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The natural history of epiphytic plant species has been extensively studied. However,

little is known about the physiology and genetics of epiphytism. This is due to difficulties

associated with growing epiphytic plants and the lack of tools for genomics studies and

genetic manipulations. In this study, tubers were generated from 223 accessions of 42

wild potatoSolanum species, including the epiphytic speciesS.morelliforme and its sister

species S. clarum. Lyophilized samples were analyzed for 12minerals using inductively

coupled plasma optical emission spectrometry. Mineral levels in tubers of S. morelliforme

and S. clarum were among the highest for 10 out of the 12 elements evaluated. These

two wild potato relatives are native to southern Mexico and Central America and live as

epiphytes or in epiphytic-like conditions. We propose the use of S. morelliforme and S.

clarum as model organisms for the study of mineral uptake efficiency. They have a short

life cycle, can be propagated vegetatively via tubers or cuttings, and can be easily grown

in controlled environments. In addition, genome sequence data are available for potato.

Transgenic manipulations and somatic fusions will allow the movement of genes from

these epiphytes to cultivated potato.
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INTRODUCTION

Epiphytes encompass an unusual group of plant species that grow on other plants, typically in the
crowns of trees, without parasitizing them. They are considered one of the most threatened plant
groups (Mondragon et al., 2015). The 27,614 species of vascular epiphytes account for 9% of extant
vascular plant diversity (Zotz, 2013). Vascular epiphytes range from ferns to flowering orchids and
bromeliads. The biology and ecology of these unique plants has been extensively studied (reviewed
byMondragon et al., 2015). However, the physiology and genetics of epiphytism has received much
less attention.

There are two main types of vascular epiphytes (Cardelús and Mack, 2010). The first acquires
nutrients through organic debris that accumulates on the branches of host plants. This decaying
organic debris, called crown humus, accumulates slowly over many years, forming a medium in
which epiphytes, such as some fern species, can root and absorb nutrients (Jenik, 1973). Other
epiphytes, such as bromeliads, obtain nutrients from the atmosphere through foliar feeding.

The main constraints on epiphytic growth and function are water acquisition, mineral
procurement and utilization, and light exposure (Benzing, 1990; Laube and Zotz, 2003). Optimal
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growth requires the uptake of adequate levels of all essential
minerals. The quality of the nutrient medium in the forest
canopy can be highly variable and dependent on altitude, climate,
humidity, and position above ground level. However, it is
generally assumed that epiphytic habitats tend to be low in
nutrients and sporadic in water supply (Laube and Zotz, 2003;
Zotz, 2004; Zotz and Richter, 2006; Winkler and Zotz, 2008;
Cardelús, 2009; Cardelús et al., 2009; Zotz and Asshoff, 2010).

Epiphytes have evolved to grow in low input environments.
Adaptations to low mineral environments include slow growth
rate, small stature, asexual reproduction, sexual reproduction
with a minimum expenditure of non-recoverable mineral
nutrients in seed and fruit production, resistance to mineral loss
by leaching, tolerance of low mineral levels in living tissue, the
capacity to substitute one element for another in metabolism, the
ability to exploit mineral sources normally unavailable to higher
plants, and the ability to absorb and sequester minerals in dilute
solutions (Benzing, 1990; Schmidt and Zotz, 2002; Winkler and
Zotz, 2008). The latter strategy is of most interest to scientists
seeking to improve nutrient use efficiency in plants. Despite
an abundance of research detailing the unique adaptations of
epiphytes and their environments, the literature on mineral
uptake is largely descriptive, and the genetic and physiological
mechanisms of these processes are not well-understood (Luttge,
1989; Benzing, 1990; Zotz and Hietz, 2001; Rains et al., 2003;
Zotz, 2004).

An improved understanding of the molecular basis of mineral
uptake in epiphytes would contribute to many fields, including
conservation biology, germplasm development, crop breeding,
and plant physiology. This paper presents two wild potato
(Solanum section Petota) relatives as model systems for the
identification and characterization of genes responsible for
nutrient acquisition and accumulation.

MATERIALS AND METHODS

In October, 2007, true potato seed from 134 accessions
(populations) of 42 wild Solanum species was obtained from the
U.S. Potato Genebank (NRSP-6). Fifty seeds of each accession
were sown in soilless potting mix (Pro-Mix™) and 3 weeks
later, 15 seedlings per accession were transplanted into individual
5 cm pots. After another 3 weeks of growth, seedlings were
transplanted into 10 cm pots. They were grown under high
intensity (1000 w high pressure sodium) lights with an 18 h
photoperiod. Day/night temperatures were 20C/16C. Plants
were watered as needed, typically daily. Osmocote slow release
fertilizer (19-6-12) was incorporated into the potting mix during
transplanting. In January, photoperiod was reduced to 12 h to
induce tuberization. Six weeks later, the trial was harvested and
the largest tuber from each of the 15 plants in an accession was
collected and all 15 tubers were placed in a paper bag. After 3 days
at room temperature, tubers were immersed in liquid nitrogen
and then placed in a −80◦C freezer. Tubers were lyophilized
and ground using a mortar and pestle. Tuber tissue from the
15 plants in each accession was combined for mineral analysis.
For each sample, 500mg of dried tuber tissue and 5mL of

concentrated nitric acid were added to a 50-mL Folin digestion
tube. The mixture was heated to 120–130◦C for 14–16 h and then
treated with hydrogen peroxide. After digestion, the sample was
diluted to 50mL. This solution was analyzed for mineral content
using inductively coupled plasma optical emission spectrometry
(Model IRIS Advantage, Thermo Jarrell Ash,Waltham,MA). The
trial was repeated in 2008 with 89 additional accessions.

RESULTS AND DISCUSSION

This study was initiated as a survey of mineral uptake
capacity in a geographically and taxonomically diverse set
of wild Solanum species. However, after the mineral data
were collected and species were compared, S. morelliforme
and S. clarum stood out as exceptional for tuber mineral
content. Tuber mineral levels, averaged by species, are presented
in Table 1. Supplementary Table 1 provides maximum and
Supplementary Table 2 provides minimum tuber mineral levels.
At this point, and realizing that these species are epiphytes or
found in epiphytic-like conditions, we began to consider the
possibility that they could serve as model species for studies of
mineral nutrient uptake.

Solanummorelliforme Bitter &Muench is a diploid (2n = 24),
self-incompatible, epiphytic member of Solanum section Petota.
It is widespread throughout central Mexico (southern Jalisco to
Querétato and Veracruz), south to southern Honduras, growing
from 1870 to 3050m in elevation, flowering and fruiting from
July through October. A strikingly disjunct (approximately 4000
km) population was recently discovered in Bolivia, representing
the first record of this species in South America, and the
first species in the section growing in both North and Central
America and in South America (Simon et al., 2011). Solanum
morelliforme is distinctive with its simple leaves, relatively small
stature (stems 2–3mm wide at base, 0.1–0.5m tall), epiphytic
habit, and is impossible to be confused with any other wild
potato. Solanum morelliforme is the only epiphytic wild potato,
growing on horizontal branches of mature Arbutus L., cyprus,
elm, juniper, pine, or oak trees, often rooted in moss and organic
litter (Spooner et al., 2004; Figure 1). Field studies in Mexico and
Central America (Spooner et al., 1998, 2000) showed that it is
difficult to find in previously documented localities that had been
logged and reforested, suggesting that its range is being reduced
by deforestation.

Solanum morelliforme is most similar morphologically to
S. clarum Correll, its sister species (Spooner et al., 2004).
Solanum clarum is distributed in southern extreme Mexico and
Guatemala, from 2740 to 3800m in elevation, flowering and
fruiting from July through November. Like S. morelliforme,
S. clarum is a diploid (2n = 24). Although not technically
an epiphytic species, it occasionally grows in trees but more
commonly in epiphytic-like conditions, in shade, in upland pine
and fir forests, frequently associated with Acaena elongata L.,
Alchemilla pectinata H. B. K., or Pernettya ciliata (Schltdl. &
Charn) (Spooner et al., 2004).

The three S. clarum accessions and one S. morelliforme
accession were collected in Guatemala. The remaining two
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TABLE 1A | Average tuber mineral levels of macronutrients in 42 wild

Solanum species.

No. refers to the number of accessions sampled. Heat map shows higher concentrations

in deeper shades of green and lower concentrations in deeper shades of red. Epiphytic

species are highlighted in blue.

S. morelliforme accessions originate from Mexico. Passport data
reveal that one of the S. clarum accessions and two of the
S. morelliforme accessions were growing as epiphytes when
they were collected. They have many characteristics of plants
adapted to mineral-deficient environments including small
stature, asexual reproduction via tubers, small fruits bearing few
seeds, and infrequent sexual reproduction (Spooner et al., 2004).

The two species proposed as models in this paper differ in that
S. morelliforme is typically found in trees, while S. clarum may
be in trees or in the litter surrounding trees. Attempts have been
made to distinguish among gradations in the proportion of plants
of an epiphytic species that are found growing in trees (Zotz,
2013). However, the environment on a fallen tree or the mossy
low branches of a tree is often very similar to that of both the
moss-covered ground and an intact mature tree.

TABLE 1B | Average tuber levels of minerals other than macronutrients in

42 wild Solanum species.

No. refers to the number of accessions sampled. Heat map shows higher concentrations

in deeper shades of green and lower concentrations in deeper shades of red. Epiphytic

species are highlighted in blue.

Because nutrient supply is low and irregular in crown
humus, epiphytes must possess highly efficient mineral uptake
and utilization mechanisms (Benzing and Renfrow, 1974). In
addition, when provided with the opportunity, they may take up
minerals in excess of current needs and store them for future
use, a phenomenon called luxury consumption (Benzing and
Renfrow, 1980; Chapin, 1980; Benzing, 2000). Storage organs,
such as the potato tubers evaluated in this study, provide a natural
mechanism for accumulating and storing mineral nutrients.

Phosphorus is often a limiting nutrient for many vascular
epiphytes in tropical forests Epiphytic bromeliads have been
shown to efficiently take up phosphorus and then store it for
later use (Winkler and Zotz, 2008; Zotz and Asshoff, 2010). The
two Solanum epiphyte and epiphytic-like species in this study
were also found to have high phosphorus levels in storage organs,
compared to a wide array of wild potato species (Table 1).

While this paper has focused on epiphytic relatives of potato,
the tuber mineral survey revealed non-epiphytic species that may
also be useful in mineral nutrition studies. Solanum albornozii
and S. flahaultii, for example, were among the highest ranked
species for several minerals. A large amount of phenotypic
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FIGURE 1 | Collecting epiphytic Solanum morelliforme. Inserts are

photos of S. clarum (upper) and S. morelliforme.

variation, and presumably genotypic variation, is commonwithin
accessions in wild potato (Bamberg et al., 1996; Douches et al.,
2001; Jansky et al., 2006, 2008, 2009; Spooner et al., 2009; Chung
et al., 2010; Cai et al., 2011). This is expected, considering the
wide range of habitats in which wild Solanum species grow.

Anatomical features for mineral uptake, such as tanks in
bromeliads and aerial roots in orchids are not found in
S. morelliforme and S. clarum. In non-epiphytic potato, calcium
uptake has been studied intensively, revealing two types of
enhanced mineral uptake mechanisms based on physiological
rather than anatomical adaptations (Bamberg et al., 1993, 1998).
In one system, plants are able to take up adequate nutrients
from a low nutrient environment. In the second system, plants
accumulate high levels of calcium from an environment with
moderate levels of the mineral. Nutrient efficient plants may
possess one or both of these mechanisms (Bamberg et al.,
1993, 1998). Mineral uptake mechanisms have not yet been
characterized in epiphytic potato. However, it appears that they
must rely on physiological rather than anatomical mineral uptake
mechanisms to survive in nutrient-poor crown humus.

An ideal model epiphytic plant species would have a short life
cycle and be capable of rapid and reliable asexual reproduction.
Many epiphytic species require 10–20 years to reach sexual

maturity (Mondragon et al., 2015). Solanum clarum and S.
morelliforme, however, reach maturity in a matter of months.
They are easily propagated asexually via stem-leaf cuttings or
as tissue culture plantlets, have small space requirements (they
grow readily in peat-based potting mix in small pots), and do
not require high intensity light for growth. All these features
make them useful model organisms for studying the biology of
epiphytes.

The potato genome has been sequenced (The Potato Genome
Sequencing Consortium, 2011) providing the opportunity to
carry out gene discovery studies related to nutrient acquisition
and storage in epiphytic relatives. The identification of the
genes responsible for efficient nutrient uptake can be used
to find orthologous sequences in other species. In addition,
these genes may be transferred into cultivated potato. Solanum
morelliforme and S. clarum are likely sexually incompatible with
cultivated potato. However, genetic transformation in potato
is straightforward and transgenic technology is well-established
(Millam, 2009). Alternatively, somatic fusion protocols are in
place and have been used to introgress the genomes of tertiary
gene pool species into cultivated potato (Austin et al., 1985,
1988).

The U.S. Potato Genebank (NRSP-6) maintains 23 accessions
of S. morelliforme and 14 accessions of S. clarum. This germplasm
is freely available upon request to NRSP-6. Information about
these accessions can be found on the USDA Germplasm
Resources Information Network (www.ars-grin.gov).
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The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.
00231

Supplementary Table 1 | Maximum tuber mineral levels in 42 wild Solanum

species. No. refers to the number of accessions sampled. Epiphytic species are

highlighted in blue.

Supplementary Table 2 | Minimum tuber mineral levels in 42 wild Solanum

species. No. refers to the number of accessions sampled. Epiphytic species are

highlighted in blue.
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