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Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its

good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally,

groundnut improvement programs have developed varieties to meet the preferences of

farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and

abiotic stresses and quality parameters have been the target traits. Spurt in genetic

information of groundnut was facilitated by development of molecular markers, genetic,

and physical maps, generation of expressed sequence tags (EST), discovery of genes,

and identification of quantitative trait loci (QTL) for some important biotic and abiotic

stresses and quality traits. The first groundnut variety developed using marker assisted

breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have

begun to use genomic tools in routine groundnut improvement programs. Introgression

lines that combine foliar fungal disease resistance and early maturity were developed

using MAB. Establishment of marker-trait associations (MTA) paved way to integrate

genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection

(GS) tools are employed to improve drought tolerance and pod yield, governed by several

minor effect QTLs. Draft genome sequence and low cost genotyping tools such as

genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to

enhance genetic gains for target traits in groundnut.
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INTRODUCTION

Groundnut (Arachis hypogaea L.) or peanut, an important oilseed and food legume crop, is
cultivated in 25.44 million ha world over with a total production of 45.22 million tons during 2013
(Food and Agriculture Organization of United Nations, 2014). China and India are the leading
groundnut producers followed by USA and Nigeria. Africa with 12.40m ha area and 11.54m
tons of production, and Asia with 11.87m ha and 29.95m tons, together account for 95% global
groundnut area and 91% of global groundnut production. There was a substantial increase in
global groundnut production by about 5m tons in 2013, from 40m tons in 2012. In the last
decade, 2004–2013, global groundnut production increased by 24%, contributed by 7% increase
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in groundnut area, and 16% increase in yield. The projected
global demand for groundnut and its related products is expected
to increase and so there is a need to further increase production
and productivity to meet the demand.

Groundnut is ranked fifth among oilseed crops in the
world after oil palm, soybean, rapeseed, and sunflower (Food
and Agriculture Organization of United Nations, 2013).
Traditionally, groundnut has been used for extraction of oil
for edible and industrial purposes, however its use as food has
been equally important. In Europe, North and Central America,
more than 75% of the available supply is used as food. In Africa
it is used for both food and oil for cooking purposes. Within
Asia—India, China, Indonesia, Myanmar, and Vietnam use
groundnut oil for cooking purpose, while in Thailand it is
consumed as food. Globally, 41% of groundnut produced is
used for food purposes and 49% is crushed for extraction of
oil. The oilcake meal remaining after oil extraction is used as
industrial raw material and also as a protein supplement in
livestock feed rations. However, the use of groundnut as direct
and processed food products has been expanding in countries
like China and India. Groundnut kernels can be consumed
directly as ready-to-eat products or indirectly as confectionary.
The inferior quality oil is used for making soaps, detergents,
cosmetics, paints, candles, and lubricants. The groundnut shells
are used as fuel source, as filler for making particle boards and as
animal feed. It can also be used as bedding material for poultry
or as mulching material to reduce evaporative losses during
summer season. Groundnut is both a cash crop and healthy food
crop contributing to nutrition of farm families and households,
and is also a source of nutritious fodder (haulms) for livestock.

Groundnut kernels contain 40–60% oil, 20–40% protein, and
10–20% carbohydrates. They provide 567 kcal of energy from
100 g of kernels (USDA nutrient database). Additionally, they
also contain several health enhancing nutrients such as minerals,
antioxidants, and vitamins. They contain antioxidants like p-
coumaric acid and resveratrol, Vitamin E, and many important
B-complex groups of thiamin, pantothenic acid, vitamin B-6,
foliates, and niacin. Groundnut is a dietary source of biologically
active polyphenols, flavonoids, and isoflavones. As they are
highly nutritious, groundnut and groundnut based products are
promoted as nutritional foods to combat energy, protein, and
micronutrient malnutrition among the poor. Groundnut in the
form of flour, protein isolates and meal in a mixed product is
very desirable. In countries like Africa where malnutrition is a
major problem, groundnut based ready-to-use-therapeutic food
products like “Plumpy nut” and peanut butter has helped to save
the lives of thousands of malnourished children (UNICEF, 2007).

The groundnut haulms contain 8–15% protein, 1–3% lipids,
9–17% minerals, and 38–45% carbohydrates. It is used as cattle
feed either in fresh or dried stage, or by preparing hay or silage.
The digestibility of nutrients in groundnut haulm is around 53%
and that of crude protein is 88% when fed to cattle. Haulms
release energy up to 2.337 cal kg−1 of dry matter. Being a legume
crop, groundnut has unique ability to fix atmospheric nitrogen
through symbiotic association with Rhizobium. This ability is
greatly useful in improving the fertility of degraded soils, and
economically beneficial to the small-holder farmers as they can
save money on resources such as nitrogen fertilizers.

Improved groundnut varieties resulting from genetic
improvement have contributed to enhanced production
and productivity, and meet the needs of the producers,
processors, and consumers. The yield productivity increase
varied across different growing regions. Wide range of varieties
of groundnut are cultivated to meet the food, oil, and industrial
needs. Groundnut breeding programs have extensively used
phenotyping tools for selecting plants/progenies with desirable
traits (Janila et al., 2013). The conventional breeding procedures
employ hybridization, phenotype based selection followed by
selection of promising breeding lines through yield evaluation
trials. With the advent of genomic tools, marker assisted
breeding (MAB) was deployed to enhance efficiency of selection
of target traits in groundnut (Pandey et al., 2012; Janila
et al., 2013; Varshney et al., 2013). Moreover, genomic tools
enable to combine several important target traits in a single
variety. The purpose of this review is to present an overview
of deployment of genomics assisted breeding, and recent
developments in the integration of modern genomic tools into
the conventional breeding framework to develop improved
groundnut varieties. Besides, groundnut breeding through
conventional plant breeding methods is briefly discussed
to appraise the progress made so far and identify the areas
where conventional breeding methods can be complemented
with genomic tools to achieve higher rate of genetic gain for
target traits.

TAXONOMY OF ARACHIS

Cultivated groundnut (A. hypogaea L.) is self-pollinated,
allotetraploid (2n = 4x = 40) with a genome size of 2891 Mbp.
The genus Arachis belongs to the family Fabaceae, subfamily
Faboideae. Based on morphology, geographical distribution, and
cross compatibility, the genus is divided into nine taxonomic
sections. The genus comprises of 80 described species (Valls
and Simpson, 2005), that include diploids and tetraploids, of
which A. hypogaea L. is most important and widely cultivated. A.
hypogaea is a segmental amphidiploid but cytologically behaves
like a diploid. Based on growth habit and flower arrangement
on the main axis, cultivated groundnut is divided into two
subspecies subsp. fastigiata and subsp. hypogaea. The fastigiata
subsp is comprised of four botanical varieties, var. vulgaris, var.
fastigiata, var. peruviana, and var. aequatoriana, while hypogaea
is divided into two varieties, var. hypogaea and var. hirsuta based
on inflorescence, pod, and seed characteristics. There are three
market types, Virginia, Spanish, and Valencia. A. hypogaea subsp.
fastigiata var. vulgaris are Spanish bunch types, A. hypogaea
subsp. hypogaea var. hypogaea is Virginia market type, and
A. hypogaea subsp. fastigiata var. fastigaita is Valencia market
type. Cytological and molecular studies suggest that two diploid
wild species Arachis duranensis (AA) and Arachis ipaensis (BB)
are progenitors of cultivated groundnut. A single hybridization
event between progenitors followed by chromosome duplication
about 3500 years ago led to origin of cultivated groundnut.
Based on cross-compatibility among the members of the genus
Arachis, four gene pools were identified (Singh and Simpson,
1994).
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GENETIC RESOURCES

