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Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture,

guazatine is used as non-systemic contact fungicide efficient in the protection of cereals

and citrus fruits against disease. The composition of guazatine is complex, mainly

constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines).

Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis

thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit

growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely

affected. We observed the occurrence of quantitative variation in the response to

guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us

to undertake genome-wide association (GWA) mapping that identified a locus on

chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1)

within this locus was studied as candidate gene, together with its paralog (CLH2). The

analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant

alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation

promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which

Arabidopsis populations can overcome toxicity by the fungicide guazatine.

Keywords: guazatine, polyaminoguanidines, GWAS, natural variation, population genetics

INTRODUCTION

Arabidopsis thaliana (thereafter referred to as Arabidopsis) is a small weed mainly distributed
in the northern hemisphere. It grows in open or recently disturbed habitats and its spread
was facilitated by the expansion of agriculture (François et al., 2008). Arabidopsis exhibits
extensive natural variation for different developmental, abiotic and biotic stress resistance
traits (Koornneef et al., 2004; Alonso-Blanco et al., 2009; Atwell et al., 2010). Understanding
the genetic bases for such variation enables the identification of potential mechanisms
underlying local adaptation. Here, we have used genome-wide association studies (GWAS)
to identify genes contributing to the natural variation in guazatine tolerance observed in
this species. Multiple recombination events in the genetic history of populations produce
close linkage disequilibrium (LD) of markers with causal loci for certain phenotypes. Such
associations can be detected through GWAS. These type of approaches require the genetic
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validation of associations and have some limitations compared
to, for example, QTL mapping (Korte and Farlow, 2013). In
Arabidopsis, GWAS has been successfully applied to uncover
the genetics of multiple traits (Atwell et al., 2010; Baxter et al.,
2010; Li et al., 2010; Chan et al., 2011; Chao et al., 2012; Filiault
and Maloof, 2012). Furthermore, the use of natural variation as
source of genetic variability enables the analysis of how naturally
occurring alleles evolve and may be selected (Alonso-Blanco
et al., 2009).

Guazatine is a non-systemic, contact-based, aliphatic nitrogen
fungicide used in agriculture that protects cereals against
different diseases such as common bunt (Tilletia ssp.), common
root rot (Helminthosporium), seedling blight (Fusarium ssp.),
glume blotch (Septoria), and smut (Ustilago; Dreassi et al., 2007).
In citrus fruits, guazatine also protects from infection by sour
rot (Geotrichum candidum), green mold (Penicillium digitatum),
and blue mold (Penicillium italicum; Wild, 1983). The mode
of action of guazatine, at least in the ascomycete Alternaria, is
inhibition of lipid biosynthesis and membrane destabilization
(Yagura et al., 1984). The composition of guazatine is complex
and constituted by a mixture of guanidated polyamines (PAs)
referred to as polyaminoguanidines (PAGs). Most abundant
PAGs in guazatine are diamines [octamethylenediamine H2N-
(CH2)8-NH2] and triamines [iminodi(octamethylene)diamine
H2N-(CH2)8-NH-(CH2)8-NH2], but also guanidated tetramines
and carbamonitrile. In plants, guazatine is a potent inhibitor
of PA oxidase activity (PAO) that has been extensively used
to block PA oxidation or PA back-conversion in different
species, thus contributing to decipher the biological functions
of PAO in plants in relation to H2O2 production and ROS
signaling (Federico et al., 2001; Yoda et al., 2006; Marina
et al., 2008; Moschou et al., 2008; Fincato et al., 2011;
Agudelo-Romero et al., 2014). The long alkyl chains, secondary
amino groups and guanidine groups of PAGs constitute the
structural requirements for the inhibition of PAO activity by
guazatine (Cona et al., 2004). Despite its use in agriculture
as fungicide, little is known about the physiological effects
from long-term exposure to guazatine in weeds, such as
Arabidopsis. We find that guazatine concentrations as low
as 2.5 µM inhibit Arabidopsis shoot and root growth, and
reduce total chlorophyll levels. We identified the occurrence
of quantitative variation in response to guazatine in 107
natural Arabidopsis accessions from Europe and America. We
performed genome-wide association mapping to determine the
genetic bases for the variation observed. GWAS identified
associations between guazatine tolerance and allelic variation
at CHLOROPHYLLASE 1 (CLH1), encoding an enzyme that
catalyzes the hydrolysis of the ester bond of chlorophyll
producing chlorophyllide and phytol (Hörtensteiner, 2006).
CLH1 and its paralog CLH2, were further validated for this
association. The isolation and analysis of chl1-2, clh1-3, chl2-
2, clh2-3, and double clh1-2 clh2-3 mutant alleles confirmed
that CLH1 or CLH2 loss-of-function promote guazatine-
tolerance in Arabidopsis. We conclude that a natural mechanism
occurs which provides tolerance to guazatine in natural
populations, involving enzymes in the chlorophyll degradation
pathway.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Accessions used in this work were obtained from the Nottingham
Arabidopsis Stock Centre (NASC, www.arabidopsis.info) or
kindly provided by Prof. Maarten Koornneef (Max Planck
Institute for Plant Breeding Research, Cologne, Germany). A
complete list of Arabidopsis accessions, origins and accession
numbers is detailed in Table S1. Seed sterilization was performed
by vigorous shaking of seeds in an aqueous solution containing
30% sodium hypochlorite supplemented with 0.5% TritonX-100
for 10min, followed by three washes with sterile deionized H2O.
For in vitro culture, sterilized seeds were sown on Growth Media
(GM: 0.5 x Murashige & Skoog supplemented with vitamins, 1%
sucrose, 0.8% Plant Agar (Duchefa Biochemie), pH 5.7 adjusted
with KOH). Seeds were stratified in the dark at 4◦C during 2–4
days. Seedlings were grown under 12 h dark/12 h light cycles at
20/22◦C, 100–125 µmol photons m−2 s−1 of light intensity.

