 cm× 20 cm× 250 cm silica

gel (silica gel 60, Merck, Darmstadt, Germany), with isopropanol:
ethyl acetate: ammonia: H2O (10: 6: 3: 1; v: v: v: v).

The radioactive zones were detected by scanner obtaining
radiochromatograms. The radioactivity of the separated products
was quantified with a linear analyzer plate equipment (Berthold
LB 2821, Wildbald, Germany), while the chemical nature of
the separated products was determined by comparison with
standards (tribenuron-methyl, metsulfuron-methyl, metsulfuron
methyl hydroxylated). The experiment was performed in
duplicate, with three plants per replicate sampled and per time.

ALS Enzyme Activity
Acetolactate synthase activity was measured by determining the
formation of the acetoin product after acid decarboxylation of
acetolactate in the presence of acid (Osuna and De Prado, 2003).
Plant tissue from resistant (R) and susceptible (S) populations
was used for the assays and grown under the conditions described
previously.

Leaf tissues (3 g) from plants at the 3–5 five leaf stage were
frozen with liquid N2 and ground using an extraction buffer
(1:2 tissue:buffer) containing polyvinylpyrrolidone (PVPP; 0.5 g).
The extraction buffer was composed of 1 M K-phosphate buffer
solution (pH 7.5), 10 mM sodium pyruvate, 5 mMMgCl2, 50 mM
thiamine pyrophosphate, 100 μM flavin adenine dinucleotide
(FAD), 12 mM dithiothreitol, and glycerol (1:9; v/v). The solution
was agitated for 10 min at 4◦C. The homogenate was filtered
through four layers of cheesecloth and centrifuged (20,000 rpm
for 20 min). The supernatant contained a crude ALS enzyme
extract, which was immediately used for the enzyme assays.

The ALS activity was assayed by adding 0.09 mL of enzyme
extract to 0.11 mL of freshly prepared assay buffer (0.08 M
K-phosphate buffer solution [pH 7.5], 0.5 M sodium pyruvate,
0.1 M MgCl2, 0.5 mM thiamine pyrophosphate, and 1 μM FAD)
containing increasing concentrations of different herbicides.
These herbicides were tribenuron methyl (Sulfonylureas–
SU–), bispyribac sodium (Pyrimidinylthiobenzoates–PTB–),
flucarbazone (Sulfonylaminocarbonyltriazolinone–SCT–),
florasulam (Triazolopyrimidines–TP–), and imazamox
(Imidazolinones–IMI–).

A solution of 0.04 M K2HPO4 (pH 7.0) was added to reach a
final volume of 0.25 mL. The mixture was incubated at 37◦C for
1 h, and the reaction was stopped by the addition of 50 μL of
H2SO4. The reaction tubes were then heated for 15 min at 60◦C
to decarboxylate acetolactate to acetoin. Acetoin was detected as
a colored complex (A520 nm) formed after the addition of 0.25 mL
of creatine (5 g L−1 freshly prepared in water) and 0.25 mL of
1-naphthol (50 g L−1 freshly prepared in 5 N NaOH) prior to
incubation at 60◦C for 15 min. The background was subtracted
using control tubes in which the reaction was stopped prior to
incubation.

The protein was determinated by the Bradford method
(Bradford, 1976). The concentration of herbicide required to
inhibit ALS activity by 50% (I50) was calculated from linear
plots of the inhibition percentages vs. the logarithm of herbicide
concentration as previously described (Rosario et al., 2011).
The resistance factor was computed as I50(R)/I50(S). Three
experiments, each performed with a separate tissue extract from a
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different plant, were conducted for each cultivar, and each sample
at each herbicide concentration was assayed in triplicate.

ALS Gene Sequencing
Seeds from R and S populations of R. rugosum were germinated
on filter paper in Petri dishes after breaking the dormancy. 15
germinated seeds of R and S populations were grown in suitable
pots and moved in a greenhouse. Leaf sections (200 mg) from
each resistant and susceptible population at 3–4 leaf stage were
taken and each leaf tissue was temporarily stored at −20◦C, until
use. Then the whole plants were treated with the recommended
dose of TM. The individual samples from R and S populations
according to the result of applying herbicide (21 days after
treatment) were used for DNA extraction from the leaf material
of each plant with the Speed tools kit DNA Extraction Kit Cat
Plant (Biotools B & M Labs. S.A).