The gene bank at ICRISAT, India holds the largest collection
of groundnut accessions. The other gene banks with groundnut
collection are, National Bureau of Plant Genetic Resources
(NBPGR) and Directorate of Groundnut Research (DGR) in
India; Oil Crops Research Institute (OCRI) of Chinese Academy
of Agricultural Sciences (CAAS) and Crops Research Institute
of Guangdong Academy of Agricultural Sciences in China; U.
S. Department of Agriculture—Agricultural Research Service,
Tifton Georgia; Texas A&M University; and North Carolina
State University in the USA; EMBRAPA—CENARGEN and
the Instituto Agronômico de Campinas in Brazil; and Instituto
Nacional de Tecnología Agropecuaria (INTA) and Instituto de
Botánica del Nordeste (IBONE) in Argentina. The number of
groundnut accessions available in the gene banks has been
reviewed by Pandey et al. (2012). For the ease in identification
of trait-specific genetic resources, core and mini core collections
that represent 10 and 1% of the entire germplasm collection,
respectively, were developed at ICRISAT, USDA/ARS, and China.
The gene banks are also repositories of wild species which are
source of novel alleles.

TARGET TRAITS IN GROUNDNUT
BREEDING

A wide array of traits has been targeted for genetic improvement
in groundnut by plant breeders, and the choice of the trait varies
from region to region depending on growing seasons, producer
needs, consumer demands, market preferences, and industrial
requirements. In US and several other European countries
where groundnut is mostly consumed as food and the average
productivity is high, focus has also been on developing varieties
with improved food quality and flavor traits, and freedom from
mycotoxins and allergens in the production. In countries of
Asia and Africa where yield is low, the focus is to improve
yield by plugging the yield gap through genetic tolerance to
biotic and abiotic stress factors. The important yield contributing
parameters in groundnut that are targeted for improvement
include: pod yield per plant, number of pods per plant, shelling
percentage, sound mature kernel percentile, and 100 seed weight.
Besides, several indirect factors such as ease in harvesting (peg
strength) and shelling, number of seeds per pod, reticulation,
beak and constriction of pods, kernel shape and color, fresh seed
dormancy, and blanching ability were also considered to satisfy
farmers’, processors’, and market demands. Fresh seed dormancy
is important especially in Spanish bunch types which are prone to
pre-harvest sprouting. Pre-harvest sprouting can cause 10–20%
yield loss (Nautiyal et al., 2001) and predisposes the produce to
the attack of fungus and microbes. A short period of dormancy
of about 10–15 days is desirable.

Foliar fungal diseases, late leaf spot (LLS) caused by
Phaeoisariopsis personata (Berk. and M.A. Curtis) van Arx.,
early leaf spot (ELS) caused by Cercospora arachidicola Hori
and rust caused by Puccinia arachidis Spegazzini are major
production constraints of groundnut crop globally. Stem and

pod rot caused by Sclerotium rolfsii is emerging as a major
threat in several growing regions. Bacterial wilt caused by
Ralstonia solanacearum is predominant among bacterial diseases
of groundnut in South-East Asia, particularly China. Groundnut
rosette disease (GRD) in Africa, Peanut Bud Necrosis Disease
(PBND) in India, tomato spotted wilt virus (TSWV) in East
and South East Asia, peanut stem necrosis disease (PSND)
in some areas in Southern India, and peanut clump virus
disease (PCVD) in West Africa are economically important
viral diseases. Among nematodes, peanut root-knot nematode
(Meloidogyne spp.), and the root-lesion nematode (Pratylenchus
brachyrus) can cause significant economic losses in many
groundnut production areas of the world. Resistance/tolerance
to fungal/bacterial/virus/nematode diseases is important to plug
the yield gaps of different production environments. The
colonization of groundnut kernels by Aspergillus sp. (A. flavus
and A. parasiticus) is a major constraint affecting groundnut
quality globally. Infection to seeds can occur at pre-harvest
or during post-harvest storage and colonization is followed
by release of aflatoxin, a potent carcinogen. Several countries
have strict regimes on permissible limit of aflatoxins in their
imports on groundnut. Freedom from aflatoxin contamination is
important for food safety and has trade implications (Janila et al.,
2013).

Aphids (Aphis craccivora Koch), several species of thrips
(Frankliniella schultzei, Thrips palmi, and F. fusca), leaf
miner (Aproaerema modicella), red hairy caterpillar (Amsacta
albistriga), jassids (Empoasca kerri and E. fabae), and Spodoptera
are important foliar insect pests and cause localized damage to
groundnut during different growth stages. Aphids and thrips are
also vectors of important virus diseases. Termites, white grubs,
and storage pests also cause damage to groundnuts. Among
storage pests, groundnut borer or weevil (Caryedon serratus) and
rust-red flour beetle (Tribolium castaneum) are important.

Most of the groundnut cultivation occurs in the semi-arid
regions where water is often a limiting factor. Mid- and end-of-
season drought are critical as they directly affect pod yield and
quality. Development of water use efficient cultivars has been
an important target trait. Breeding for short duration groundnut
is an escape mechanism to avoid end-of season moisture stress.
Breeding for heat resilient crops has been gaining wide attention
as heat tolerant genotypes can sustain production in heat stress
environments that are expected to increase as a consequence of
climate change. It is possible thatmoisture and temperature stress
together may have adverse effects on productivity of groundnut
in its semi-arid production environment. With regards to the
ability of groundnut to fix atmospheric nitrogen, variability is
known at the level of both, host-plant and microbe (Janila et al.,
2013). However, pod yield is considered as an indirect measure of
nitrogen fixation ability for selection in groundnut.

In Asia (India and China) and Africa, where groundnut is
used for oil, improving oil content is an important target trait.
Worldwide demand of groundnut for direct food consumption
has been steadily increasing, with the developing countries
accounting for much of this increase. In Asia, with change in
trend toward food uses, quality parameters to suit the food,
and industry needs have emerged as important target traits in
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several countries including India and China. In the case of
roasted peanut the flavor is an essential characteristic influencing
consumer acceptance, and enhancing roasted peanut flavor is
an important target trait. The quality attributes preferred for
confectionary grade varieties include high protein and sugar,
low oil and aflatoxin contamination, attractive seed size and
shape, pink or tan seed color, and ease of blanching and high
oleic/linoleic fatty acid (O/L) ratio (Dwivedi and Nigam, 1995).
Blanchability, removal of testa or seed coat (skin) from raw
or roasted groundnuts is of economic importance in processed
groundnut food products, which include peanut butter, salted
groundnuts, candies, and bakery products and groundnut flour.
High oleic trait is important for consumers’ health and for
food industry. Groundnut based food products are now widely
used in feeding programs to treat malnutrition and therefore,
improving nutritional quality traits is gaining importance.
Nutritional quality adds value to ready-to-use therapeutic food
(RUTF) and other food supplement for children and elderly.
For fodder purpose, the nitrogen content, metabolizable energy,
and organic matter digestibility of haulms are important quality
traits. Depending on breeding objective one or more traits may
be given preference over others. Both, nutritional quality traits
and food processing quality traits are gaining importance in the
breeding programs to meet various uses as well as consumer
preference.

