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Membrane lipid alterations affect Al tolerance in plants, but little is known about the

regulation of membrane lipid metabolism in response to Al stress. Transgenic tobacco

(Nicotiana tabacum) overexpressing rice monogalactosyldiacylglycerol (MGDG) synthase

(OsMGD) gene and wild-type tobacco plants were exposed to AlCl3, and the impact of

Al toxicity on root growth, Al accumulation, plasma membrane integrity, lipid peroxidation

and membrane lipid composition were investigated. Compared with the wild type,

the transgenic plants exhibited rapid regrowth of roots after removal of Al and less

damage to membrane integrity and lipid peroxidation under Al stress, meanwhile, the

Al accumulation showed no difference between wild-type and transgenic plants. Lipid

analysis showed that Al treatment dramatically decreased the content of MGDG and

the ratio of MGDG to digalactosyldiacylglycerol (DGDG) in wild-type plants, while it was

unchanged in transgenic plants. The stable of MGDG level and the ratio of MGDG/DGDG

contribute to maintain the membrane stability and permeability. Moreover, Al caused a

significant increase in phospholipids in wild-type plants, resulting in a high proportion of

phospholipids and low proportion of galactolipids, but these proportions were unaffected

in transgenic plants. The high proportion of phospholipids could contribute to a higher

rate of Al3+ binding in the membrane and thereby leads to more membrane perturbation

and damage. These results show that the regulation of galactolipid biosynthesis could

play an important role in maintaining membrane structure and function under Al stress.

Keywords: aluminum, monogalactosyldiacylglycerol, galactolipid, phospholipid, membrane integrity

INTRODUCTION

Aluminum (Al) is the most abundant metal in the earth’s crust and is a major factor limiting
plant production in acid soils, which cover about 50% of the world’s potentially arable land surface
(Kochian et al., 2004; Liu et al., 2014). Various studies have been focused on plant response to Al
stress, including the molecular, genetic, and physiological bases for Al tolerance (Poschenrieder
et al., 2008; Kochian et al., 2015). Under low pH condition, the toxic Al cations (particularly Al3+)
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can be easily released from Al-containing compounds and thus
inhibits root elongation rapidly by suppressing cell expansion
and division, resulting in a damaged root system and indirectly
limited water and nutrient uptake (Silva, 2012). Meanwhile,
toxic Al cations can interact with a number of extracellular
and intracellular substances, causing various impacts on plant
growth, including alteration of cell wall properties, generation
of reactive oxygen species (ROS) and affection of the apoplastic
processes (Panda and Matsumoto, 2007; Horst et al., 2010).

Cell membranes are vital because they separate the cell from
its surrounding environment and enable cellular activities to
proceed without external interference. However, they are easily
damaged by various environmental stresses, including Al stress.
It has been reported that cell membranes are the primary target
of Al toxicity, since Al disturbs membrane stability and integrity
very quickly and eventually inhibits plant growth (Krtková et al.,
2012; Too et al., 2014). Lipids are the predominant constituent
of cell membranes, and changes in membrane lipid composition
have frequently been found under various environmental stress
conditions, such as cold, drought and salinity; these changes
are thought to contribute to the restoration and maintenance
of membrane stability and integrity, and thus to increase plant
stress tolerance (Campos et al., 2003; Gigon et al., 2004; Bybordi,
2011). Previous studies showed that the content of phospholipids
decreased significantly under drought and salt stresses in wheat
(Mansour et al., 2002; El Kaoua et al., 2006). Lauriano et al.
(2000) found that changes in lipid composition were different
between sensitive and tolerant peanut cultivars: the contents of
galactolipids, including monogalactosyldiacylglycerol (MGDG)
and digalactosyldiacylglycerol (DGDG), and phospholipids,
including phosphatidylcholine (PC), phosphatidylglycerol (PG),
and phosphatidylinositol (PI), were significantly decreased in the
sensitive cultivars, while their contents were decreased less or
unchanged in the tolerant one under drought stress, and that the
loss of membrane integrity was less severe in tolerant cultivar.
Recently, our group has found that increased the biosynthesis
of MGDG contributes to maintain the membrane structure and
function of chloroplast, and thus leads to enhanced salt tolerance
(Wang et al., 2014).