Because there was not any information available regarding the
ALS gene sequence of R. rugosum, were used the same primers
than those used for Sinapis alba (Cruz-Hipolito et al., 2013).

One 501-bp fragment (CAD domain) was amplified by a
pair of primers (ALS3B: 5′-TCARTACTWAGTGCKACCATC-
3′, ALS3F: 5′-GGRGAAGCCATTCCTCC-3′) and 639-bp
fragment (BE domain) was amplified by sense and antisense
primers (P1: 5′-GAAGCCCTCGARCGTCAAGG-3′, P2: 5′-ATA
GGTTGWTCCCARTTAG-3′).

Five conserved domains of ALS gene were amplified by PCR
technique with a final volume of 20 μL containing 10 ng of DNA,
0.2 mM of each sense and antisense primer pairs (detailed above
for each domain), 200 μM dNTPs, 2 μL of PCR buffer, 1.5 mM
MgCl2, and 2.5 U of Taq DNA polymerase (Genet Bio, Inc.).

The amplification cycle was that detailed in Cruz-Hipolito
et al. (2013). PCR amplification products were separated on a
1.5% agarose gel (Thermo Midicell Primo EC 330), containing
TBE (89 mM Tris-borate and 2 M EDTA-Na) and a 4:1 v/v DNA-
charged buffer [Bromofenol blue at 0.5%, Cianol of Xilene at
0.25 and 30% glycerol (dissolved in distilled water)]. Amplified
DNA fragments were purified with the use of a Speed tools
PCR Clean Up Kit (Biotools, B&M Labs, Madrid, Spain), which
eliminated the primers, salts, and Taq-polymerase following
PCR. Sequencing of the purified genomic DNA was done in
the Genomic Unit Investigation Central Service of Extremadura
University, Spain.

Statistical Analyses
The experiments followed a completely randomized design
with three replicates per treatment. The experimental unit was
comprised of one pot containing four plants.

Analyses of dose-response data in the whole plant and ALS
activity assays were performed using the R software (drc package)
by fitting the data to a non-linear log-logistic regression model as
follows:

Y = c + {(d − c)/[1 + (x/g)b]}
Where C is the lower limit, D is the upper limit, b is the
slope at GR50 (or I50), g denotes GR50 (or I50) and x is an
independent variable representing the herbicide rate. If the C
parameter was not significant with 0, C was deleted from the

equation and we used three parameter logistic functions. For
the calculation of the dose-response curves, the dry weight of
the plants and ALS activity were taken relative to the untreated
control.

The RF was calculated by dividing the determined GR50 (or
I50) value of the resistant population by that of the sensitive
population to determine the level of resistance of the resistant
population.

The effect of population and the time, as well as their
interaction in the 14C-tribenuron methyl (14C TM) absorption,
were subjected to ANOVA. The population was treated as
a fixed factor while the time was considered as a random
factor. The means and standard errors (average) of 14C-TM
absorption and translocation were calculated for all parts of the
plants, and the means were analyzed by different groups. For
each analysis, assumptions such as equal variance and normal
distribution were evaluated. When required, the LSD test at 5%
probability was used for mean separation. Statistical analyses
were performed using the Statistix (Analytical Software, USA)
software (version 9.0).

RESULTS

Physiological Properties
Screening Test
The response of 30 populations was investigated applying
tribenuron-methyl (TM) under greenhouse conditions to
determine the effect of TM on the dry weight and their survival
rate. The screening test with the field rate of TM confirmed the
differences between 10 populations of R. rugosum and Ag-R7
as an accepted susceptible population (Table 1). There were
significant differences in the reduction of dry weight compared
to the untreated control (P < 0.00001), the reduction being less
than 20% of the untreated control (Table 1). R plants suffered
from a little damage but they were able to recover over time.
Increased sensitivity to TM was observed in 20 populations that
could not survive after the application of the herbicide, whose
losses of dry weight varied from between 100 and 68% compared
to the control population.