GROUNDNUT IMPROVEMENT USING
CONVENTIONAL BREEDING METHODS

Crop improvement via conventional breeding makes use of
suitable breeding method to screen, identify and select superior
performing line(s) in a set of genotypes or in a population
developed by crossing diverse individuals. The breeding method
to be used depends on the target trait, genetic nature of the trait,
and resource availability. Breeding methods used for groundnut
using single or multiple crossing systems have been reviewed by
Janila and Nigam (2012). Studies on inheritance, heritability and
trait associations of target traits have been useful in breeding
programs. Heritability for seed yield, drought tolerance and its
component traits was reported to be low to high in different
populations. While for 100 seed/pod weight, and for days to
flowering and maturity, high heritability was reported. Pod
yield in groundnut is positively associated with number of
mature pods per plant and 100 kernel weight. SPAD (soil
plant analysis development) chlorophyll meter is used in the
trait-based groundnut breeding for drought tolerance. Disease
score for LLS is associated with component traits of resistance
consequently, disease scores in the field suffice to evaluate
the breeding material for resistance to LLS. Absence of trade-
off between oil content and yield (Janila et al., 2014) enabled
development of high oil yielding breeding lines. Back cross
breeding was rarely used because most of the desired economic
traits in groundnut are quantitatively inherited. However, with
the advent of molecular markers for the traits of interest, back
cross breeding has been used to transfer major effect QTLs
governing resistance to nematode and foliar fungal diseases, and

mutant FAD (Fatty acid dehydrogenase) alleles for enhanced fatty
acid profile. Wide hybridization techniques were used to tap the
potential of wild species, particularly for disease resistance, while
mutation breeding played an important role for release of several
groundnut varieties in India and China.

Most of the approaches centered on pod yield improvement
and tolerance/resistance to diseases and drought. Pod yield under
stress conditions, such as, diseases and drought is measured
and used as a selection criteria in breeding. However, with
the development of efficient phenotyping tools such as, near
infrared reflectance spectroscopy (NIRS) and nuclear magnetic
resonance (NMR) spectroscopy, and tools for screening disease
resistance using disease scores, and water use efficiency (WUE)
through surrogate traits the focus has shifted to trait-based
breeding (Janila and Nigam, 2012). By 2012, the national
programs in India have released 194 improved groundnut
varieties for cultivation in the country following the conventional
breedingmethods (Rathnakumar et al., 2013). Belowwe reviewed
trait improvement achieved through conventional breeding
in groundnut, while critically examining the gaps to achieve
enhanced genetic gains for these target traits. Some trait-specific
commercial groundnut varieties released for cultivation are listed
in Table 1.

Improvement of Yield and Yield Related
Traits
Groundnut yield can be classified based on utility into pod,
kernel, oil, and haulm yield. Pod yield is most important and
is a function of crop growth rate, duration of reproductive
growth, and the fraction of crop growth rate partitioned toward
pod yield (Janila et al., 2013). Selection for yield were used for
improving groundnut productivity but the genetic gains from
such selection were often hampered by the complex nature of
the trait and large G × E interaction effects (Nigam et al.,
1991). Majority of the efforts toward increasing yield in India
came from improvement in seed size, seed weight, and number
of pods per plant (Rathnakumar et al., 2012). It was reported
that improved varieties alone contributed to 30% yield increase
in India since 1967 (Reddy and Basu, 1989). JL 24, a high
yielding variety with wide adaptability has been release in several
countries. It was released as Phule Pragati in 1979 in India
(Patil et al., 1980), subsequently, it was introduced to Africa and
released as JL 24 in Congo (1990), Sera Leone (1993), and South
Africa (2002), as Luena in Zambia (1999), as Kakoma in Malawi
(2000), as Saméké in Mali (2000), as ICG 7827 in Mozambique
(2011) and is commercially cultivated in several other countries
(Chiyembekeza et al., 2001). It was also released in 1985 as
Sinpadetha 2 in Myanmar and in 1992 as UPL Pn 10 in the
Philippines.

Breeding for Biotic and Abiotic Stress
Tolerance/Resistance
Improved breeding lines with resistance to foliar fungal diseases
were developed (Singh et al., 2003), and “Southern Runner” was
the first moderate LLS resistant cultivar to be released in the USA
(Gorbet et al., 1987). As compared to the cultivated A. hypogaea,
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TABLE 1 | Some examples of commercial groundnut lines released for different target traits through conventional breeding approaches.

Trait (s) Variety/Line/Genotype References

AGRONOMIC TRAITS

Early-maturity JL 24 (Phule Pragati), Nyanda Patil et al., 1980; Upadhyaya et al.,

2005

Medium-maturity Somnath Badigannavar and Mondal, 2007

High pod yield TAG 24, TG 26, SB XI, GAUG 1 Patil et al., 1980; Badigannavar et al.,

2002

Wide adaptability JL 24 (Phule Pragati) and TG 37A Kale et al., 2004

RESISTANCE TO DISEASES AND INSECT PESTS

Root-Knot Nematode (Meloidogyne spp.) COAN Simpson and Starr, 2001

Kalahasty Malady Tirupati-3 Mehan et al., 1993

LLS and rust GPBD 4 Gowda et al., 2002

Peanut bud necrosis disease Kadiri 3, ICGS 11, ICGS 44, ICGS (FDRS) 10, ICGV 86325, DRG

17, CSMG 884

Ghewande et al., 2002

Tomato spotted wilt virus Florida 07, C-99R, Florida Runner, UF 91108 Branch, 1994, 1996; Culbreath et al.,

1997; Gorbet and Tillman, 2009

Groundnut rosette disease (GRD) Samnut 24 (ICIAR19BT), Samnut 25 (ICGX-SM 00020/5/10), and

Samnut (26ICGX-SM 00018/5/P15/P2)

Ajeigbe et al., 2015

Bacterial wilt disease Zhonghua 4, Zhonghua 6, Tianfu 11, Zhonghua 21 Yu et al., 2011

Low aflatoxin contamination J-11, 55-437, ICG 7633, ICG 4749, ICG 1326, ICG 3263, ICG

9407, ICG 10094, ICG 1859, ICG 9610

Nigam et al., 2009

ABIOTIC STRESS TOLERANCE

Drought tolerance ICGV 91114, ICGV 87846, ICR 48, ICGV 00350, 55-437, GC

8-35, 55-21, 55-33, SRV 1-3, SRV 1-96

Mayeux et al., 2003; Vindhiyavarman

et al., 2014

Heat stress 55-437, 796, ICG 1236, ICGV 86021, ICGV 87281, ICGV 92121 Craufurd et al., 2003

QUALITY AND NUTRITIONAL PARAMETERS

High oleic acid content SunOleic 95R, SunOleic 97R Gorbet and Knauft, 1997

High oil content ICGV 03057, ICGV 03042, ICGV 05155, ICGV 06420, ICGV

03043

Annonymous, 2014

Iron and zinc content ICGV 06099, ICGV 06040 Janila et al., 2014

CONFECTIONARY TRAITS

Large seeded pods ICGV 03137, Asha, Mallika, SC Orion, TG 1, TKG 19A, Somnath,

TPG 41, TLG 45, TG 39

Hildebrand and Nosenga, 2005;

Badigannavar and Mondal, 2007;

Janila et al., 2012

BREEDING FOR MULTIPLE TRAITS

Flavor quality and high yield FLORUNNER Norden et al., 1969

Medium-maturity and GRD resistance Samnut 21, Samnut 22, Samnut 23 Ajeigbe et al., 2015

Early-maturity and GRD resistance Samnut 24, Samnut 25, Samnut 26 Ajeigbe et al., 2015

Multiple disease and insect resistance ICGV 86699 Reddy et al., 1996

High O/L ratio and TSWV resistance Hull Gorbet, 2007

High oleic acid and moderate resistance to TSWV, stem

rot and Sclerotina blight

Tamrun OL01 Simpson et al., 2003b

high levels of resistance to foliar fungal diseases were reported in
wild species (Stalker and Simpson, 1995) and they were utilized to
derive interspecific hybrids, which in turn were used to develop
varieties, such as, GPBD 4 (Gowda et al., 2002) andMutant (28-2)
(Motagi et al., 2014). ICG 7878, released inMali is resistant to ELS
and LLS. The foliar fungal disease resistant varieties developed
in 1980’s and 1990’s such had poor pod and kernel features
due to linkage disequilibrium, consequently, despite high pod
yield and resistance, they did not find acceptance among farmers
(Nigam, 2000). Combining foliar fungal disease resistance and
early maturity has remained a challenge despite availability of
several donors.

The development of simple and efficient field screening
techniques formed the basis of breeding for resistance to
PBND, TSWV, and GRD. Varieties tolerant to PBND, TSWV,
and GRD were released for cultivation (Table 1). Resistance
sources to GRD were first discovered in Senegal in 1952
and used as parents in breeding high-yielding and rosette-
resistant groundnut varieties such as, RMP12, RMP 91, and
RG1. However, most of these varieties were late maturing,
consequently not preferred by farmers (Waliyar et al., 2007).
ICGV SM 90704, released in Uganda as Igola 2 is a high-yielding,
long-duration variety with resistance to rosette. A short duration
Spanish bunch variety, ICG 12991 is also resistant to rosette.
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In Nigeria, medium duration and GRD resistant varieties viz.,
UGA 2 (Samnut 21),M 572.80I (Samnut 22), and ICGV-IS 96894
(Samnut 23) were released in 2001, and more recently three early
maturing GRD resistant varieties Samnut 24, Samnut 25, and
Samnut 26 were released. Studies have shown that these varieties
have minimized the incidence of GRD in Nigeria (Ajeigbe et al.,
2015). ICGV-SM 08503, ICGV-SM 08501, ICGV-SM 01731,
ICGV-SM 01724 ICGV-SM 01514, ICGV-SM 99551, and ICGV-
SM 99556 are GRD resistant varieties released for cultivation in
Malawi during 2014.

The resistance gene toMeloidogyne arenaria was introgressed
into A. hypogaea by using a complex interspecific hybrid
comprising of three nematode resistant species, Arachis
batizocoi, Arachis cardenasii, and Arachis diogoi Hoehne and
the first resistant cultivar TxAG-6 was released for commercial
cultivation (Simpson et al., 1993). This was followed by the
release of TxAG-7, derived from backcross (Simpson et al.,
1993). Efficient screening methods for resistance to nematodes
enabled identification of resistant source, and subsequently
used to breed genotypes with resistance to root-knot nematodes
(Simpson et al., 2003a) and Kalahasti malady (Tylenchorhynchus
brevilineatus) (Mehan et al., 1993). Tifguard is a groundnut
variety bred for resistance to both root-knot nematode and
TSWV and was released for cultivation in the USA (Holbrook
et al., 2008). Although, varieties with multiple resistance are
needed, simultaneous targeting of multiple diseases is laborious
with conventional breeding approaches, consequently resistance
to one disease is often targeted.

Bacterial wilt resistant sources in cultivated (Liao et al., 2005)
and wild Arachis species (Tang and Zhou, 2000) were used to
develop and release resistant groundnut cultivars, Zhonghua
4, Zhonghua 6, Tianfu 11, Zhonghua 21, etc., in China (Yu
et al., 2011) and other countries. Resistant sources to pre-harvest
seed infection, in-vitro seed colonization (IVSC) and aflatoxin
production by A. flavus were identified in cultivated groundnut
using in-vitro and in-situ colonization techniques (Mehan et al.,
1991). Sources with resistance operating at three different levels,
pod wall, testa, and cotyledons were reported. Despite reports on
availability of sources of resistance, progress in breeding is limited
by lack of reliable screening protocols. Both, in-vivo and in-vitro
techniques suffer from repeatability and reliability. In groundnut
breeding programs across the world, breeding for resistance to
diseases has received more attention than breeding for resistance
to insect pest except when they are vector of viral disease.
Another important reason for this is the non-availability of the
resistant sources for insects in cultivated and wildArachis species.
Limited progress has been made in screening of improved
varieties for storage pest tolerance although variability has been
reported.

Significant progress has been achieved in understanding
the underlying mechanism of drought tolerance in groundnut
over the years which has resulted in development of efficient
physiological trait-based and empirical selection approaches
(Nigam et al., 2005) to breed for drought tolerance in groundnut.
Empirical approach that measured yield under water limiting
conditions is widely used. Trait-based approaches measuring
WUE employs SPAD (soil plant analysis development) and

SLA (specific leaf area) for drought tolerance, and they are
often used in combination with empirical approach. Root traits
are identified as drought adaptive traits, however their use as
selection criteria for drought resistance is limited as they required
elaborate phenotyping protocols. So far, studies on heat tolerance
in groundnut were limited to few screening studies reporting
tolerant lines for heat stress (Craufurd et al., 2003; Hamidou et al.,
2013).

Breeding for Quality Traits
The quality attributes preferred for confectionary grade
varieties such as high sugar, low oil, and free from aflatoxin
contamination, attractive seed size and shape, pink or tan seed
color, and ease of blanching and high oleic/linoleic (O/L) ratio
were targeted for improvement (Nigam et al., 1989; Dwivedi and
Nigam, 1995). With the development of tools for non-destructive
analysis of samples breeding for enhanced oil content and
quality has become possible. It is now possible to screen whole
kernels and even single seeds using techniques like NIRS and
NMR spectroscopy. Following hybridization and wide scale
screening efforts several high oil lines (>50%) were identified,
however under field cultivations the stability was found wanting.
Extensive multi-location testing identified four high oil yielding
lines ICGV 05155, ICGV 06420, ICGV 03042, and ICGV 03043
for release in India. Breeding for high oleic groundnut began
with the discovery of F435 a high oleic acid spontaneous mutant
with an oleic acid content of >80% (Norden et al., 1987), and the
first high oleic variety, SunOleic 95R with 82% oleic acid content
was registered in 1997 (Gorbet and Knauft, 1997). ICGV 03137,
a Virginia bunch variety with high blanchability (Janila et al.,
2012) and ICGV 06099 and ICGV 06040 with high kernel Fe
and Zn (Janila et al., 2014) were reported. Large seeded varieties,
preferred for table purposes, such as Asha and Namnama were
released in Philippines and Mallika was released in India.

GENOMIC TOOLS-BREEDING
GROUNDNUT THE GENOMICS WAY

Knowledge of trait genetics combined with classical plant
breeding methods and efficient phenotyping tools has been
successful in the development and release of several improved
cultivars with high yield potential, resistance to biotic and
abiotic stresses, and enhanced/improved nutritional quality traits
in groundnut. However, sometimes the efforts invested in
classical breeding to improve a trait do not justify the final
outcome, especially in the case of interspecific hybrids and traits
that are quantitatively inherited and influenced by genotype
× environment interaction effects. The technique of crossing
diverse parents for trait(s) of interest and selecting progenies
in segregating generations usually works for traits with high
heritability and for which efficient phenotyping tools are available
such as resistance to LLS and rust. The desirable alleles of a trait
with high heritability will be fixed in the successive generations
of selfing in the presence of selection pressure. Nonetheless,
phenotyping for making selection, for example, screening in
disease nursery, involves huge resources, and time, besides the
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chance selection of escapes. Moreover, screening of some traits
have to be done in a specific season and/or location. Screening
for bacterial wilt resistance is carried out in disease endemic
locations. Foliar fungal diseases occur in rainy season in Asia and
Africa and field screening is possible in that season. While in the
other non-rainy season, generations are advanced based on yield
and other attributes, consequently, the progress in breeding for
disease resistance is often slow with low rate of genetic gains.
Improvement of traits such as, oil content and quality through
classical breeding was limited as they require efficient and robust
phenotyping tools, and moreover for these traits phenotyping
has to be done after harvest, drying, and shelling of the pods.
Available tools for analyzing seed quality traits are destructive and
can usually result in loss of valuable breeding material especially
in early segregating generations where the seed material is in
limited supply. Consequently, screening for quality traits is
often delayed to advanced generations. Reliable and repeatable
phenotyping requires practice and skill, a crucial aspect in
breeding. However, even with the best available phenotyping
tools, there is a possibility of selection bias that may occur due
to chance failure of phenotypic screens and chance escapes. High
throughput phenotyping tools are now available to screen for
diverse traits, but their application is limited due to their high
cost and lack of technical knowhow. Consequently, the high
throughput phenotyping tools may not be ready for deployment
in breeding programs, but they may be useful to establish
marker-trait associations (MTA), genome-wide associations and
for training genomic selection models which require precise
phenotyping (Cobb et al., 2013). Genomic tools, on other hand
offer cost-effective, robust, and reliable tools to enhance genetic
gain for target traits and it is possible to enhance the efficiency of
classical breeding by optimizing the time, resources, and funds.

The advent of genomic tools and their utilization in crop
improvement programs has revolutionized the breeding
methodologies. The deployment of genomic tools in groundnut
improvement programs has begun recently. The slow progress
can be in part attributed to tetraploid nature of groundnut, low
marker polymorphism and lack of marker/genome sequence
resources and high throughput genotyping platform. Among
the approaches adopted to deploy genomic tools in groundnut
improvement programs, marker assisted backcrossing (MABC)
has been the most preferred and result oriented molecular
breeding approach for improving existing popular genotypes
for one or two traits and pyramiding of few genes/QTLs.
MABC enables optimum utilization of time and resources,
early selection of genotypes in segregating generations, break
linkage disequilibrium associated with wild interspecific hybrids
and carry out back cross breeding for trait improvement. Few
success stories in groundnut improvement using MABC is
described in the section “MAB for groundnut improvement.”
Besides, marker assisted selection (MAS) has also been used
in groundnut (Janila et al., 2016). However, in the case of
quantitative traits such as drought resistance, yield etc., which
are controlled by several QTLs, each with a small effect on the
phenotype, it is very difficult to develop improved genotypes
with ideal features through MABC (Varshney et al., 2013). In
such situations, the other breeding approach namely genomic

selection (GS) discussed under the section “emerging genomic
technologies and groundnut genome sequence database” are
being deployed in groundnut. As part to the Peanut Genomics
Initiative, peanutbase.org, a resource database was developed
for U.S. and international peanut researchers and breeders. The
resources available includes, diagnostic markers for use in MAS,
QTL information, maps of diploid and tetraploid Arachis species,
diploid genome sequence data, and A. hypogaea transcriptome
data.

Mapping Populations and Marker-Trait
Associations in Groundnut
The application of genomic tools in groundnut breeding
requires identification of genes/QTLs linked to traits of interest.
The first step in this regard is development of mapping
populations. Development of a mapping population by crossing
genetically divergent parent(s) and using recent advances in
marker technologies to fine map QTLs for economically
important target traits has been used to establish MTA for
deployment in groundnut breeding. In order to carry out
marker trait association studies for agronomically important
traits in groundnut, several types of genetic populations have
been developed such as recombinant inbred lines (RILs), F2
population, near isogenic lines (NILs), backcross introgression
lines (BILs), natural populations namely, groundnut reference set
or minicore collection developed by ICRISAT, nested association
mapping (NAM), and multi-parent advanced generation inter-
cross (MAGIC) populations (Pandey et al., 2012; Varshney et al.,
2013; Janila et al., 2014).

The trait mapping approaches can be broadly categorized
into three types i.e., linkage mapping, linkage disequilibrium
(LD) based genome-wide association studies (GWAS), and joint
linkage-association mapping (JLAM). Trait mapping through
linkage mapping in groundnut used bi-parental mapping
populations which basically utilize the diversity present between
two diverse parents for traits of interest through development
of F2, BIL, RIL, and NIL populations. Initially the purpose of
developing mapping populations was to map the maximum
number of loci in a single map but later, populations were
developed targeting mapping of economically important traits
in groundnut such as tomato spotted wilt virus (TSWV), LLS
and rust, drought related traits, GRD etc. The LD-based GWAS
approach utilizes diverse germplasm sets with high variability
for economically important traits in a crop species. In case of
groundnut, two such efforts have been reported. The first attempt
was made to conduct association analysis using US minicore
collection which reported association between FAD2 genes and
oleic and linoleic acid trait (Wang et al., 2011). The second study
used groundnut reference set developed by ICRISAT possessing
global diversity i.e., comprising of 300 genotypes from 48
countries (Pandey et al., 2014). The later wasmost comprehensive
GWAS study in groundnut as it targeted 50 agronomic traits
and successfully reported identification of 524 highly significant
MTAs for 36 traits with phenotypic variance ranging from 5.81%
to as high as 90.09%. These MTAs with high PV, after validation
could be used to improve biotic resistance, seed quality, drought
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tolerance related traits, and yield/yield components in groundnut
(Pandey et al., 2014).