Although the impact of Al toxicity on lipid composition
of cell membranes has only rarely been reported to date, the
few available studies have suggested that membrane lipids are
involved in the plant response to Al (Zhang et al., 1996;
Huynh et al., 2012). It was reported that the levels of several
phospholipids, including PC, PI, phosphatidylethanolamine
(PE), and phosphatidylserine (PS), were increased in roots of
Arabidopsis seedlings when exposed to Al stress (Zhao et al.,
2011). In maize, the contents of MGDG and PC were increased
in roots, while in shoots, the contents of MGDG, DGDG, and PC
were significantly decreased under Al stress (Chaffai et al., 2005).
Furthermore, it was also found that the changes in membrane
lipid composition were different in Al-sensitive and Al-tolerant
cultivars, suggesting a close relationship betweenmembrane lipid
composition and plant Al tolerance capability (Zhang et al.,
1996, 1997; Huynh et al., 2012). For example, phospholipids
(particularly PC) and MGDG decreased significantly after Al
treatment in the roots of Al-sensitive rice cultivars, whereas the

amount of lipid classes remained unchanged in the tolerant ones
(Huynh et al., 2012). Taken together, these findings indicate that
Al can cause changes in membrane lipid composition and that
these alterations are involved in plant response to Al stress.

Galactolipids are the important membrane lipid constituents
in plants. Although they are not commonly believed to be
the major components of non-plastidic membranes, changes in
these membrane components are often observed under stress
conditions, and such changes have been shown to play an
important role in the acquisition of stress tolerance. Several
studies have demonstrated that the accumulation of galactolipids
could allow them to replace phospholipids under phosphate (Pi)
starvation condition and that this process plays a key role in
the plant’s ability to adapt to Pi starvation condition (Andersson
et al., 2003; Jouhet et al., 2004; Shimojima et al., 2013; Maejima
et al., 2014). Our previous study showed that galactolipids are
essential for phosphorus dificiency tolerance in plants (Shi et al.,
2013). It is known that Al stress often accompanies with Pi
starvation since Al ion can easily bind with the negative sites of
the phosphate groups of phospholipids (Clarkson, 1966; Deleers
et al., 1986; MacKinnon et al., 2004; Maejima et al., 2014), thus,
the increase of galactolipids biosynthesis may also contribute
to Al tolerance. Moreover, it was found that the tolerant wheat
cultivar has higher MGDG content than the sensitive one when
exposed to Al stress (Zhang et al., 1996, 1997), indicating that
these galactolipids are involved and may play an important role
in plant Al tolerance. However, the underlying mechanisms by
which galactolipids contribute to regulating plant Al tolerance are
still unclear.

To gain insight into the role of galactolipids in plant
Al tolerance, transgenic tobacco plants overexpressing rice
monogalactosyldiacylglycerol synthase (OsMGD) gene, which
encodes the key enzyme for galactolipid biosynthesis, and wild-
type tobacco plants were used. Root growth, membrane integrity,
membrane lipid contents, and fatty acid compositions were
investigated in transgenic and wild-type plants, and the possible
relationships between changes in membrane lipid compositions
and Al tolerance were discussed.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Transgenic tobacco plants overexpressing the rice MGD gene
(OsMGD, AB112060) were generated by Wang et al. (2014). The
expression ofOsMGD in these transgenic plants has been verified
by genomic PCR and western-blot analysis. Moreover, the MGD
activity inOsMGD transgenic plants was to be higher than that in
the wild-type SR1 (Wang et al., 2014).

Seeds of tobacco (Nicotiana tabacum: wild-type SR1 and
transgenic lines MGD3 and MGD5) were surface-sterilized in
1% (w/v) sodium hypochlorite for 20 min, then grown on MS
(Murashige and Skoog, 1962) agar plates (pH 5.7) containing 3%
sucrose and 0 (for wild-type SR1) or 50 mg L−1 hygromycin (for
transgenic lines) for 4 weeks. The plants were then transferred
to aerated one-sixth strength Hoagland solution (HS) (pH 5.7)
and maintained in a growth chamber kept at 25◦C with a 14 h
photoperiod at 200 µmol photons m−2 s−1 for another 4 weeks.
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Al Treatment
Before Al treatment, the uniformly grown plants at the five- to
six-leaf stage were selected and precultivated for 24 h at pH 4.2
in one-sixth strength HS. Thereafter, the plants were exposed
to 0 µM (control) or 500 µM AlCl3 (Al treatment) for 24 h
in the same solution at pH 4.2 to limit Al precipitation. After
Al treatment, one set of the seedlings were retransplanted into
well-aerated one-sixth strength HS (pH 5.7) without AlCl3 and
kept for 3 days for recovery, and the root fresh weights were
measured at each time point. The histochemical staining of roots
was carried out immediately after sampling. For determination
of the levels of Al accumulation, lipid peroxidation, electrolyte
leakage and lipid compositions, roots and leaves were sampled in
control and stressed plants.