Isolation and Characterization of clh1-2,
clh1-3, clh2-2, clh2-3 Double clh1-2 clh2-3

Mutants
clh1 and clh2 T-DNA insertion mutants were obtained from
NASC (clh1-2, N653869; clh1-3, N871333; clh2-2, N827897;
and clh2-3, N668619). Confirmation of the T-DNA insertion
position and isolation of homozygous lines was performed
by PCR-based genotyping and sequencing from genomic
DNA, using T-DNA (LB) primer (5′-GCGTGGACCGCTTGC
TGCAACT) and gene specific primers: clh1-2 (Fwd: 5′-
TTTGTTAGTTCCTGCGACTGG and Rev: 5′-AGAGAGAGA
GACGGAGGTTGG), clh1-3 (Fwd: 5′-CACATACAACCGGCC
ATAAAC and Rev: 5′-GAAAAATCAACATTCTCCCCC), clh2-
3 (Fwd: 5′-CGGATAATCTCCTTCCTCCAC and Rev: 5′-ACA
AAGCCCATTCCTTGTACC), clh2-2 (Fwd: 5′-GAGGGTGGA
GAGAATTTGAGG and Rev: 5′ GTCGCCTTAAAGAAATTT
GGG). Genomic DNA was extracted using DNeasy plant mini
Kit (Qiagen) according to manufacturer’s instructions. PCR
conditions were as follows: 95◦C 5min, 30 cycles (95◦C 15 s, 55◦C
45 s, 72◦C 2min), 72◦C 10min.

The double homozygous clh1-2 clh2-3mutant was isolated by
genotyping 48 F2 plants derived from the cross of the respective
parental lines with primers described above. Expression of CLH1
and CLH2 was determined by RT-PCR. Briefly, total RNA
isolated from 7-days old seedlings was extracted using TRIzol
reagent (Invitrogen). Two micrograms of RNA was treated with
DNAse I (Invitrogen) and first strand cDNA synthesized using
Superscript II (Invitrogen) and oligo dT. Onemicroliter of cDNA
was used for PCR amplification of CLH1 (Fwd: 5′-TTACATTCT
TGTAGCCCCAC, Rev: 5′-GCGACTGGATCAATTCCTAT) or
CLH2 (Fwd: GCTTATGTTGCATGTCTCT, Rev: CGAGGAGTA
CCCAAATTTCT) with LA Taq DNA polymerase (Takara) using
the following PCR conditions: 95◦C 5min, 30 cycles (95◦C 15 s,
55◦C 45 s, 68◦C 1min), 68◦C 10min.

Guazatine Treatments
Guazatine acetate was obtained from KenoGard (Stockholm).
Sterilized seeds of Arabidopsis accessions were sown directly
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on GM supplemented with or without 2.5 µM guazatine.
Chlorophyll levels were determined 16 days after germination.

clhmutants were germinated and grown on a nylon mesh (43
µm) placed on top of the GMmedia. Four days after germination,
the nylon mesh was transferred to GM supplemented with 5 µM
guazatine. Samples for chlorophyll extraction were harvested 12
days after guazatine treatment.

Quantification of Chlorophyll Levels
Seedlings were harvested individually, weighted and placed in
2ml tubes (Eppendorf safe-lock) in the presence of 100 µl
of borosilicate beads (Ø 4mm), submerged in liquid nitrogen
and homogenized with Star-Beater device (VWR International).
Buffered acetone (acetone/Tris-HCl 80:20 vol, pH 7.8) was added
in a ratio of 1ml per 20mg fresh weight (FW). Samples were
incubated in the dark at 70◦C during 10 min and centrifuged
at 12,000 rpm for 1min. Chlorophylls were determined using
UV2310 Spectrophotometer (DINKO Industries) at 663 nm for
chlorophyll A and 645 nm for chlorophyll B. Chlorophyll levels
were calculated according to Porra (2002).

Transmission Electron Microscopy
Fifteen randomly chosen leaf segments from guazatine-treated
and untreated leaves, were cut into pieces of 5mm length and
fixed in a solution of 2% glutaraldehyde in 2.5% cacodylate
buffer pH 7.4 (CB) at 4◦C. The segments were washed five
times for 10min in CB and post-fixed for 2 h 15min in
a solution of 1% OsO4 and 0.8% FeCNK (w/v). After five
additional washes with distilled H2O at 4◦C, samples were
dehydrated in acetone and embedded in Spurr Low-Viscosity
Embedding kit (Sigma-Aldrich). Serial ultrathin sections (60–
70 nm) were obtained using an ultramicrotome (Reichert-Jung,
Wien, Austria), collected on 200 mesh uncoated copper grids and
stained with 2% uranyl acetate and Reynolds lead citrate. Samples
were observed under a TEM Bioscan Gatan, JEOL 1010 at the
Scientific and Technological Centers (CCiT) of the University of
Barcelona.

GWA Mapping
GWAS was performed using the GWAPP web interface (Seren
et al., 2012). Mean chlorophyll values of 107 Arabidopsis
accessions grown under control and guazatine conditions (as
indicated above), were transformed using the square root. GWAS
was conducted using the accelerated mixed model (AMM),
and linear regression (LM; Seren et al., 2012). To correct for
multiple testing, a Bonferroni correction with a threshold of
0.5 was performed. P-value bias due to population stratification
was evaluated with Q–Q plots. The LD was visualized in the
flanking region of the CLH1 gene (between 6.74 and 6.87 Mb on
chromosome 1).

Root and Biomass Measurements
For root measurements, 4-days old seedlings germinated on GM
were transferred into GM plates containing 1.5 µM guazatine.
Plates were placed vertically and root measurements determined
after 12 days of guazatine treatment using the SmartRoot
software (Lobet et al., 2011).

Quantification of Free PAs
PAs from plant material were extracted using 5% (v/v) perchloric
acid (PCA, 1ml per 200mg of fresh weight). Samples were
vortexed vigorously, incubated on ice during 5 min and
centrifuged at 16,000 g 10min at 4◦C. 200 µl of the PCA
supernatant were taken for dansyl derivatization and detection
according to Marcé et al. (1995).

Expression Analyses
The expression of CLH1 (At1g19670) and CLH2 (At5g43860)
in Arabidopsis accessions was obtained from microarray data
deposited in Genevestigator under experiment IDs AT-00283
and AT-00407 (Hruz et al., 2008). Expression values from
three independent biological replicates were normalized to
UBIQUITIN 10 (AT4G05320) and expressed relative to Col-0
accession.

Phylogenetic and Statistical Analyses
DNA sequences were obtained from the 1001 Genomes
project (www.1001genomes.org). NJ tree was computed using
MEGA6.06. Statistical analyses were performed using SPSS
software v.22 (IBM SPSS Statistics, IBM, