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This work was designed to evaluate whether external application of nitric oxide (NO)
in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the
deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 M)
was applied to chickpea plants grown under non-saline and saline conditions (50 and
100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content
(LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte
leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble
proteins and soluble sugars), hydrogen peroxide (H»O») and malondialdehyde (MDA),
as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea
plants. Expression of the representative SOD, CAT and APX genes examined was also
up-regulated in chickpea plants by salt stress. On the other hand, exogenous application
of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic
pigment production and levels of osmolytes, as well as the activities of examined
antioxidant enzymes which is correlated with up-regulation of the examined SOD,
CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore,
electrolyte leakage, HoO» and MDA contents showed decline in salt-stressed plants
supplemented with NO as compared with those in NaCl-treated plants alone. Thus,
the exogenous application of NO protected chickpea plants against salt stress-induced
oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby
improving plant growth under saline stress. Taken together, our results demonstrate
that NO has capability to mitigate the adverse effects of high salinity on chickpea plants
by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and
antioxidative defense system.
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INTRODUCTION

Sodium chloride (NaCl) is the prevailing salt in the soil, and
the higher concentration of this salt provokes two primary
effects on plants, namely the osmotic and ionic effects, of
which the osmotic stress minimizes the ability of plants to
take up water and minerals (Khan et al, 2012). Furthermore,
excessive accumulation of Na™ in the cytosol causes toxic
effects on cell membranes, leading to electrolyte leakage, as
well as constrains the metabolic processes in the cytosol, which
ultimately reduce the physiological and biochemical activities
(Ahmad, 2010; Ahmad et al., 2014; Hashem et al., 2014). Higher
salt concentrations as well as prolonged exposure to NaCl stress
cause oxidative stress in plants (Ahmad et al., 2012b; Rasool
et al., 2013). Salt and osmotic stresses produce reactive oxygen
species (ROS) that cause oxidative stress in plants (Ahmad
et al., 2012b; Abdel Latef and Chaoxing, 2014). To deal with
the adverse impacts of oxidative stress, plants are furnished
with well-regulated antioxidant machinery that can protect
biomolecules from further damages caused by the stress (Rasool
et al., 2013). The ROS scavenging enzymes involve superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX)
and glutathione reductase (GR) (Evelin and Kapoor, 2014), which
exist in different cellular compartments as isoenzymes especially
in chloroplasts and mitochondria (Apel and Hirt, 2004; Ahmad
et al,, 2008, 2010). Accumulation of osmolytes, such as proline,
glycine betaine (GB), soluble proteins and soluble sugars, is
another strategy to beat osmotic stress provoked by salinity
(Khan et al., 2012; Abdel Latef and Chaoxing, 2014).

Nitric oxide (NO) is an important endogenous plant
bioactive signaling molecule that has a key function in various
processes of plant growth and development, including seed
dormancy, seed germination, primary and lateral root growth,
floral transition, flowering, pollen tube growth regulation, fruit
ripening, gravitropism, stomatal movements, photosynthesis,
mitochondrial functionality, senescence, plant metabolism and
cell death, as well as stress responses (Siddiqui et al., 2011;
Manai et al., 2014; Mostofa et al., 2015). NO plays a pivotal
role in stress tolerance exerted by oxidative stress (Siddiqui
et al, 2011; Ahmad et al, 2012a). In the past few years,
research on function of NO in salt stress tolerance has
obtained much interest (Yang et al., 2011; Mostofa et al., 2015).
However, the information available is sometimes contradictory,
depending on the plant species, severity and duration of the
salinity treatments (Begara-Morales et al., 2014; Manai et al,
2014).

Grain legumes belonging to Fabaceae family are rich in
proteins and proved to be very important components of
human diet (Jukanti et al., 2012). Among the grain legumes,
chickpea (Cicer arietinum L.) is a very popular crop around the
globe because it can supply a rich source of proteins, fats and
carbohydrates for humans and animals (Rasool et al., 2015).
Chickpea is differentiated as “Kabuli-type” and “desi-type” on the
basis of size and color of the seeds. Kabuli-type seeds are bold with
thin and white seed coat, while those of desi-type are small in size
with thicker seed coat and having color ranging from brown to
yellow (Khan et al., 1995; Rasool et al., 2015).

Chickpea normally grows under rainfed and irrigated
conditions (Rasool et al., 2015). The soil used for the cultivation
of chickpea should be free from high salinity as this crop
is very sensitive to salinity stress. For instance, Kotula et al.
(2015) reported that exposure of chickpea genotypes to 50 mM
of NaCl stress decreased the plant growth and yield. Thus,
steps are to be taken to enhance the salinity tolerance
of chickpea genotypes in order to grow them on natural
saline soil. Considering the vital role of NO in plant stress
responses and management, the present study was designed to
evaluate the influences of exogenous NO in mitigating high
salinity-induced negative effects on growth and physiological
attributes of chickpea plants. Additionally, the effects of
exogenous NO treatment on accumulation of key osmolytes,
activities of antioxidant enzymes and expression of representative
antioxidant enzyme-encoding genes were examined in salt-
stressed chickpea plants.

MATERIALS AND METHODS

Plant Materials and Treatments

Seeds of chickpea (Cicer arietinum L.) were planted in earthen
pots containing peat, perlite and sand (1:1:1, v/v/v) under glass
house. Thinning was carried out to accommodate one plant per
pot after 4 days of germination. Subsequently, the seedlings were
grown for three more weeks under average day/night temperature
of 24°C/15°C. Thereafter, 25-day-old-plants were treated with:

(1) Nutrient solution alone (control) (T0): 0 mM
NaCl + 0 uM SNAP

(2) NO alone (T1): 0 mM NaCl + 50 WM SNAP

(3) Salt stress alone (T2): 50 mM NaCl + 0 wM SNAP

(4) Salt stress and NO (T3): 50 mM NaCl + 50 uM SNAP

(5) Salt stress alone (T4): 100 mM NaCl + 0 wM SNAP

(6) Salt stress and NO (T5): 100 mM NaCl + 50 .M SNAP

NaCl and NO were given to pots dissolved in nutrient solution
every week from the first day of treatment (i.e., 25-day-old plants)
up to day 45th (70-day-old plants). Collection of samples was
done after 45 days of treatment. The nutrient solution is made
up of (mg 171): N 270, P 31, K 234, Ca 200, S 64, Mg 48,
Fe 2.8, Mn 0.5, Cu 0.02, Zn 0.05, and Mo 0.01. 0.1 M KOH
was used to adjust the pH of nutrient solution to 6.5. The
experiment was laid out in randomized block design with five
replicates in each treatment, and each replicate comprised five
plants.

Determination of Growth Parameters

Shoot and root lengths were measured using measuring scale.
Shoot dry weight (DW) was measured after the plant samples
were dried at 70°C for 72 h.

Estimation of Leaf Relative Water

Content and Electrolyte Leakage
Leaf relative water content (LRWC) was assayed using the
method of Yamasaki and Dillenburg (1999). RWC was calculated
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using the following formula:

Fresh weight — Dry weight

RWC (%) = x 100.

Turgid weight — Dry weight

Electrolyte leakage was estimated as described previously
(Dionisio-Sese and Tobita, 1998). First, the electrical conductivity
(ECa) of 20 leaf disks submerged in deionized water was
measured. Subsequently, the test tubes containing the leaf discs
were incubated in water bath at temperature 50°C-60°C for
25 min, and the electrical conductivity (ECy,) of the samples
was determined. Finally, these test tubes were boiled at 100°C
for 10 min, and then the electrical conductivity (EC.) was
measured. The electrolytic leakage was calculated using the
following formula:

EC,—EC 100
Electrolyte leakage (%) = “’%
C

Determination of the Contents of
Photosynthetic Pigments

The method of Hiscox and Israelstam (1979) was used for
the estimation of photosynthetic pigments using dimethyl
sulphoxide (DMSO) as the extraction reagent. The absorbances at
480, 510, 645, and 663 nm were recorded by spectrophotometer
(Beckman 640 D, USA), with DMSO being used as a
blank.

Estimation of the Contents of Proline,
GB, Soluble Proteins, and Soluble Sugars

Estimation of proline contents in fresh leaf samples was carried
out as previously described by Bates et al. (1973). The absorbance
was taken at 520 nm using a spectrophotometer (Beckman
640 D, USA), with toluene serving as a blank. GB contents
in fresh leaf samples were measured according to Grieve and
Grattan (1983). The absorbance was spectrophotometerically
determined at 365 nm. GB (50-200 mg ml~!) prepared
in IN H,SO4 was used as control. Soluble protein content
and soluble sugar content in fresh leaves were determined
by the methods of Bradford (1976) and (Dey, 1990),
respectively.

Determination of Hydrogen Peroxide
(H-O5) Content and Lipid Peroxidation

H,0, contents were estimated in dried leaf samples using
the method of Velikova et al. (2000). Lipid peroxidation
was assayed by quantifying the malondialdehyde (MDA)
contents in fresh leaf samples using the method of
Rao and Sresty (2000).

Enzyme Assays

The fresh leaf samples (0.5 g per sample) were homogenized
in presence of phosphate buffer (0.1 M, pH 7.5) and
ethylenediaminetetraacetic acid (EDTA, 0.5 mM). Subsequently,
the samples were centrifuged at 12,000 x g for 10 min at 4°C
after the filtration. The supernatants collected served as sources
for determination of SOD (EC 1.15.1.1), CAT (EC 1.11.1.6)

and GR (EC 1.6.4.2) activities. For determination of APX (EC
1.11.1.11) activity, leaf samples were separately grounded in a
homogenizing medium containing phosphate buffer (0.1 M, pH
7.5), 0.5 mM EDTA and 2 mM ascorbic acid (AsA).

Superoxide dismutase activity was determined by
photoreduction of nitro blue tetrazolium (NBT) (Bayer and
Fridovich, 1987). The absorbance was recorded at 560 nm using
a spectrophotometer (Beckman 640 D, USA). One unit of SOD is
the amount of protein regulating 50% photoreduction of NBT.
The activity of SOD was expressed as enzyme unit (EU) mg™!
protein. For the estimation of CAT activity, the procedure of
Aebi (1984) was employed. The absorbance was read at 240 nm
using a spectrophotometer (Beckman 640 D, USA), and EU
mg~! protein expresses the CAT activity. APX activity was
assayed using the method of Nakano and Asada (1981). The
absorbance was spectrophotometerically determined at 290 nm.
One unit of APX is the amount of protein used to decompose
1 pwmol of substrate min~! at 25°C, which was shown as EU
mg~! protein to express the APX activity. The method of Foyer
and Halliwell (1976) was exerted for the determination of GR
activity. The optical density (OD) was recorded at 340 nm using
a spectrophotometer (Beckman 640 D, USA). GR activity was
expressed as umol NADPH oxidized min~! (EU mg~! protein).

Expression of SOD, CAT, and APX Genes

Total RNA was extracted from leaf samples using
Trizol (Promega) according to the protocol of manufacturer.
RNA samples were treated with DNase I (Promega) before their
absorbance was read at 260 and 280 nm to determine RNA
concentration and purity. The first-strand cDNA was
synthesized from 5 g RNA template using GoScript™ Reverse
Transcription System (Promega) according to the manufacturer’s
instruction, with oligo (dT) 18 as a primer. Real-time quantitative
PCR (RT-qPCR) was carried out using the QuantiTect SYBR
Green PCR Kit (Qiagen) and Light Cycler (Model 480,
Roche) with gene-specific primers designed for SOD (F: 5'-
ACATTTGCTACCTCTCCCTCACCT-3’; R: 3-TCGGGTAAG
ACATCGTCGGTATGT-5'), CAT (F: 5-GGCGGTACGTTTAC
GATTTACGCT-3; R: 3’- ACCTATCACGGGTCAGCACGATTT-
5) and APX (F: 5-AAACCCAAGCTCAGAGAGCCTCAT-3';
R: 3-TACTTCACGGTGCTTCTTGGTGGA-5).

To standardize the results, the relative abundance of B-Actin
(AB047313) reference gene (F: 5-TGATGGTGTCAGCC
ACACT-3; R: 5TGGTCTTGGCAGTCTCCATT-3) was also
determined, which was then defined as 100 relative expression
units (REU) and used as the internal standard. The expression
level of a gene corresponds to the ratio of the copy number of
cDNA of the studied gene to the copy number of B-Actin gene
multiplied by 100 REU. These representative SOD, CAT and APX
genes were selected as they give the highest expression levels
when compared with other homologous versions (Hu et al,
2011).

Statistical Analysis
Duncan’s Multiple Range Test (DMRT) was carried out using the
One-way Analysis of Variance (ANOVA). The values obtained
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were the means + standard errors (SEs) of five replicates in each
group. P-values <0.05 were considered as significant.

RESULTS

NO Improves Growth and Biomass Yield
under NaCl Stress

Exposure of chickpea plants to salinity stress resulted in a
drastic decline in growth parameters expressed as shoot length,
root length and shoot DW compared with untreated control
(Table 1). The shoot length decreased by 18.52 and 40.58% at T2
(50 mM NaCl + 0 wM SNAP) and T4 (100 mM NaCl + 0 pM
SNAP) treatments, respectively, relative to TO control (0 mM
NaCl + 0 uM SNAP). Application of NO in presence of NaCl
showed an increment by 11.88% at T3 (50 mM NaCl + 50 uM
SNAP) and 20.50% at T5 (100 mM NaCl + 50 uM SNAP)
treatments as compared with T2 and T4, respectively. Root
length was also negatively affected by NaCl stress, as T2 and
T4 treatments decreased the root length by 36.90 and 59.80%,
respectively, relative to T0 control. Supply of NO to NaCl-treated
plants at T3 and T5 treatments boosted the root length by 12.98
and 17.85% as compared with T2 and T4, respectively. A decrease
by 30.48 and 51.66% at T2 and T4, respectively, was also
observed in shoot DW as compared with TO control. However,
supplementation of NO to salt-stressed plants improved the
shoot DW, and the increase was 20.21% at T3 and 26.69%
at T5 over T2 and T4 treatments, respectively. No significant
change was observed in the examined parameters at T1 (0 mM
NaCl + 50 wM SNAP) treatment compared with TO control
(Table 1).

Effects of NaCl and NO on LRWC and

Electrolyte Leakage

LRWC was reduced by 21.54% at T2 (50 mM NaCl + 0 uM
SNAP), and the maximum decrease (46.93%) in LRWC was
recorded at T4 (100 mM NaCl + 0 pM SNAP) relative to
TO (0 mM NaCl + 0 wM SNAP) control (Table 2). The
decrease in LRWC of salt-stressed plants was alleviated by

TABLE 1 | Effects of NO on growth and biomass yield of chickpea plants
under salt stress.

Treatments Shoot length Root length Shoot DW
(cm plant=1) (cm plant—1) (g plant™1)
TO 40.71 £ 2.162 22.71 £ 1.372 14.73 +1.072
T 42.23 +2.202 23.55 4+ 1.402 1576 £1.11@
T2 33.17 + 1.34° 14.33 + 1.05° 10.24 + 0.91°
T3 37.11 £ 1.70° 16.19 + 1.12° 12.31 +0.98°
T4 2419 +£1.13® 9.13 £ 0.82° 712 £0.77°
T5 29.15 + 1.279 10.76 + 0.959 9.02 + 0.85¢

Data presented are the means + SEs (n = 5). Different letters next to the number
indicate significant difference (P < 0.05). TO (control) = 0 mM NaCl + 0 uM SNAP;
T1 =0 mM NaCl + 50 uM SNAP; T2 = 50 mM NaCl 4+ 0 uM SNAP; T3 = 50 mM
NaCl + 50 uM SNAP; T4 = 100 mM NaCl + 0 uM SNAP; T5 = 100 mM
NaCl + 50 uM SNAR. DW, dry weight.

exogenous application of NO, resulting in an enhancement in
LRWC of 15.72 and 33.62% at T3 (50 mM NaCl + 50 pM
SNAP) and T5 (100 mM NaCl + 50 uM SNAP), respectively,
as compared with plants treated with NaCl only (T2 and T4,
respectively). On the other hand, electrolyte leakage of chickpea
plants increased by salt stress, and maximum elevation of 4.60-
fold was recorded at T4 treatment compared with TO control
(Table 2). Exogenous application of NO reduced the electrolyte
leakage in salt-stressed plants by 27.08% at T3 and 21.33% at
T5 in comparison with NaCl-treated plants alone (T2 and T4,
respectively). NO treatment alone (T1; 0 mM NaCl + 50 uM
SNAP) had insignificant effect on LRWC and electrolyte leakage
of chickpea plants as compared with TO control (Table 2).

NO Mitigates the Effects of NaCl Stress

on Photosynthetic Pigment Biosyntheses
The Chl a, Chl b and total Chl contents significantly decreased
by salt stress and the percent reduction in these parameters
was nearly equal (=~ 42%) at T4 (100 mM NaCl + 0 pM
SNAP) treatment in comparison with TO (0 mM NaCl + 0 uM
SNAP) control. The levels of carotenoids sharply increased with
increasing NaCl stress intensity, and the maximum increase
(71.79%) was recorded at the T4 treatment over the TO control.
Supplementation of NO elevated the contents of Chl a, Chl
b and total Chl by 19.32, 20, and 19.47%, respectively, and
that of carotenoids by 11.94% at T5 (100 mM NaCl + 50 uM
SNAP) in NO + NaCl-treated plants over plants treated with
NaCl alone (T4) (Figure 1). Exogenous NO treatment showed
a positive effect on Chl biosynthesis in chickpea plants under
normal conditions as control plants treated with NO (T1; 0 mM
NaCl + 50 uM SNAP) showed a significant increase in Chl
contents relative to untreated TO control (Figure 1).

Effects of NaCl and NO on the Contents
of Proline, GB, Total Soluble Proteins and

Total Soluble Sugars

NaCl triggered the induction of proline biosynthesis by 2.78-
fold and 3.89-fold at T2 (50 mM NaCl + 0 uM SNAP) and T4
(100 mM NaCl + 0 pM SNAP) treatments, respectively, versus
TO (0 mM NaCl + 0 .uM SNAP) control (Table 2). Exogenous
application of NO induced the proline biosynthesis by 17.07% at
T3 (50 mM NaCl + 50 uM SNAP) and 24.20% at T5 (100 mM
NaCl + 50 pM SNAP) treatments over T2 and T4, respectively
(Table 2). With regard to GB, it markedly accumulated in
chickpea plants treated with NaCl alone and in combination with
NO (Table 2). At concentrations T2 and T4, the accumulation of
GB was 4.46- and 8.01-fold, respectively, as compared with TO
control. Supplementation of NO enhanced the accumulation of
GB by 43.32 and 28.62% at T3 and T5 treatments, respectively, in
comparison with T2 and T4, respectively (Table 2).

As for the soluble proteins, their total content increased by
33.91 and 100.81% at T2 and T4 treatments relative to TO control
(Table 2). An enhancement by 22.92% (T3) and 8.27% (T5)
in soluble protein content was also observed in plants treated
with both NaCl and NO, as compared with plants treated with
NaCl alone (T2 and T4, respectively) (Table 2). In addition,
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TABLE 2 | Effects of NO on leaf relative water content (LRWC), electrolyte leakage, and the contents of proline, glycine betaine (GB), total soluble
proteins and total soluble sugars in leaves of chickpea plants under salt stress.

Treatments LRWC (%) Electrolyte Proline (g g~' FW) GB (wmol g1 FW) Total soluble proteins Total soluble sugars
leakage (%) (mg g~' FW) (mg g~' FW)

TO 85.13 + 2.572 1417 +1.059 27.10 + 1.69° 2.40 +0.18° 18.31 + 0.89° 6.20 + 0.51°

T 87.10 + 2.632 13.21 + 0.99¢ 30.75 + 1.79° 2.70 + 0.15° 21.32 4 1.16% 6.40 + 0.54°

T2 66.79 & 2.24° 25.66 + 1.74° 75.26 + 2.239 10.71 + 0.969 24.52 + 1.269 7.71 £ 0.689

T3 77.29 + 2.48% 18.71 + 121<d 88.11 & 3.16° 15.35 + 1.12° 30.14 + 1.44° 7.92 4+ 0.75°

T4 45.18 + 2,579 65.12 4 2.242 105.29 + 3.75° 19.22 + 1.22P 36.77 + 1.72° 8.53 + 0.83°

T5 60.37 + 2.14° 51.23 + 2.06° 130.77 + 3.952 24.72 + 1.412 39.81 4 1.952 9.07 +0.922

Data presented are the means + SEs (n = 5). Different letters next to the number indicate significant difference (P < 0.05). TO (control) = 0 mM NaCl + 0 uM SNAP;
T1 =0mM NaCl + 50 uM SNAP; T2 = 50 mM NaCl + 0 uM SNAP; T3 = 50 mM NaCl + 50 uM SNAP; T4 = 100 mM NaCl + 0 uM SNAP; T5 = 100 mM NaCl + 50 M

SNAR FW, fresh weight.

chickpea seedlings treated with T2 and T4 showed elevated
soluble sugar content by 24.36 and 37.58%, respectively, over
the TO control (Table 2). Application of NO further increased
the soluble sugar content in T3- and T5-treated plants relative
to TO-plants; however, in comparison with their respective T2-
and T4-treated plants, the observed increment was not large, with
only 2.72 and 6.33% (Table 2). We noticed that NO treatment
(T1) alone resulted in a significant change (16.43%) in soluble
protein content only in comparison with TO control (Table 2).

Effects of NaCl and NO on H,0, and

MDA Contents

The results regarding the impacts of NaCl and NO on H;0; and
MDA contents in chickpea plants are depicted in Figures 2A,B.
Increase in H,O, contents was observed with the raise of NaCl
dose applied to chickpea plants (Figure 2A). H,O, content
increased by 83.41 and 184.33% at T2 (50 mM NaCl + 0 pM
SNAP) and T4 (100 mM NaCl + 0 uM SNAP), respectively,
versus T0 (0 mM NaCl 4 0 uM SNAP) control. Supplementation
of exogenous NO to NaCl-stressed plants decreased H,O,

M by

[l Total Chi (a+b)[_] Carotenoids

i chia

L e
o w o

—_ =
S W

Pigment content (mg g-! FW)

e @
S W

2 T3 T4 T5
Treatments

FIGURE 1 | Effects of NO on chlorophyll (Chl) and carotenoid contents
in leaves of chickpea plants under salt stress. Data presented are the
means + SEs (n = 5). Different letters indicate significant difference (P < 0.05)
among the treatments. TO (control) = 0 mM NaCl 4+ 0 uM SNAP; T1 = 0 mM
NaCl + 50 M SNAP; T2 = 50 mM NaCl + 0 M SNAP; T3 = 50 mM

NaCl 4+ 50 M SNAP; T4 = 100 mM NaCl + 0 uM SNAP; T5 = 100 mM
NaCl + 50 pM SNAP. FW, fresh weight.

content by 30.65% and 33.23% in T3 (50 mM NaCl + 50 pM
SNAP) and T5 (100 mM NaCl + 50 wM SNAP) treatments,
respectively, as compared with plants treated with NaCl alone
(T2 and T4, respectively) (Figure 2A). As for MDA, its content
markedly accumulated in salt-stressed chickpea plants in the
present study (Figure 2B). An increase by 32.59 and 62.34%
in MDA content in T2 and T4 treatments, respectively, was
recorded as compared with TO control. Salt-treated plants

S - @) [ee)

N O

1A

\®]

MDA content (umol g”' FW) H,O, content (umol g"' DW)

=

Treatments

FIGURE 2 | Effects of NO on (A) hydrogen peroxide (H,05) content and
(B) malondialdehyde (MDA) content in leaves of chickpea plants under
salt stress. Data presented are the means + SEs (n = 5). Different letters
indicate significant difference (P < 0.05) among the treatments. TO

(control) = 0 mM NaCl + 0 wM SNAP; T1 = 0 mM NaCl + 50 uM SNAP;

T2 =50 mM NaCl + 0 uM SNAP; T3 = 50 mM NaCl + 50 .M SNAP;

T4 =100 mM NaCl 4+ 0 uM SNAP; T5 = 100 mM NaCl + 50 uM SNAP. DW,
dry weight; FW, fresh weight.
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supplied with NO showed a decrease by17.90% at T3 and 21.83%
at T5 treatments relative to their respective T2 and T4 treatments
(Figure 2B). No significant change in H,O, and MDA contents
was noted in T1 (0 mM NaCl + 50 wM SNAP)-treated plants
versus T0 control (Figures 2A,B).

Effects of NaCl and NO on Antioxidant

Enzyme Activities

The activities of antioxidant enzymes significantly increased in
response to NaCl with or without application of exogenous NO
(Figure 3). Maximum salt stress-induced elevation by 75.83,
80.40, 164.73, and 191.93% in SOD, CAT, APX and GR activities,
respectively, was recorded in chickpea plants of T4 (100 mM
NaCl + 0 wM SNAP) treatment versus T0O (0 mM NaCl + 0 puM
SNAP). Moreover, exogenous application of NO to salt-exposed
plants had an additive impact on the activities of antioxidant
enzymes. The highest values for SOD, CAT, APX and GR
activities were noted in chickpea plants subjected to T5 (100 mM
NaCl + 50 uM SNAP) treatment with the increase of 13.44,
13.39, 64.85, and 44.81%, respectively, as compared with plants
treated with NaCl alone (T4 treatment). No significant alteration
was observed in antioxidant enzyme activities at T1 (0 mM
NaCl + 50 wM SNAP) treatment compared with TO control
(Figure 3).

Impacts of NaCl and NO on Transcript
Levels of Genes Encoding SOD, APX,

and CAT Enzymes

The expression of SOD, APX and CAT antioxidant enzymes-
related genes in leaves of chickpea plants under high salinity
in presence and absence of NO is presented in Figure 4.
Expression of selected genes up-regulated under NaCl stress with
or without supplementation of exogenous NO. SOD, CAT and

80 - lisoo [l cat [ apx GR

Enzyme activity (EU mg! protein)

TO T1 T2

Treatments

T3 T4 T5

FIGURE 3 | Effects of NO on activities of superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX), and glutathione
reductase (GR) in leaves of chickpea plants under salt stress. Data
presented are the means + SEs (n = 5). Different letters indicate significant
difference (P < 0.05) among the treatments. TO (control) = 0 mM

NaCl 4+ 0 uM SNAP; T1 = 0 mM NaCl + 50 uM SNAP; T2 = 50 mM

NaCl + 0 uM SNAP; T3 = 50 mM NaCl + 50 M SNAP; T4 = 100 mM
NaCl + 0 wM SNAP; T5 = 100 mM NaCl + 50 pM SNAP. EU, enzyme unit.

L]

I soo WM car [] 4rx

NN W
(9]
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FIGURE 4 | Effects of NO on expression levels of selected SOD, CAT
and APX genes in leaves of chickpea plants under salt stress. Data
presented are the means + SEs (n = 5). Different letters indicate significant
difference (P < 0.05) among the treatments. TO (control) = 0 mM

NaCl + 0 uM SNAP; T1 = 0 mM NaCl + 50 uM SNAP; T2 = 50 mM

NaCl + 0 uM SNAP; T3 = 50 mM NaCl 4+ 50 oM SNAP; T4 = 100 mM
NaCl 4+ 0 uM SNAP; T5 = 100 mM NaCl + 50 uM SNAP. REU, relative
expression unit.

APX genes showed up-regulation of 2.15-, 1.81-, and 2.38-fold in
chickpea plants of T4 (100 mM NaCl + 0 uM SNAP) treatment,
respectively, over TO (0 mM NaCl + 0 uM SNAP) control.
Moreover, supplementation of NO to NaCl-treated plants also
displayed a remarkable increase in expression level of SOD
(14.42%), CAT (14.63%) and APX (13.50%) in T5-treated plants
versus T4-treated ones. Insignificant change in expression level
of examined genes was recorded in T1 (0 mM NaCl + 50 pM
SNAP)-treated chickpea plants in comparison with TO control
(Figure 4).

DISCUSSION

Nitric oxide is an important signaling molecule involved in
amelioration of growth and development of plants under various
biotic and abiotic stresses (Kausar and Shahbaz, 2013; Liu
et al, 2013; Esim and Atici, 2014; Manai et al., 2014). In
the present study, salt stress significantly reduced the growth
and biomass yield of chickpea plants (Table 1), which is in
harmony with earlier reports on different crops, such as wheat
(Triticum aestivum) (Kausar et al., 2013), tomato (Lycopersicon
esculentum) (Abdel Latef and Chaoxing, 2011), pepper (Capsicum
annuum) (Abdel Latef and Chaoxing, 2014) and rice (Oryza
sativa) (Mostofa et al., 2015). Co-application of NO markedly
ameliorated shoot length, root length and shoot DW of chickpea
plants under high salinity (Table 1), which was in agreement
with previous findings in many other crops, including wheat
(Hasanuzzaman et al., 2011) and rice (Mostofa et al., 2015).
Huaifu et al. (2007) reported that supplementation of NO
promoted growth of plants exposed to saline conditions. NO
can relax the cell wall, act on the phospholipids bilayer, increase
membrane fluidness and induce cell enlargement and plant
growth (Leshem and Haramaty, 1996). Dong et al. (2014) found

Frontiers in Plant Science | www.frontiersin.org

March 2016 | Volume 7 | Article 347


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Ahmad et al.

Nitric Oxide Mitigates Salt Stress

that NO application resulted in an improvement in stem and
root lengths of cotton (Gossypium hirsutum) seedlings under
salt stress. They reported that NO is involved in increasing
osmotic pressure of the plant cells and improving the cytoplasmic
viscosity under high salinity. Zhang et al. (2004) and Wu et al.
(2011) working on soybean (Glycine max) and maize (Zea mays),
respectively, demonstrated that application of NO enhanced the
plant growth under saline conditions, which might be due to
increased activities of antioxidant enzymes. More recently, NO
was shown to alleviate the effects of both biotic and abiotic
stresses on plants by mediating H,O,- and salicylic acid-induced
mitigation of oxidative damage through the up-regulation of the
antioxidant defense (Klessig et al., 2000; Mostofa et al., 2015;
Singh et al., 2015).

RWC is adversely affected by imposition of NaCl, which leads
to decease in water uptake and injury of root system (Zeng et al.,
2011). In the present study, supplementation of NO had a positive
impact on LRWC of chickpea plants under salt stress (Table 2),
which corroborated with previous reports on other plants, such as
mustard (Brassica juncea) (Zeng et al., 2011) and rice (Habib and
Ashraf, 2014). Khan et al. (2012) reported that NO application
helped mustard plants retain more water under salt stress. It is
still unclear that how NO is able to maintain RWC in stressed
plants; however, it has been reported that NO could decrease
solute potential, while increasing water potential in plants under
osmotic stress (Ke et al., 2013).

The reduction in Chl content of chickpea leaves observed
under NaCl stress (Figure 1) might be ascribed to the destruction
of Chl pigments, decreased Chl syntheses and the vulnerability
of the pigment-protein complexes (Rasool et al, 2013). This
decrease in Chl content might partially cause a decrease in
growth and biomass yield (Figure 1; Table 1). Carotenoids
have been known to play a key role in photosynthetic reaction
center in which they are involved in mechanisms regulating
photo protection against auto-oxidation (Yang et al, 2013;
Gururani et al., 2015). The synthesis of carotenoids was noted
to be increased in chickpea under salinity stress (Figure 1),
perhaps because these compounds act as antioxidants to
minimize the oxidative damage induced by NaCl stress. NO was
found to provoke the enhancement of photosynthetic pigments
in chickpea plants (Figure 1), potentially by defending the
membrane of the cell organelle containing Chl against salt-
induced ion toxicity (Kausar et al., 2013). The enhancement in
photosynthetic pigments due to NO application has also been
reported in different plant species under salt stress, including
wheat (Ruan et al., 2004), tomato (Wu et al.,, 2010) and rice
(Habib et al., 2013).

Salt-stressed chickpea leaves accumulated higher levels of
H,0, and MDA contents (Figures 2A,B), thereby increasing
electrolyte leakage (Table 2), which might be due to membrane
destruction caused by ROS-induced oxidative damage.
Exogenous application of NO reduced electrolyte leakage
and the levels of MDA and H,O; in NaCl-treated chickpea plants
(Figures 2A,B), which is in agreement with the observations of
Zheng et al. (2009) and Khan et al. (2012). Therefore, application
of NO could be an effective practice to protect plants against
oxidative injury caused by salt stress. Jasid et al. (2008) reported

that NO acts as an antioxidant and ROS scavenger, decreasing
electrolyte leakage in sorghum (Sorghum bicolor). NO stimulates
mitogen-activated protein kinase (MAPK) (Neill et al., 2008),
which in turn activates transcription factors for induction of
stress-related genes (Figure 5). Another study by Huaifu et al.
(2007) also suggested that NO possesses the ability of restoring
and defending the cell membrane to mitigate the damage in the
cell membrane system by reducing the membrane permeability
and membrane lipid peroxidation, thereby preventing electrolyte
leakage.

To overcome the negative impacts of salt stress-induced
osmotic stress, plants produce higher levels of osmolytes in
the cytosol and other organelles (Abdel Latef and Miransari,
2014). In the present study, a similar accumulation trend of
proline, GB, total soluble proteins and total soluble sugars
was recorded in chickpea leaves under NaCl stress (Table 2).
Increased accumulation of total soluble sugars and total soluble
proteins in response to saline stress was reported by Liu
et al. (2016) in Nitraria tangutorum. Proline and GB were
also reported to accumulate under salt stress in B. juncea
(Siddiqui et al, 2008; Khan et al, 2012), linseed (Linum
usitatissimum) (Khan et al, 2010) and mulberry (Morus
alba) (Ahmad et al., 2014). Proline and GB are important
osmolytes that help in cell osmoregulation under salt stress
(Ahmad et al., 2010, 2015). Proline is also reported to protect
photosynthetic machinery, and act as energy storage under
NaCl stress (Khan et al., 2013; Reddy et al,, 2015). Proline
has the ability to scavenge ROS and shield the cell from
the oxidative damage (Ahmad et al.,, 2010; Khan et al., 2010;
Jogaiah et al., 2013). Verdoy et al. (2006) have reported that
proline accumulation enhanced the N, fixation in Medicago
truncatula plants under salt stress. GB has been reported to
inhibit accumulation of ROS, protect photosynthetic machinery
and activate stress-related genes (Chen and Murata, 2008).
GB is also known to maintain the protein structures from
damage induced by abiotic stresses (Sakamoto and Murata,
2002). Soluble proteins play a main role in osmotic adjustment
under NaCl stress and can provide storage form of nitrogen
(Singh et al., 1987). Increase in soluble protein content under
stress may be the result of enhanced synthesis of specific
stress-related proteins (Doganlar et al., 2010). Soluble sugars
act as important osmolytes to maintain the cell homeostasis
(Gupta and Kaur, 2005). Change in total soluble sugars under
NaCl stress also involves changes in CO, assimilation, enzyme
activities and expression of certain genes (Gibson, 2005; Gupta
and Kaur, 2005). Thus, application of NO to salt-stressed
chickpea plants provoked a remarkable increase in levels of
total soluble proteins, proline, GB and soluble sugars, perhaps
to provide a better protection to plants exposed to stress.
The protective nature of the osmolytes under NO treatment
corroborates with the findings of Hayat et al. (2012), Khan
et al. (2012), Kausar et al. (2013), and Dong et al. (2014) in
various plants. Exogenous application of NO has also been
known to induce the P5CSI gene encoding 31-pyrroline-5-
carboxylate synthetase, a key enzyme involved in the proline
synthesis (Zhang et al., 2008; Rejeb et al, 2014) (Figure 5).
Noticeable accumulation of proline, GB, total soluble proteins
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and total soluble sugars due to NO application might enhance salt
tolerance of cells through osmotic regulation. As a consequence,
the increased osmotic pressure in the cells increased water
uptake, and subsequently RWC, plant growth and biomass yield
(Tables 1 and 2).

Salt stress induces the generation of huge amount of ROS,
leading to the abnormalities at cellular level due to oxidation
of proteins, lipids and nucleic acids (Schutzendubell and
Polle, 2002; Ahmad et al, 2008, 2010; Hayat et al., 2012)
(Figure 5). However, plants are capable to deal with such
stressful conditions through increasing synthesis of antioxidant
metabolites, including proline, and antioxidant enzymes, such
as SOD, CAT, APX and GR (Schutzendubell and Polle, 2002;
Ahmad et al., 2008, 2010; Hayat et al., 2012). In present study,
the increase in the activities of SOD, CAT, APX and GR, as
well as of proline content in chickpea plants due to salinity
was observed (Figure 3; Table 2). Our results are supported
by the observations reported by Hayat et al. (2012) in Solanum
lycopersicum, Kausar et al. (2013) in T. aestivum and Manai
et al. (2014) in S. lycopersicum. Furthermore, co-application of
NO with NaCl markedly increased the activities of SOD, CAT,
APX and GR in chickpea plants (Figure 3), which is in harmony
with previous findings reported in mustard (Khan et al., 2012),
tomato (Hayat et al., 2012; Manai et al., 2014) and in cotton
(Dong et al., 2014). NO can act (i) as a direct scavenger of ROS,
and (ii) antioxidant system inducer to enhance the expression
of antioxidant enzyme-encoding genes (Grof3 et al., 2013). NO
applied exogenously may also induce the synthesis of endogenous
NO (Hao et al,, 2008; Xiong et al., 2009; Zhao et al., 2009;

Xu et al, 2010; Fan and Liu, 2012), which can function as
signaling molecule or ROS scavenger under prolonged stress
conditions by regulating/enhancing the activities of antioxidant
enzymes (Hao et al., 2008; Xu et al., 2010; Fan and Liu, 2012)
(Figure 5).

Consistent with the accumulation of antioxidant enzymes
in chickpea plants under salt stress, either alone or co-
applied with NO (Figure 3), the expression of representative
SOD, CAT and APX genes examined was also up-regulated
in treated chickpea plants (Figure 4). This result suggested
that up-regulation of SOD, CAT and APX genes might
enhance activities of the SOD, CAT and APX enzymes, thereby
providing better protection to the cells against oxidative stress
triggered by high salinity (Lu et al., 2007; Yamane et al,
2010; Hu et al, 2012). In support of our finding, several
studies also reported the up-regulation of antioxidant enzyme-
encoding genes under stress with or without NO treatment. For
instance, Hernandez et al. (2000) have reported the enhanced
expression of SOD and APX genes in a NaCl-tolerant Pisum
sativum variety in comparison with the sensitive variety. Up-
regulation of SOD gene expression has also been reported
in other plants, including Lycopersicon esculentum (Aydin
et al, 2014) and Lotus japonicus (Rubio et al, 2009) under
NaCl stress. Zhang et al. (2014) showed the up-regulation
of CAT and APX genes in Limonium sinense under high
salinity. Menezes-Benavente et al. (2004) and Shafi et al.
(2015) reported enhanced expression of APX gene in rice
and Arabidopsis, respectively, under salt stress. Lin et al.
(2011) noticed induced expression of APX by exogenous NO
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supply in sweet potato (Ipomoea batatas) under wounding stress.
Therefore, it is reasonable to conclude that NO may activate
the expression of antioxidant enzymes-related biosynthetic
genes, which leads to accumulation of antioxidant enzymes,
thereby providing better tolerance to plants under stresses
(Figure 5).

CONCLUSION

Our study demonstrates that exogenous supply of NO is effective
in mitigating salt stress in chickpea plants. Therefore, application
of exogenous NO or manipulation of endogenous NO content
might be promising approach for salt stress management in the
era of climatic changes.
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