Al Accumulation in Root Tips
For analysis of Al accumulation in the root tips, the last 0–20 mm
of root tips from the roots with similar length were was washed
three times with distilled water and dried, and the Al content was
measured using an inductively coupled plasma atomic emission
spectrometer (ICP-AES, Ciros CCD, Rigaku, Japan) according to
the method of Yin et al. (2010b). The experiment was repeated
three times and each treatment included three replications.

Visualization of Plasma Membrane
Integrity
After Al treatment, root tips (0–20 mm, from the roots with
similar length) exposed to 0 µM or 500 µM AlCl3 were excised
and stained immediately with 0.025% (w/v) Evans blue (Sigma)
solution (in 100 µM CaCl2 solution, pH 5.6) for 10 min
(Yamamoto et al., 2001). Stained roots were washed three times
with 100 µM CaCl2 (pH 5.6) until the dye no longer eluted
from the roots, and then observed under a light stereomicroscope
(Olympus BX-51, Japan). A total of 10–15 individual roots from
five individual seedlings were examined, and the experiment was
repeated three times.

Plasma membrane integrity was quantified in terms of
electrolyte leakage (EL) by measuring changes in electrical
conductivity (Singh et al., 2007). Root tips (0.1 g, 0–20 mm) were
incubated in distilled water at 25◦C for 2 h in tubes, and the initial
electrical conductivity (E1) of the medium was measured. The
tubes containing the root material were then boiled for 30 min
to release all the electrolytes, then cooled to 25◦C, and the final
electrical conductivity (E2) was measured. The EL was calculated
as EL = (E1/E2) × 100%. The experiment was repeated three
times and each treatment included three replications.

Determination of Lipid Peroxidation
Lipid peroxidation was estimated in the root tips (0–20mm, from
the roots with similar length) by measuring the malondialdehyde
(MDA) content, as described in the TBARS methods (Heath
and Packer, 1968). The roots were frozen in liquid nitrogen
and ground with a mortar and pestle in 5 mL precooled 0.1%
(w/v) trichloroacetic acid (TCA) solution. The homogenate was
centrifuged at 12,000 × g for 15 min, with the addition of 1 mL
0.6% (w/v) TBA in 20% TCA to one volume of the supernatant.
The mixture was incubated in boiling water for 30 min, and the

reaction was stopped by placing the reaction tubes in an ice bath.
Thereafter, the samples were centrifuged at 10,000× g for 5 min,
and the absorbance of the supernatant was measured at 532 nm
and corrected by subtracting the non-specific absorbance at 600
nm. The MDA content was calculated using 155 mM−1cm−1

as an extinction coefficient. The experiment was repeated three
times and each treatment included three replications.

Lipid Analysis
Lipids were extracted according to the method initially described
by Bligh and Dyer (1959) and modified by Wewer et al. (2013).
Each frozen root tips (0.5 g, 0–30 mm root tips from the roots
with similar length) was homogenized in liquid nitrogen with
5 mL of chloroform/methanol/formic acid (1:1:0.1, v/v/v); the
homogenate was collected and shaken vigorously. Subsequently,
2.5 mL of 1 M KCl/0.2 M H3PO4 was added and the mixture
was vortexed briefly. The homogenized samples were centrifuged
at 4000 × g for 3 min, and the lower chloroform layer was
transferred to a new vial. Extraction was repeated by adding 5
mL of chloroform/methanol (2:1, v/v) to the residue, shaking and
centrifuging the mixture, and gathering the chloroform phase.
The combined chloroform phases were evaporated with a stream
of nitrogen, and 500 µL of chloroform were added. The samples
were then stored at−20◦C until analysis.