TM Plant Response
In these experiments, 10 resistant populations (R) according
to results of screening test, and one susceptible population (S)
were used for investigation of R populations response to the
increased concentration of herbicide. Dry weight values of R and
S were well-fitted to the non-linear log-logistic regression model
(data not shown) to estimate the effective dose that gives a 50%
reduction in dry biomass (Table 2).

The concentration of TM that led to 50% inhibition shoot
growth in control treatment was 10.90 g a.i. ha−1, whereas for
R populations it caused 2.5–6.6 fold more resistance relative
to the S one. In short, the whole-plant bioassay experiment
confirmed that the selected biotypes from the screen test were
resistant to TM (Table 1). Due to the large number of resistant
populations, three of them were selected (Ag-R5, G-1 and Ag-Rr)
and one susceptible (Ag-R7, from now named as S) to resistance
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TABLE 1 | Effect of tribenuron methyl at 15 g a.i ha−1 on dry weight, plant number of Rapistrum rugosum populations, visual assessment (based on
EWRC score) and UTM coordinate.

Rapistrum
population

Survived plant (% of
untreated control)

Dry weight of survived plants
(% of untreated control)

EWRC UTM coordinate

Ag-92-1 100a∗ 85.19a 9 40S271362 40S271362

Ag-93-1 100a 87.62a 9 40S270841 40S270841

Ag-R1 100a 84.57a 9 40S270056 40S270056

Ag-R2 40c 20.3bc 2 40S269761 40S269761

Ag-R3 100a 86.67a 9 40S268706 40S268706

Ag-R4 20d 9c 1 40S268117 40S268117

Ag-R5 100a 91.2a 9 40S276142 40S276142

Ag-R6 75ab 80.25a 8 40S275735 40S275735

Ag-R7 0e 0c 1 40S275741 40S275741

Ag-R8 100a 84.71a 9 40S276130 40S276130

Ag-R9 20d 16c 2 40S276082 40S276082

Ag-R10 20d 7c 1 40S271522 40S271522

Ag-R11 20d 11c 1 40S270169 40S270169

Ag-Rr 100a 89.47a 9 40S268898 40S268898

Al-R1 20d 14c 2 40S307739 40S307739

Al-R2 20d 12c 2 40S305581 40S305581

Al-R3 0e 0c 1 40S305802 40S305802

Al-R4 20d 11.2c 2 40S303500 40S303500

Al-R5 20d 5c 1 40S311264 40S311264

Al-R6 0e 0c 1 40S311033 40S311033

G-1 100a 90.24a 9 40S266203 40S266203

G-2 100a 86.84a 9 40S267484 40S267484

G-3 20d 7c 1 40S267735 40S267735

Kr-R1 20d 15c 2 40S240284 40S240284

Kr-R2 20d 12.3c 2 40S239838 40S239838

Kr-R3 20d 17c 3 40S239503 40S239503

Kr-R4 20d 8c 1 40S244009 40S244009

Kr-R5 0e 0c 1 40S244453 40S244453

Kr-R6 20d 10.84c 2 40S244301 40S244301

Kr-R7 40c 32bc 3 40S242409 40S242409

∗Lowercase letters indicate significant differences between untreated and treated plants in each population according to a LSD test (α = 0.05).

TABLE 2 | Estimated non-linear regression parameters (Eq. 1) for whole-plant assays of susceptible (S) and resistant (R) populations of R. rugosum in
response to tribenuron-methyl.