The third trait mapping approach i.e., JLAM requires
development of multiple parent mapping population such as
NAM and MAGIC. NAM makes use of both primitive and
recent recombination events to take advantage of low marker
density requirements, allele richness, high mapping resolution,
and high statistical power. Whereas, MAGIC population utilizes
multiple parents (8–12) from different origins and sometimes
from exotic backgrounds in a crossing program so that multiple
QTLs distributed across lines can be brought together into a
single line through bi-parental matings. The availability of higher
proportion of RILs from multiple parent crosses allows both
coarse and fine mapping to be performed and the complex
architecture of many traits which are associated with crop
yield and quality can be deduced using epistatic interactions

(Cavanagh et al., 2008). These two type of populations have not
yet been used for trait mapping in groundnut. Nevertheless, the
two NAM populations and three MAGIC populations are under
development at ICRISAT in groundnut which will be later on
used for conducting MTA studies. In addition, these two type
of populations, in future, will serve as important resources for
the discovery, isolation and transfer of essential genes to facilitate
crop improvement. The detailed information on QTLs and the
linked markers identified so far using linkage mapping approach
is summarized in Table 2. A good number of studies reported
QTLs for resistance to several diseases that include, rust, LLS,
Bacterial wilt, nematode, Sclerotinia minor, A. flavus, Aflatoxin
contamination, and TWWV. So far, major QTLs governing
resistance to nematode, rust, and LLS were transferred through
MABC. For drought tolerance several minor effect QTLs were
reported.

TABLE 2 | Molecular markers associated with trait specific genes/QTLs in groundnut.

Population Trait# Marker system* References

Yuanza 9102 × ICGV 86699 Rust resistance AFLP Hou et al., 2007

TAG 24 × GPBD 4 Rust resistance SSR Khedikar et al., 2010

A. duranensis × A. stenosperma LLS resistance Legume anchor and resistance

gene analog markers

Leal-Bertioli et al., 2009

TAG 24 × GPBD 4, TG 26 × GPBD 4 LLS and rust resistance SSR Sujay et al., 2012

Zhonghua 5 × J 11 Aflatoxin contamination AFLP Lei et al., 2005

Zhonghua 5 × J 11 Aflatoxin contamination SCAR Lei et al., 2006

12 genotypes Aspergillus flavus resistance SSR Hong et al., 2009

A. kuhlmannii × A. diogoi TSWV AFLP Milla et al., 2004

Tifrunner × GT-C20, SunOleic 97R × NC94022 TSWV SSR Qin et al., 2012

ICG 12991 × ICGV-SM 93541 Aphid (Aphis craccivora) resistance AFLP Herselman et al., 2004

21 Inter-specific and three cultivated lines Peanut bud necrosis resistance SSR Bera et al., 2014

Tifrunner × GT-C20 Thrips, TSWV, ELS, and LLS resistance SSR Wang et al., 2013

Yuanza 9102 × Chico Bacterial wilt resistance SSR Jiang et al., 2007

39 genotypes Sclerotinia minor resistance SSR Chenault et al., 2009

A. hypogaea cv. Florunner × (A. batizocoi × (A.

cardenasii × A. diogoi))

Meloidogyne arenaria resistance RAPD Burow et al., 1996

A. hypogaea × TxAg-7 M. arenaria resistance RFLP Choi et al., 1999

Interspecific cross with A. hypogaea M. arenaria resistance SCAR Chu et al., 2007b

TAG 24 × ICGV 86031 Drought tolerance SSR Ravi et al., 2011

TAG 24 × ICGV 86031, ICGS 76 × CSMG

84-1, ICGS 44 × ICGS 76

Drought tolerance SSR Gautami et al., 2012

Fleur 11 × (A. ipaensis KG30076 × A.

duranensis V14167)×4
Days to flowering, plant architecture, pod and

kernel trait, yield component

SSR Foncéka et al., 2012

Tamrun OL01 × BSS 56 Pod and kernel traits SSR Selvaraj et al., 2009

Zhenzhuhei × Yueyou 13 Dark purple testa color SSR Hong et al., 2007

TG 26 × GPBD 4 Protein content, oil content, and oil quality SSR Sarvamangala et al., 2011

US Peanut Minicore germplasm collection High oleic acid content (FAD2A) CAPS Chu et al., 2007a

14 genotypes High oleic acid content (FAD2B) CAPS Chu et al., 2009

Germplasm accessions and breeding lines High oleic acid content (FAD2A/FAD2B) AS-PCR Chen et al., 2010

Germplasm accessions and breeding lines High oleic acid content (FAD2B) Real time-PCR Barkley et al., 2010

Germplasm accessions and breeding lines High oleic acid content (FAD2A) Real time-PCR Barkley et al., 2011

*RAPD, Randomly Amplified Polymorphic DNA; RFLP, Restriction Fragment Length Polymorphism; CAPS, Cleaved Amplified Polymorphic Sequence; SSR, Simple Sequence Repeat;

AFLP, Amplified Fragment Length Polymorphism; SCAR, Sequence Characterized Amplified Region; AS-PCR, Allele Specific Polymerase Chain Reaction.
#FAD, Fatty acid desaturase; TSWV, Tomato Spotted Wilt Virus; ELS, Early Leaf Spot; LLS, Late Leaf Spot.
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Marker Assisted Breeding (MAB) in
Groundnut
MAB can be practiced using either simple marker-assisted
selection (MAS) approach or marker-assisted backcrossing
(MABC). The selection of breeding lines in MAB requires three
categories of markers (a) foreground selection, which involves
using molecular markers for selecting the target gene or QTL,
(b) recombinant selection, that involves selecting of backcross
progenies containing the target gene, and recombination events
between the target locus and linked flanking markers, and (c)
background selection, where in the plants/progenies are selected
based on recovery of highest proportion of recurrent parent
genome (Varshney and Dubey, 2009). MAS requires foreground
and recombinant markers whileMABC requires all the three type
of markers. Markers that are closely linked or associated with
genes/QTLs for some important target traits have been identified
in groundnut and are being utilized to transfer genes/QTLs to
elite cultivars or to pyramid many genes either for the same trait
or for different traits. A schematic diagram showing integrated
breeding approach combining genotyping and phenotyping
based selection of progenies is given in Figure 1.