Lipids were separated by Thin Layer Chromatography (TLC)
on silica gel plates (G60; Merck, Germany) according to
Wang and Benning (2011). After stained with iodine (see
Supplementary Figure 1 for the separation of lipid by TLC),
the identified lipid bands were scraped off with a razor blade
and placed into tubes. Then, the lipid was methylated with HCl
in methanol and converted into fatty acyl methylester (FAME),
and the resulting FAMEs were quantified by gas chromatography
(GC-2010; Shimadzu, Japan) with flame ionization detector
(FID) according to Wang and Benning (2011) and Wewer
et al. (2013). Pentadecanoic acid (15:0) was used as an internal
standard.

Statistical Analyses
Statistical analysis was performed with SPSS-16 statistical
software. Means were compared by analysis of variance
(ANOVA), and differences were protected with the least
significant difference (LSD) test. Three independent experiments
were conducted for the measurement of root fresh weight,
hematoxylin staining, Al content, Evans blue staining, electrolyte
leakage and MDA content. Lipid contents were measured twice.

RESULTS

Effect of Al Treatment on Root Growth
To examine whether OsMGD overexpression improves Al
tolerance in tobacco plants, root growth was compared between
wild-type SR1 and the transgenic lines MGD3 and MGD5 before
and after Al treatment and 3 days after the removal of AlCl3.
There was no difference in root growth between the wild-type
and transgenic plants before Al treatment or after 24 h of
Al treatment. Three days after the removal of AlCl3, however,
root growth of MGD3 and MGD5 recovered quickly, the root
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fresh weights increased by 60.2% and 40.9%, respectively, but
no such increase in root growth was seen in wild-type SR1
(Figures 1A,B). The root fresh weights in MGD3 and MGD5
were 53.0% (P < 0.01) and 54.3% (P < 0.01) higher than that
of wild-type SR1.

Al Accumulation in Root Tips
After exposed to 500 µM AlCl3 for 24 h, no difference in
Al content was observed in the root tips of SR1 and the
transgenic lines MGD3 and MGD5 (Figure 2), indicating that
overexpression of OsMGD has no effect on Al accumulation in
roots.

Plasma Membrane Integrity and Lipid
Peroxidation in the Roots
The loss of plasma membrane integrity induced by Al was
detected by Evans blue staining and electrolyte leakage assay
(Figure 3). Root tips stained with Evans blue showed that there
was quite small area and light Evans blue staining in plants
without Al exposure, indicating the slight damage to the plasma
membrane in plants without Al exposure. In Al-treated plants,
however, the root tips of SR1 plants showed a more intense
Evans blue staining than those of transgenic plants did, indicating
serious damage to the plasma membrane integrity in wild-type
tobacco plants (Figure 3A). To confirm the severity of membrane
injury due to Al treatment, wemeasured electrolyte leakage in the
root tips (0–20mm from tip) (Figure 3B). Electrolyte leakage was
strongly increased in SR1 (91.0%) and more weakly increased in
MGD3 (75.3%) and MGD5 (68.1%). Thus, electrolyte leakage in
the root tips of MGD3 and MGD5 were 26.7% (P < 0.01) and
27.4% (P < 0.01) lower than that of SR1, which indicating that
the loss of membrane integrity under Al stress was alleviated in
transgenic tobacco plants.

The level of MDA was used to assess lipid peroxidation in the
plants. Under Al stress, MDA contents were increased in roots
of all tested plants, but transgenic plants accumulated less MDA
than wild-type plants did (Figure 4).

Distribution of Lipid Classes
To elucidate the influence of OsMGD on Al tolerance, the
lipid compositions of wild-type SR1 and transgenic plants were
determined. Under control condition, MGDG contents showed
slightly higher in transgenic plants than that in SR1 (Figure 5).
After Al treatment, a significant decrease in the amount of
MGDG in roots of SR1 was observed, which declined by 38.5%
in the roots (Figure 5A). In the transgenic plants, however, the
amount of MGDG remained stable (Figures 5B,C). The MGDG
contents in MGD3 and MGD5 were 89.1% (P < 0.01) and 92.8%
(P< 0.01) higher than that of SR1 under Al stress. In contrast, the
DGDG showed no significant change under Al stress in all tested
plants. Al stress also affected phospholipid compositions. PE was
largely increased by 61.4% in wild-type SR1 after Al treatment. In
contrast, no significant difference was observed in PE contents in
transgenic plants. In all plants, Al caused decrease in PC contents,
by 47.9% in SR1, 38.4% inMGD3 and 50.5% inMGD5. PG and PI
did not change with Al exposure. Similar results were also found
in leaves (Supplementary Figure 2). Furthermore, the proportion