Population Lower limit Upper limit Slope GR50 RF

Ag-R5 15.58 (2.77) 100.77 (2.87) 0.67 (0.10) 71.79 (16.26) 6.59∗∗a

G-1 9.59 (1.40) 98.51 (3.46) 0.8 (0.13) 52.91 (9.19) 4.85∗∗

Ag-92-1 11.95 (2.22) 93.33 (5.62) 0.85 (0.21) 49.99 (3.56) 4.59∗∗

G-2 0 100.47 (7.62) 0.79 (0.11) 45.15 (5.60) 4.14∗∗

Ag-93-1 12.02 (1.65) 102.49 (4.53) 0.70 (0.06) 44.96 (8.76) 4.12∗∗

Ag-R6 13.17 (1.15) 98.14 (3.19) 0.91 (0.10) 35.51 (9.98) 3.26∗∗

Ag-Rr 10.53 (2.04) 101.56 (2.94) 0.94 (0.19) 30.17 (4.55) 2.77∗∗

Ag-R3 10.84 (2.65) 100.67 (5.18) 0.96 (0.07) 28.08 (3.34) 2.58∗∗

Ag-R1 0 101.33 (2.62) 0.95 (0.13) 27.78 (3.67) 2.55∗∗

Ag-R8 11.79 (3.06) 96.48 (1.63) 1.2 (0.20) 27.25 (2.58) 2.50∗∗

S 0 97.42 (3.65) 1.40 (0.17) 10.90 (1.47) –

Values in parentheses are standard errors. GR50 = effective rate required to reduce the response of plants to 50%. RF = Resistance factor (GR50 R/GR50 S). aLevel of
significance probability non-linear regression model. ∗∗P = 0.01.
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mechanisms research (Table 2). Figure 1 shows dose-response
curves of these populations. Other experiments were conducted
on the three populations as being representative of all resistant
populations.

TM Spray Retention
In our cases, the studied populations showed no significant
differences for retention of labeled TM, according to ANOVA
(P= 0.2161). The results showed the rate of retention of herbicide
as 0.89, 0.92, 0.96, and 1.09 ml g−1 dry matter for Ag-R5, G-
1, Ag-Rr, and S populations, respectively (data not shown), in
which the rates were not statistically significant. Therefore, we
have concluded that this physical parameter is not responsible for
the observed resistance in R. rugosum populations.

Non-target-site Resistance
14C-TM Absorption and Translocation
Absorption was significant in each population at the different
times (P < 0.0001). There were no significant differences
(P > 0.05) between the R and S populations in the herbicide
absorption into the leaf tissue at the same times (Figure 2).
Absorption of 14C-TM in both sensitive and resistant populations
after treatment increased. At 48 (HAT), the absorption was over
50% of the maximum amount of the applied herbicide. The 14C-
herbicide moved from treated leaf (TL), to the remainder shoots
(RS) and roots (Ro). From Figure 3 it can be observed that 3.43,
1.42, 1.22, and 3.82% of labeled herbicide moved to Ro, and 15.74,
16.43, 10.23, and 9.78% translocated to RS from the TL in Ag-Rr,
G-1, Ag-R5 and susceptible populations, respectively. However, a
larger amount of 14C-tribenuron methyl applied was retained on
the TL (80.83, 82.15, 88.55, and 86.40% for the R and Smentioned
populations, respectively; Figure 3).

The autoradiography images obtained by the Cyclone at 72
HAT showed that the 14C-TM translocation was at the same
level in resistant and susceptible populations. In addition, a small
amount of this herbicide was transferred to RS and Ro from TL
(Figure 4). The results demonstrated that the absorption and

FIGURE 1 | Response of dry weight of susceptible and resistant
populations of Rapistrum rugosum to different concentrations of the
tribenuron-methyl.

FIGURE 2 | Absorption of 14C-tribenuron-methyl in the susceptible and
resistant populations of R. rugosum.

FIGURE 3 | Percent of translocated 14C-tribenuron-methyl into three
different parts of four R. rugosum populations.

translocation of the herbicide did not play any effective role in
the resistance to ALS inhibitor herbicides developed by these
populations.

14C-TM Metabolism
Qualitative and quantitative differences were found between the
populations. The amount of metabolites between each population
was very different (Table 3). The three metabolites (MM, OH-
MM, and conjugate-MM) were detected at 96 HAT only in two
populations (Ag-R5 and G-1), while in the population Ag-Rr only
two metabolites were found and in the S population only one
(Table 3). With respect to the amount of the different metabolites
between the populations, the amount of the 14C-TM found in
Ag-Rr and S plants was higher than in Ag-R5 and G-1 plants
(Table 3). The N-demethylation of TM to form MM (another
active SU herbicide) was similar in all plants and there were no
significant differences.
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FIGURE 4 | Digital images (upper plants) and autoradiographic images (lower plants) showing 14C- tribenuron-methyl translocation throughout plant
tissues of R and S populations of R. rugosum, 72 HAT. The arrows indicate the site of 14C-tribenuron-methyl application.

TABLE 3 | Relative percentage of tribenuron-methyl and its metabolites of
different resistant (R) and susceptible (S) R. rugosum populations at 96
HAT.

Population TMa,b MMa,c OH-MMa Conjugated-MMa

Ag-R5 31.9a (1.2) 10.3a (2.3) 22.4a (1.2) 35.4a (6.7)

G-1 53.6b (6.8) 15.4a (5.4) 18.4b (0.8) 12.6b (1.8)

Ag-Rr 81.7c (9.1) 15.2a (6.1) 3.1c (0.1) nd

S 88.4c (6.3) 11.6a (3.6) nd nd

aMeans within a column followed by the same letter are not significantly
different at the 5% level as determined by the LSD test. Values in parentheses
are standard errors. TMb, tribenuron-methyl; MMc, metsulfuron-methyl; n.s,
non-significant.

The MM metabolite was rapidly degraded, first through the
hydroxylation of the phenyl ring generating the OH-MM, which
was not present in S plant but was in the other three resistant
populations in significant amounts, i.e., 22.4, 18.4, and 3.1%
for Ag-R5, G-1, and Ag-Rr, respectively. The third metabolite,
conjugate-MM, was formed by conjugation of OH-MM with
carbohydrates. Conjugate-MM levels did not appear in Ag-Rr
and S plants and its level was decisive and higher in Ag-
R5 than in G-1 (Table 3). Both OH-MM and conjugate-MM
are non-toxic for plants. Due to the differences found in the
amounts of metabolite between the populations, it is likely that
resistance of Ag-R5 and G-1 plants was based up increased TM
metabolism.

Target-Site Resistance
ALS Activity Assay
The data for each population showed a significant fit (P< 0.01) to
the logistic equation (Table 4). The RF [(I50 R/I50 S)] for Ag-R5,
G-1 and Ag-Rr populations with TM were 30.53, 38.19, and
28.60 fold higher than the S population, respectively. Following

TABLE 4 | Effective concentration required to reduce the ALS activity to
50% and resistance factor (RF: I50 R/I50 S) in R. rugosum using different
herbicides concentration.

Herbicide Population I50 (µM) RF

Tribenuron-methyl Ag-R5 2152. 93 (100.1) 30.53∗∗a

G-1 2692.8 (314.9) 38.19∗∗

Ag-Rr 2016.41 (173.2) 28.60∗∗

S 70.50 (19.4) –

Florasulam Ag-R5 1152.90 (94.9) 17.29∗∗

G-1 825.64 (101.6) 12.38∗∗

Ag-Rr 767.87 (76.6) 11.52∗∗

S 66.66 (11.7) –

Bispyribac-sodium Ag-R5 399.19 (56.8) 6.81∗∗

G-1 290.65 (49.9) 4.96∗∗

Ag-Rr 342.03 (50.5) 5.83∗∗

S 58.59 (11.8) –

Flucarbazone Ag-R5 540.37 (73.0) 9.87∗∗

G-1 275.12 (46.7) 5.02∗∗

Ag-Rr 299.74 (47.7) 5.47∗∗

S 54.77 (10.8) –

Imazamox Ag-R5 220.97 (48.6) 0.90n.s

G-1 201.01 (41.9) 0.82n.s

Ag-Rr 157.17 (30.3) 0.64n.s

S 244.17 (41.2) –

Values in parentheses are standard errors. aLevel of significance probability non-
linear regression model. n.s, non-significant. ∗∗P = 0.01.