The MAB approach was used successfully in developing
NemaTAM, the first root-knot nematode resistant groundnut
variety bred, and it was released for cultivation in the USA
(Simpson et al., 2003a). Following the identification of markers
linked to FAD gene alleles conferring the high oleic trait in
groundnut (Chu et al., 2007a, 2009), efforts were made to
pyramid nematode resistance with the high oleic trait. The
nematode resistant cultivar “Tifguard” was used as recurrent
female parent while Georgia-02C and Florida-07 served as donor
parents for the high oleic trait to develop a variety, “Tifguard
High O/L” that has resistance to nematode and high oleic trait
(Chu et al., 2011). Three backcrossing were done to the recurrent
parent to develop “Tifguard High O/L.” At ICRISAT, the FAD2A
and FAD2Bmutant alleles responsible for high oleic acid content
were transferred into the elite genotypes with high oil (53–58%)
and low oil content (42–50%) using MAS as well as MABC
approaches. From above breeding material, several promising
lines with high oleic lines and other desirable features were
identified for subsequent yield evaluations (Janila et al., 2016).
At ICRISAT, gene pyramiding approach was also deployed to
combine early maturity with foliar fungal disease resistance and

FIGURE 1 | A schematic representation of integrated breeding approach for trait improvement in groundnut. RIL, Recombinant Inbred Line; NIL, Near

Isogenic Line; NAM, Nested Association Mapping; MAGIC, Multi-parent Advanced Generation Inter-Cross Lines; AB-OTL, Advanced Backcross Quantitative Trait

Loci; GWI, Genome Wide Introgression; GS, Genomic Selection; MAS, Marker Assisted Selection; MABC, Marker Assisted Backcrossing; MARS, Marker Assisted

Recurrent Selection.
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high oleic trait. In China and Japan also, MAB was deployed to
breed high O/L lines in groundnut.

In a recent study at ICRISAT, the MABC approach was
used successfully to combine resistance to foliar fungal diseases
with early maturity. In this study, the earlier identified markers
flanking the QTL controlling rust resistance were deployed
(Khedikar et al., 2010; Sujay et al., 2012) leading to introgression
of this QTL into three early maturing elite cultivars, namely
ICGV 91114, JL 24, and TAG 24 using GPBD 4 as donor parent
(Varshney et al., 2014). The same QTL also contributes 67.98%
of variation of LLS resistance. Subsequently, few introgressed
lines selected based on phenotype in preliminary yield trials, and
disease resistance score in hot spot locations are currently in
the pipeline for multi-location evaluation trials. This work is the
first reported successful attempt in combining disease resistance
with early maturity (Varshney et al., 2014). Besides, pyramiding
genes for oil quality and foliar fungal disease resistance into 10
drought tolerant, high oil, recently released cultivar backgrounds
is also in progress at ICRISAT. The next decade may probably
witness a good number of groundnut varieties developed through
integrated molecular breeding approaches.

Genomic Tools for Harnessing Natural
Variation in Groundnut
The availability of molecular markers has played key role in
increased utilization of wild species and land races in breeding
programs, as it helps in reducing the linkage disequilibrium
that is frequently associated with lines developed through wide
hybridization. In groundnut, tapping of wild alleles into the
cultivated gene pool is restricted by (a) crossing barriers imposed
by ploidy differences between wild and cultivated groundnut (b)
association of favorable alleles with unfavorable alleles, a process
referred to as linkage drag, and (c) non-availability of efficient
tools to identify hybrids and track introgressed chromosomal
segments. Systematic introgression of entire genome of a wild
species into cultivated background is now possible by use
of molecular markers, which is referred to as genome-wide
introgression (GWI). Following this approach, it is possible
to develop chromosome segment substitution lines (CSSLs)
and advanced back-cross QTL (AB-QTL) mapping populations
which enable tapping of new alleles from wild species. GWI
and AB-QTL have been used to generate variability in cultivated
groundnut. GWI facilitates the transfer of a small genomic
region from the wild donor parent into the homozygous genetic
background of elite parent. At ICRISAT, by tracking the wild
genome introgression through genotyping, AB-QTL population
is under development by crossing a synthetic amphidiploid,
ISATGR 184(5) with popular cultivar, Tifrunner (Accession
number: ICG 9937). ISATGR 184 (5) is derived from a
cross between two diploid wild progenitor species, A. ipaensis
(Accession number, ICG 8206), and A. duranensis (Accession
number, ICG 8123). AB-QTL, an approach that facilitates
simultaneous discovery and transfer of QTLs into elite genotypes
(Tanksley and Nelson, 1996), was recently utilized by Foncéka
et al. (2012) in groundnut and involved a cross between the
wild synthetic amphidiploid of (A. ipaensis × A. duranensis)4X

and the cultivated Fleur 11 variety. The CSSLs (Foncéka et al.,
2009) and AB populations facilitate characterization of different
segments of wild species contributing for resistance to foliar
diseases and/or any other desirable trait. Once these different
segments and their roles are determined, it is then possible to
track them along the back-crosses using molecular markers for
use in breeding programs. From AB-QTL populations developed
earlier at ICRISAT and foliar fungal disease resistant lines were
identified in disease nurseries that may server as potential sources
to broaden the genetic base of foliar fungal disease resistance after
validating with known QTLs. At present, GPBD 4 is used as a
source of resistance to LLS and rust governed by two major QTLs
and there is need to identify new genomic regions from new
sources to achieve durable resistance through gene pyramiding
approach.

There has been a speedy developments in development of
genomic resources and genomic tools for breeding (see (Pandey
et al., 2012; Varshney et al., 2013; Janila et al., 2014), http://www.
peanutbioscience.com/). Simple sequence repeat (SSR) markers
are still the choice of markers for breeders but their number
were very less till now i.e., ∼2500. Meanwhile, ICRISAT in
collaboration with DArT Pty Ltd., Australia has developed
diversity arrays technology (DArT arrays) with 15,360 features
(see Pandey et al., 2014) and Kompetitive Allele Specific PCR
(KASP) assays for 90 SNPs (Khera et al., 2013). The above
resources were used for construction of several genetic maps,
linkage analysis, trait mapping, and molecular breeding (see
Pandey et al., 2012; Varshney et al., 2013; Janila et al., 2014,
http://www.peanutbioscience.com/). However, sequencing and
resequencing data generated for draft genome assembly will now
be used for development of several 100 SSRs and millions of SNP
evenly distributed in the peanut genome. The availability of huge
SNP resources has led to initiate the development of 60 K SNP
chip by ICRISAT in collaboration with University of Georgia
(UGA), USA using Affymetrix SNP platform for accelerating
genetics and breeding applications in these legume crops.

Functional Genomics Tools for Gene
Discovery in Arachis
The use of functional genomics and biotechnological techniques
serve as important tools as they enable the discovery and
characterization of genes of agronomic importance through deep
analysis of transcriptome, and their direct transference to chosen
cultivars by plant transformation (Brasileiro et al., 2014). Genes
encoding storage proteins and fatty acid metabolic enzymes,
genes that are differentially expressed in response to pathogen
stress, genes involved in oil metabolism etc., have been identified
and cloned in groundnut through EST sequencing and are being
utilized in groundnut improvement. For example, to improve
oil stability in groundnut a FAD2 gene RNAi construct was
transformed into groundnut (Zhang et al., 2007; Huang et al.,
2008) and the resulting transgenic plant showed an increased
O/L ratio (Huang et al., 2008). Similar RNAi technique was
used to repress the accumulation of major allergens Arah 1 and
Arah 2 in groundnut (Dodo et al., 2008). Functional genomic
resources such as expressed sequence tags (ESTs), have been used
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to understand temporal and spatial gene expression patterns,
for development of gene based markers and maps, transcript
profiling to identify candidate genes involved in expression of
traits of interest, and the identification of transcription changes
during biotic and abiotic stresses. The Microarray technology
was used to study expression patterns of several genes from
diverse tissues such as groundnut seed, leaves, stems, roots,
flowers, and gynophores (Bi et al., 2010), and to analyze transcript
levels in different tissues and organs in order to identify pod
specific groundnut genes and correlated to seed storage proteins,
desiccation, oil production, and cell defense (Payton et al.,
2009). Another important application may be to understand
molecular mechanisms governing host-pathogen interactions
that include pathogen-associated molecular pattern (PAMP),
pathogen triggered immunity (PTI), and effector triggered
immunity (ETI) in plants. Transcriptome resources generated
through microarray or next generation sequencing (NGS) tools
are of immense value in species where genome sequence is not
yet available (Varshney et al., 2009).

EST sequencing allows identifying plant genes that are
preferentially expressed in specific organs or plant tissues at a
particular time. Using the technique of microarray, it is possible
to detect the spatial and temporal distribution of gene expression
among tissues and genotypes. This potential has been exploited
in Arachis to generate ESTs for specific traits such as drought
(Jain et al., 2001), tomato spotted wilt virus and leaf spot disease
resistance (Guo et al., 2009), Aspergillus infection and aflatoxin
contamination (Guo et al., 2008); tissue specific ESTs such as
in root, leaf, seedlings, developing pods etc. (Nagy et al., 2010;
Koilkonda et al., 2012); stage specific ESTs such as different
developmental stages (Song et al., 2010), and seed development
(Bi et al., 2010). ESTs from wild species have also been developed
(Luo et al., 2005a,b). So far, the EST based approach has resulted
in the isolation of 254,541 ESTs (available in public database)
from A. hypogaea, A. duranensis, A. ipaensis, A. stenosprema, and
A. magna (Brasileiro et al., 2014).

Emerging Genomic Technologies and
Groundnut Genome Sequence
Genomic selection (GS) is another emerging technique for crop
improvement. This technique relies on the identification of
superior lines with higher breeding value i.e., genomic estimated
breeding value (GEBV) in segregating breeding populations
based on genome-wide marker profile data. To estimate GEBV,
a training population (TP) comprising of elite breeding lines
for which multiple season phenotyping data on agronomically
important traits are available across environments is used. The
GEBVs are then used for selecting the appropriate parents
and using them in crossing programs to develop candidate
population (CP). GS is now the preferred method of choice
over MABC and marker-assisted recurrent selection (MARS) for
improving complex traits such as yield under drought condition.
At ICRISAT, to utilize GS approach in groundnut improvement,
a TP has been developed that includes about 340 advanced
breeding lines for which historical data on their performance
have already been compiled and are on the process of being

evaluated in multi-location trials for important agronomic,
quality, and biotic and abiotic stress tolerance/resistance
traits.

The availability of emerging genomic technologies especially
NGS has enabled the generation of a lot of sequence data
for a number of plant species (Varshney and Dubey, 2009).
NGS technologies are powerful tools for functional genomic
studies as it enables comprehensive transcriptome analysis of
induced changes in gene expression, allows the prediction of
the roles and interactions of individual or correlated genes,
and helps the elucidation of more complex signaling pathways
activated in response to external stimuli. These techniques
have also made available limited sequence information, those
having large genome size, and those exhibiting polyploidy.
The “International Peanut Genome Initiative (IPGI, http://
www.peanutbioscience.com/peanutgenomeinitiative.html)” has
decoded the draft genome for both the diploid progenitors
i.e., A—(Arachis duranensis) and B—genome (A. ipaensis) with
1.1 and 1.38 Gb genome size, respectively. In addition to
above genomes, another initiative called “Diploid Progenitor
Peanut A-genome Sequencing Consortium (DPPAGSC)” has
also completed genome sequencing for another accession of
A. duranensis with 1.07 Gb genome size (see Varshney, 2016).
The recent developments also made available opportunities to
generate high throughput genotyping data using NGS-based
genotyping platforms. As a result, the first ever SNP genetic
linkage map for cultivated groundnut was constructed with 1621
SNPs and 64 SSR loci (Zhou et al., 2014). The majority of the
published and unpublished information on genomic resources
such as genome sequence, transcriptome sequences, and trait
mapping information have been made available at the http://
www.peanutbioscience.com. It is expected that the availability
of draft genome sequence along with extensive genomic and
transcriptome information will enable deployment of modern
genotyping approaches such as genotyping-by-sequencing (GBS)
at cheaper costs.

TRANSGENICS

Transgenic approach has great potential in groundnut
improvement as it is not limited by ploidy and crossability
barriers, and it is virtually possible to transfer genes across taxa.
However, its use has been hindered by public resistance to GMO
(Genetically Modified Organism) food crops, difficulties for
plant regeneration by tissue culture techniques and selection of
transgenic events (Holbrook et al., 2011; Brasileiro et al., 2014).
Notwithstanding the limitations, transgenic groundnuts lines
expressing genes that modulate different traits such as resistance
to virus, insect and fungus, drought tolerance and grain quality
have been developed by several research groups, particularly
in United states, China and India which are currently under
evaluation at different containment levels: in vitro, greenhouse,
and field conditions (Ozias-Akins and Gill, 2001; Holbrook
et al., 2011). The recent progress achieved in Arachis genetic
transformation has been reviewed by Holbrook et al. (2011) and
Brasileiro et al. (2014).
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SUMMARY

Conventional breeding has contributed to improvement of
agronomic, quality and stress tolerance traits in groundnut
by using existing variability in cultivated gene pool, however
there is immense scope to improve breeding efficiency (time
and resources), accuracy, and enhancing genetic gain with use
of genomic tools. Use of genomic tools in breeding program
results in enhanced rate of genetic gain for target traits and also
enable to combine multiple traits. Besides, molecular markers
also enable tapping of desirable alleles from wild species without
the burden of linkage disequilibrium. The development of
molecular markers liked to target traits is a key step in integrating
genomics with groundnut breeding. Construction of molecular
marker linkage maps in groundnut and identification of markers
associated to gene/QTL(s) for important target traits paved the
way for deployment of genomic tools in breeding program. With
the identification of markers linked to gene/QTL(s), MAS is now
common and moving toward gene pyramiding for combining
multiple traits. For example, markers linked to LLS and rust
resistance, and markers for high oleic acid content are being used
to introgress these traits into short duration, high oil containing
drought tolerant cultivars. Different type of populations such
as GWI, AB-QTL, MAGIC, NAM, RILs, NILs, etc., are now
available to map QTLs and carry out association studies in
groundnut. Emerging genomics technologies such as NGS and
high throughput marker genotyping using SNPs have enabled
the generation of a lot of sequence data for groundnut. The

draft genome sequences for the two diploid progenitor species
are now available in groundnut. These sequences are expected
to aid in identification of genes in the cultivated species, once
the draft genome sequence of A. hypogaea L. becomes available.
Groundnut breeders in developed countries have made better
use of molecular breeding tools than developing countries, which
is in part due to inadequate infrastructure, high genotyping
costs, and inadequate human capacities in the latter. But the
accessibility and utilization of integrated breeding (e.g., use
of MAB) in developing countries is expected to expand with
improved affordability of using genomic tools (e.g., genotyping)
with advances in molecular techniques.
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