FIGURE 1 | Effect of Al treatment on root growth of wild-type SR1 and

transgenic lines MGD3 and MGD5. Tobacco seedlings at five- to six-leaf

stage grown hydroponically on one-sixth-strength Hoagland solution was

treated with 0 or 500 µM AlCl3 for 24 h. Photos were taken at each time point

of tobacco roots (A) before and after Al treatment, 3 days after removal of

AlCl3 for recovery. For fresh weight determination (B), roots were collected

from the plants either before or after Al treatment, after the 3 days’ recovery.

The experiment was repeated three times and each treatment included three

replications. Data are means ± SE (n = 3). Asterisk indicates a significant

difference (LSD test, **P < 0.01) between wild-type and transgenic plants.

of total galactolipids (MGDG andDGDG) decreased while that of
total phospholipids (PG, PE, PI, and PC) increased significantly
in wild-type plants (Figure 5D). In transgenic plants, however,
the proportions of galactolipids and phospholipids showed no
significant changes in response to Al treatment (Figures 5E,F).
Similar effects of Al on lipid proportion were also found in
leaves (Supplementary Figures 2D–F). Also, the effect of Al
stress on changes in fatty acid composition (mol %) was similar
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FIGURE 2 | Al content in root tips of wild-type SR1 and transgenic lines

MGD3 and MGD5. After Al treatment, root tips of plants exposed to 500 µM

AlCl3 for 24 h were washed and dried to measure Al content by ICP-AES. The

experiment was repeated three times and each treatment included three

replications. Data are means ± SE (n = 3).

between wild-type SR1 and transgenic plants in both leaves and
roots (Table 1, Supplementary Table 1). In addition, we did not
measure the contents of phosphatidylserine, phosphatidic acid
and lysophospholipids in this study, because they account for a
small proportion of lipids (less than 10%, Zhao et al., 2011) and
can hardly be separated and quantified by TLC and GC. For the
ratio of MGDG/DGDG, it was significantly decreased under Al
treatment in wild-type SR1 by 44.5%; while in transgenic plants,
it showed no change (Figure 6A). The MGDG/DGDG ratio in
MGD3 and MGD5 were 91.1% (P < 0.01) and 81.4% (P < 0.01)
higher than that of SR1. Similar results were also found in leaves
(Supplementary Figure 3A).

It has been proposed that the replacement of phospholipids,
which are the major source of negative charge in the membrane
system, with electrically neutral membrane lipids is one of
the important strategies by which plants improve their Al
tolerance (Wagatsuma et al., 2015). To assess this possibility,
the ratio of electrically neutral galactolipids (GL) to anionic
phospholipids (PL) in wild-type and transgenic plants was
calculated (Figure 6B). In the roots, a significant decrease
(31.8%) in the GL/PL ratio was observed in SR1 in response to
Al treatment while no significant change was found in transgenic
plants. The GL/PL ratio in MGD3 and MGD5 were 59.8% (P
< 0.01) and 71.8% (P < 0.01) higher than that of SR1. Both in
leaves and in roots, the GL/PL ratio after Al exposure was higher
in transgenic plants than in SR1 (Figure 6B and Supplementary
Figure 3B).

DISCUSSION

Al toxicity is a major factor limiting crop production in acidic
soils. Inhibition of root growth is the primary symptom of Al
toxicity which has been widely accepted as a suitable indicator
for assessing Al tolerance in plants (Delhaize and Ryan, 1995;
Ezaki et al., 2000; Tahara et al., 2008; Yin et al., 2010a,b).
In the present study, transgenic plants overexpressing OsMGD
showed rapid recovery of root growth after the removal of

TABLE 1 | Effect of Al treatment on the fatty acid composition (mol%) in

the lipid classes of the roots of wild-type SR1 and transgenic lines MGD3

and MGD5.