this order, the RFs with florasulam were 17.29, 12.38 and 11.52,
with bispyribac-sodium they were 6.81, 4.96 and 5.83, with
flucarbazone they were 9.87, 5.02 and 5.47, and finally with
imazamox they were 0.90, 0.82, and 0.64 fold higher than the S
population (Table 4).
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The specific in vitro activity of the ALS enzyme obtained
from shoot R (Ag-Rr, G-1, Ag-R5) and S of R. rugosum tissue
was similar, with no significant differences (418, 398, 405, and
441 nmol acetoin per mg protein per hour, respectively). ALS
activity data of all populations were analyzed with the same
statistical procedure used in the dose response experiments.

Also, we saw that the R plants were resistant to four
evaluated ALS-inhibiting chemical families (Figure 5). However,
R. rugosum showed no cross-resistance to the imidazolinone
family (Table 4).

ALS Gene Sequencing
Biochemical and molecular data showed a substitution
Pro197 to Ser197 in R populations (Figure 6). This
mutation resulted in having a high level of resistance to
tribenuron-methyl (SU), a relatively low level of resistance
to florasulam (TP), flucarbazone (SCT), and bispyribac-
sodium (PTB) herbicide but no resistance to imazamox (IMI)
herbicide.

DISCUSSION

Physiological
In Iran, wheat is one of the principal agricultural productions
which is mainly grown in monoculture and the only used
methods to remove the weeds is the herbicides application.
In our study, the responses of the R. rugosum populations
collected after treatment with the field rate of TM confirmed that
some of these populations were resistant to several herbicides
of the ALS-inhibitors group. The first case of a chlorsulfuron-
resistant R. rugosum population was detected in Australia but
its study is incomplete (Adkins et al., 1997). The resistance
level obtained for the different populations of R. rapistrum was
lower than that obtained for S. alba found in a wheat field in
Spain, or in the case of Myosoton aquaticum selected by TM
treatment for 5 years in China (Rosario et al., 2011; Liu et al.,
2015).

The effectiveness of an herbicide can be determined by
the maximum amount of the herbicide that can be captured
by the target weeds. In some cases, differences in spray
retention have been found between species (Chachalis and
Reddy, 2005; González-Torralva et al., 2010) and biotypes of
the same species resistant to herbicides (Michitte et al., 2007;
Rosario et al., 2011; Cruz-Hipolito et al., 2013). However, in
our TM spray retention assay we did not find any significant
differences between the different R and S populations of
R. rugosum.

These results suggest that resistance is not due to
differences in the composition of the cuticular wax, that
lead to reducing the contact angle of sprayed droplets and
thus lowering the herbicide retention potential and ability
on the leaves and/or differences in the leaf angle, which
in turn leads to the difficulties in the herbicide droplets
reaching the leaves (De Prado et al., 2005; Alcántara et al.,
2016).

Non-target-site Resistance
The decreased level of herbicide absorption has been suggested,
as being a potential mechanism of resistance in a weed biotype,
but the increased level of herbicide absorption observed in
resistant populations does not appear to bring any particular
advantage to the survival of these populations following the
herbicide treatment (Devine and Shimabukuro, 1994; Devine,
2002).

There are no demonstrations of the differential herbicide
translocation playing the main role in resistance to ALS inhibitor
herbicides (Cruz-Hipolito et al., 2013; Riar et al., 2013; Yu and
Powles, 2014b). In some cases, they could be active especially
where differential translocation seems to be involved, but, here
there was no evidence for the nature of herbicide molecules
being translocated (either in the parent herbicides or in their
metabolites), so that those cases do not correspond to our
analysis.

The results demonstrated that the absorption and
translocation of the herbicide do not play any effective role
in the resistance to ALS inhibitor herbicides developed by these
populations, which is in line with the earlier results of other
researchers (Osuna et al., 2003; Rosario et al., 2011; Owen and
Powles, 2014).

Knowledge of the mechanism of resistance is very important
for managing a successful field control. Also, employing
herbicides with different modes of action would be required.
Metabolic resistance often confers resistance to herbicides of
different chemical groups and sites of action and can extend
to new herbicide(s). This is a very dangerous fact because our
options for weed control management thus diminish.

Farmers have been using low doses of herbicides, which leads
to selecting populations that are able to metabolize the herbicide.
So, after a while, the farmers are faced with control failures and
increase the herbicide dose, which results in the selection of
resistant mutations in the given gene, so that the plants may have
the target base and non- target base of resistance mechanism (Yu
and Powles, 2014a,b).

The resistance phenomena will bring about ecological
consequences such as changes in the plant flora, the possibility
of resistance gene flow to the close relatives or other possible
environmental aftermaths due to the increased use of herbicides
for weeds resistant control purpose. Moreover, the use of
several types of herbicides on the weeds can results in multiple
resistance of the plants. Non target- site resistance to ALS has
been rarely documented in dicot weeds, the last case has been
described in waterhemp (Amaranthus tuberculatus) by Guo et al.
(2015).

There are some cases in which metabolism has been described
as being the dominant mechanism of ALS resistance (Saari et al.,
1990, 1994; Osuna et al., 2003; Park et al., 2004). Resistant
rigid ryegrass biotypes metabolized chlorsulfuron more rapidly
than the susceptible biotype (Christopher et al., 1992; Yu
and Powles, 2014b). Also, a resistant biotype of wild mustard
metabolized ethametsulfuron-methyl more rapidly than the S
biotype (Veldhuis et al., 2000). Owen et al. (2012) showed that
six Bromus rigidum populations have a low-level resistance to
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FIGURE 5 | Effects of five ALS inhibitor families on ALS activity of resistant (R) and susceptible (S) R. rugosum populations expressed as a
percentage of the untreated control. Actual data are mean of six replications.

FIGURE 6 | Sequence alignment of the CAD domain of the ALS gene in the four populations of R. rugosum (AGR5, G1, AGRr, and S) compared with a
susceptible population of Sinapis alba (SINAL3). Proline by serine amino-acid substitution occurred in position 197. There are no amino acid changes in the C,
D, B, and E domains of the R. rugosum ALS gene compared to S plants. Numbering of the ALS gene sequence alignment of Arabidopsis thaliana.

the ALS-inhibiting SU herbicides, but are able to be controlled
by other herbicide modes of action. A low-level, malathion-
reversible resistance, together with a sensitive ALS, strongly
suggested that a non-target-site enhanced metabolism was the
mechanism of resistance. Jeffers et al. (1996) observed that a
resistant (R) biotype of wild mustard was 48-fold more resistant
to ethametsulfuronmethyl than a susceptible (S) wild mustard.
Furthermore, on the basis of the lack of cross-reactivity of this
biotype to other SU herbicides, they suggested that resistance of
this biotype to ethametsulfuronmethyl might be due to enhanced
metabolism. Researchers have shown resistance to SU herbicides
in the grass weeds Lolium rigidium and Alopecurus myosuroides
is due to increased metabolism (Preston et al., 1996; Menendez
et al., 1997). Hall et al. (1992) and Lichtner et al. (1995)

reported rapid metabolism of ethametsulfuron-methyl in tolerant
commercial brown mustard and oilseed rape as opposed to S wild
mustard.

Target-Site Resistance
In this work, in vitro assays R populations (Ag-R5, G-1, and Ag-
Rr) shown resistance to four ALS family herbicides (SU, PTB,
SCT, and TP) but these populations were susceptible to IMI. This
cross-resistance to ALS inhibitor herbicides has been due a one
punctual mutation at Pro197Ser, as has been detected by other
dicot weeds (Cruz-Hipolito et al., 2013; Yu and Powles, 2014a;
Liu et al., 2015).

Amino acid substitutions of Pro197 by Ser, His, Leu, Ala, or
Thr have been observed to result in resistance to SU herbicide
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(Cui et al., 2011; Satoshi et al., 2014; Deng et al., 2015). Multiple
mutations including Pro to Arg, Leu, Gln, Ser, or Ala have been
identified in Kochia-resistant biotypes to confer a high level of
resistance to SUherbicides (Saari et al., 1994; Guttieri et al., 1995).

A Pro to Ser change was identified in resistant the Sinapis
arvensis (Warwick et al., 2005; Cruz-Hipolito et al., 2013). The
replacement of Pro with Ala, Ser, or Gln is involved in resistance
to SU herbicides in seven of 14 resistant biotypes of Lindernia sp.
(Uchino and Watanabe, 2002). Pro substitution by four different
amino acids Ala, His, Ser, and Thr was reported in eight resistant
wild radish populations (Yu et al., 2003). The relationship
between the amino acid substitution and cross-resistance pattern
has been established for a few biotypes. A Pro197 to Ser or
Ala mutation was demonstrated to result in resistance to SU,
PTB, and TP but not IMI herbicides in Conyza canadensis,
S. alba, and Myosoton aquaticum (Zheng et al., 2011; Cruz-
Hipolito et al., 2013; Liu et al., 2015). Although amino acid
substitutions occurring at specific sites of the ALS gene have been
documented for particular cross-resistance patterns (Saari et al.,
1994;Warwick et al., 2005; Zheng et al., 2011), the different amino
acid substitutions at the same mutation site may confer different
levels of resistance to one of specific herbicide or a group of
them.

The SU herbicides make multiple hydrophobic interactions
with ALS as well as hydrogen bonds. The substitutions of
acidic, basic, and uncharged amino acids for Pro197 all provide
resistance to SU herbicides (McCourt et al., 2005). These
substitutions must affect the size or shape of the binding pocket
for the herbicides rather than just influencing hydrophobic
interactions with the herbicides (Stewart, 2009).

The high frequency of proline-site mutation is because the
changes at this proline site are not linked with major fitness
penalties (Stewart, 2009). Also, the extensive worldwide use of SU
herbicides is likely the reason for the regular appearance of amino
acid substitutions at Pro197 within the resistant ALS gene.

CONCLUSION

Different TM-resistance levels between the R. rugosum
populations could be caused by enhanced Cyt. P450 metabolism
and/or punctual ALS mutation. Furthermore, this mutation
might be responsible to cross-resistance to four ALS family
groups. The multiple resistance mechanisms result in high
complexity and leading to the inheritance which are more
difficult to control and determine (Yu and Powles, 2014a,b).

In this research, Point mutation of ALS (Target site)
contributes to low level of TM resistance in R. rugosum. Addition

of enhanced metabolism (Non-target site), increased the level of
resistance depending on enhanced rate of TM metabolism. As
seen at Tables 2 and 3, Ag-Rr population without non-target
site resistance, displayed lower RF in the greenhouse experiments
than two other populations (Ag-R5 and G-1). Ag-R5 has higher
GR50 compare with two other populations due to increased non-
toxic metabolites in the other hand, more metabolizing the TM.

Because metabolic resistance is unpredictable and can trigger
herbicide resistance with similar mechanisms or even different
MOA, including herbicides never used, delaying and /or stopping
the spread of the fast evolution of R. rugosum could be
the priority. Quarantining weed infested areas immediately
might be the strategy required, as well as encouraging the
training of growers and crop consultants in tackling herbicide
resistant weeds and adopting herbicide and crop rotations
and other agronomic and integrated management practices to
reduce herbicide selection pressure, preventing or delaying the
development of R. rugosum resistance. Nowadays, for prevention
of the further spread of resistance, crop rotations and utilization
of alternative herbicides are greatly recommended. Alternative
herbicides in Iran market that can be used for control of broad
leaf weeds in wheat fields include auxin-type herbicides (such
as, 2-4-D,2-4-D+MCPA, dichlorprop-p + MCPA + mecoprop-
p, 2-4-D + dicamba), PS II inhibitors (such as, bromoxynil,
isoproturon + diflufenican or panter) and herbicides combined
(bromoxynil + MCPA). Based on the climate and characters of
the region, canola also can be used for crop rotation purpose with
wheat or the selective herbicides which are not common with
wheat can be employed. There are huge initiatives to control plant
resistance in different regions of Iran.
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