Lipid Lines Al (µM) C16:1 C18:1 C18:2 C18:3

MGDG SR1 0 12.9± 3.3 4.7± 0.9 18.6±1.1 61.4±2.7

500 2.6± 0.3 11.4± 1.8 15.1±0.8 66.9±2.3

MGD3 0 8.0± 1.5 6.0± 1.9 20.0±2.8 63.7±2.4

500 6.6± 2.0 17.7± 2.9 16.3±2.7 58.7±8.2

MGD5 0 15.3± 2.2 9.2± 2.4 18.6±2.2 55.5±2.9

500 7.7± 2.2 11.8± 1.4 11.7±3.1 70.0±2.3

DGDG SR1 0 15.0± 2.2 9.8± 2.5 16.6±0.8 42.6±0.5

500 6.8± 1.8 13.1± 2.4 12.6±1.4 49.2±4.9

MGD3 0 18.9± 6.7 7.0± 2.8 19.6±3.3 36.8±4.8

500 10.1± 1.6 14.4± 1.9 11.8±3.3 46.9±2.3

MGD5 0 14.8± 2.5 10.6± 2.6 18.5±3.3 40.2±7.3

500 8.4± 1.0 15.9± 1.1 13.7±1.9 44.0±3.5

PG SR1 0 6.1± 0.9 6.7± 0.4 42.9±6.8 20.5±4.5

500 7.3± 2.0 9.6± 2.6 48.9±4.8 12.0±1.1

MGD3 0 16.2± 2.7 8.5± 1.1 39.7±2.2 13.9±0.9

500 22.7± 2.4 19.7± 0.6 29.4±2.1 7.4±0.6

MGD5 0 10.4± 3.2 8.1± 1.4 46.0±3.7 14.8±1.3

500 28.5± 1.9 9.2± 2.1 33.5±1.6 7.8±1.5

PI SR1 0 8.3± 1.3 7.9± 1.5 49.9±2.9 12.7±0.9

500 18.4± 2.7 8.3± 0.8 45.0±4.8 6.1±0.6

MGD3 0 17.5± 2.8 16.8± 3.4 31.1±5.4 12.9±2.5

500 8.9± 1.8 9.9± 1.1 53.4±1.0 7.0±1.2

MGD5 0 19.1± 3.8 8.3± 2.9 46.1±4.4 9.1±1.7

500 9.8± 1.1 14.2± 1.9 48.1±0.2 6.9±0.8

PE SR1 0 14.9± 0.5 11.0± 4.1 23.8±3.1 8.9±0.3

500 6.1± 2.3 15.0± 0.2 25.5±1.8 8.5±0.4

MGD3 0 6.6± 1.4 5.5± 1.3 26.2±3.0 5.8±0.3

500 5.6± 3.1 10.9± 4.0 29.8±1.4 10.7±0.9

MGD5 0 14.9± 3.8 8.1± 2.1 28.9±0.3 5.8±0.2

500 4.1± 0.7 15.9± 0.8 29.7±1.0 9.2±0.2

PC SR1 0 20.8± 5.3 9.5± 0.4 33.3±4.0 11.2±1.3

500 5.1± 1.2 5.5± 0.5 41.2±2.3 10.9±0.5

MGD3 0 17.1± 3.6 10.1± 2.3 34.9±2.9 12.3±0.7

500 12.0± 2.3 14.7± 3.2 41.4±3.9 7.2±1.7

MGD5 0 16.2± 2.4 13.6± 4.1 34.1±2.8 11.4±1.6

500 18.± 4.7 15.7± 2.9 34.7±5.2 6.4±0.7

Data are means ± SE (n = 3).

Al compared with the wild type (Figure 1), indicating that
Al tolerance was enhanced in transgenic plants. Moreover,
transgenic plants showed less damage of the membrane integrity
and lower lipid peroxidation than the wild type (Figures 3, 4),
which demonstrated that the Al tolerance in transgenic plants
was enhanced. Additionally, no significant difference was found
in Al3+ accumulation in root tips between transgenic and wild-
type plants (Figure 2). These results suggest that maintenance of
membrane integrity may contribute to the enhanced Al tolerance
in transgenic plants.

Previous studies have shown that the primary mechanism
by which Al affects plant function is through perturbing the
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FIGURE 3 | Effect of Al treatment on plasma membrane integrity in the

roots of wild-type SR1 and transgenic lines MGD3 and MGD5. The root

tips (0–20 mm) were stained with Evans blue (A) after exposed to 0 or 500 µM

AlCl3 for 24 h, Bar indicates 500 µm. (B) Electrolyte leakage. The experiment

was repeated three times and each treatment included three replications. Data

are means ± SE (n = 3). Asterisk indicates a significant difference (LSD test,

**P < 0.01) between wild-type and transgenic plants.

membrane properties, which largely depend on membrane lipid
compositions (Wagatsuma et al., 2005; Ahn and Matsumoto,
2006; Choudhury and Sharma, 2014). In this study, different
changes in lipid compositions and fatty acid compositions
under Al stress were observed in wild-type and transgenic
plants (Figures 5A–C and Table 1). In the roots of wild-type
plants, the contents of MGDG decreased markedly, and the
contents of PE increased, while no change was found in
transgenic plants. The constant level of MGDG in transgenic
plants indicated that overexpression of OsMGD enables plants
to rapidly replenish MGDG, which was decreased significantly
by exposure to Al. However, in the wild type, the decreased
MGDG was compensated by the phospholipids, mainly PE,
which led to an increase in phospholipids proportion. It has
been reported that phospholipids, which are negatively charged
within the membrane, have great affinity for the positively
charged Al3+ (Khan et al., 2005; Kochian et al., 2005; Wagatsuma
et al., 2005; Huynh et al., 2012). The binding of Al3+ to

FIGURE 4 | Effect of Al treatment on the level of lipid peroxidation in

the roots of wild-type SR1 and transgenic lines MGD3 and MGD5. The

level of lipid peroxidation was described as % increase in malondialdehyde

(MDA), which was measured by the TBAR methods. The experiment was

repeated three times and each treatment included three replications. Data are

means ± SE (n = 3). Asterisk indicates a significant difference between

wild-type and transgenic plants (LSD test, *P < 0.05).

phospholipids could lead to membrane rigidification, lateral lipid
phase separation, and vesicle aggregation and fusion, finally
lead to the decrease in membrane fluidity and increase in
membrane permeability (Deleers et al., 1985, 1986). Moreover,
it has been reported that the physical changes that result from
the binding of Al3+ to phospholipids could also stimulate
iron-induced lipid peroxidation (Oteiza, 1994), which could
seriously damage membrane stability and integrity. In addition,
it was found that the MGDG content was increased in Al
tolerant wheat cultivar (Zhang et al., 1997), indicating that the
MGDG could contribute to plant Al tolerance. These results
showed that regulation of the level of MGDG is beneficial
in maintaining the fundamental properties of the membrane
under Al stress, and thus leads to improved Al tolerance.
Similar results were found in rice that the lipid compositions
were not changed in Al-resistant cultivars, while a sharp
decrease in membrane lipid content was exhibited in Al-
sensitive cultivars (Huynh et al., 2012). Substantial alterations in
membrane lipid composition may also lead to conformational
changes in membrane proteins, which play vital roles in plant
metabolic activities (Navari-Izzo et al., 2000). Therefore, stability
of membrane lipids may help transgenic plants maintain proper
physiological functions of its membrane system, and thus
contribute to rapid regrowth of the roots after removal of Al
stress.

In addition, it was noticed that under normal condition, the
contents of MGDG were slightly higher in transgenic plants than
the wild type, but the proportion of MGDG showed no difference
between transgenic and wild-type plants (Figure 5). This was
because theMGDG content was low in roots, the slightly increase
of MGDG can hardly affect its proportion of the total lipid. And
more important, the total lipid content was increased in the
transgenic plants, comparing with the wild type under normal
condition, so the proportion of MGDG showed no difference
between transgenic and wild-type plants.
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FIGURE 5 | Effect of Al treatment on the contents and the proportion of lipid in the roots of wild-type SR1 (A,D) and transgenic lines MGD3 (B,E) and

MGD5 (C,F). Root tips (0–30 mm) were sampled from plants exposed to 0 or 500 µM AlCl3 for 24 h. Lipid was separated using TLC and quantified by gas

chromatography. MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PG, phosphatidylglycerol; PI, phosphatidylinositol; PE,

phosphatidylethanolamine; PC, phosphatidylcholine; FW, fresh weight. Data are means ± SE (n = 3). Asterisk indicates a significant difference between treated and

control plants (LSD test, *P < 0.05, **P < 0.01).

Regulating the ratio ofMGDG toDGDG is another strategy by
which the plant can maintain the biochemical and physiological
properties of its membranes under stress conditions (Chaffai
et al., 2007; Gaude et al., 2007; Torres-Franklin et al., 2007). In
the present study, a significant decrease in the MGDG/DGDG
ratio was found in the wild type, while this ratio remained
unchanged in transgenic plants under Al stress (Figure 6A).
Similar changes in the MGDG/DGDG ratio were also found
in wheat, where it showed that the MGDG/DGDG ratio was
unaffected in an Al-resistant cultivar but significantly decreased
in an Al-sensitive cultivar (Zhang et al., 1997). Likewise, the
MGDG/DGDG ratio was unchanged in drought-tolerant species,
though it decreased significantly in drought-sensitive species
under drought stress (Olsson et al., 1996). A correlation between
higher MGDG/DGDG ratio and salt resistance has also been
reported in soybean (Zenoff et al., 1994). It was reported that
MGDG was more susceptible to be degraded by galactolipases
than other lipids (Skórzyńska et al., 1991), and this may be
the reason for the reduction of the MGDG/DGDG ratio under
stress conditions. Moreover, high DGDG levels could increase
membrane permeability. It has been shown that membrane
vesicles containing DGDG are more permeable to Rb+ than
vesicles composed of PC are (Webb and Green, 1989). Therefore,

maintaining DGDG at a low level could play an important
role in limiting the uptake of toxic Al species and prevent Al-
induced increases in membrane leakiness (Sasaki et al., 1994).
Thus, the higher ratio of MGDG/DGDG seems to contribute
to maintaining the membrane stability and integrity, leading to
enhanced Al tolerance in transgenic plants.

In addition, it has been shown that the proportion of negative
phospholipids tends to decrease under Al stress while that of the
electrically neutral lipids tends to increase, which is a common
strategy for protecting the membrane from Al toxicity in plants
(Wagatsuma et al., 2015). Maejima et al. (2014) reported that a
decrease in phospholipid contents and an increase in galactolipid
contents lead to an enhanced Al tolerance in rice. In the present
study, the ratio of galactolipids to phospholipids was calculated
and a significantly decrease of this ratio was observed in wild-
type plants, while no change was found in transgenic plants
after exposure to Al stress (Figures 5D–F, 6B). The higher
ratio of galactolipids to phospholipids in transgenic plants could
facilitate better maintenance of membrane properties, and leads
to enhanced Al tolerance.

In the present study, similar alteration in lipid composition
was also observed in leaves under Al stress, which showed
higher galactolipids contents, MGDG/DGDG and GL/PL ratios
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FIGURE 6 | Effect of Al treatment on the ratio of MGDG to DGDG (A)

and the ratio of galactolipids to phospholipids (B) in the roots of

wild-type SR1 and transgenic lines MGD3 and MGD5. Root tips (0–30

mm) were sampled from plants exposed to 0 or 500 µM AlCl3 for 24 h.

MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol, GL,

galactolipids; PL, phospholipids. Data are means ± SE (n = 3). Asterisk

indicates a significant difference between treated and control plants (LSD test,

*P < 0.05, **P < 0.01).

in transgenic plants than that in wild-type SR1 (Supplementary
Figures 2, 3). As Al stress could also cause lipid transporting or
remodeling in the whole plant (Chaffai et al., 2005; Huynh et al.,
2012), the high contents of galactolipids in leaves may facilitate
the increase in Al tolerance of the whole plant. Moreover, since
there is significantly difference between wild-type and OsMGD
transgenic plants in their Al tolerance, it is interesting and

important to investigate the expression of OsMGD gene under
Al stress treatment in the plant of rice, to further clarify the
regulation of MGDG biosynthesis under Al stress.

In conclusion, overexpression of OsMGD in tobacco could
help plants to maintain the biochemical and physiological
properties of membranes under Al stress by keeping membrane
lipid compositions and MGDG/DGDG ratio constant, thereby
enabling better root growth under the condition of Al stress.
Our results also indicate that the regulation of galactolipid
biosynthesis by overexpression of OsMGD plays an important
role in maintaining membrane integrity under Al stress, which
provides us with a new strategy for improving Al tolerance in
plants. In addition, changing the activity of galactolipase could
also affect the MGDG level. It has been reported that under
Cd stress, the activity of galactolipase was increased which was

accompanied with the decrease of MGDG level (Skórzyńska
et al., 1991). Therefore, future studies that alter the expression of
galactolipase should be conducted to clarify whether MGDG and
galactolipase activation are the key to Al damage and sensitivity.
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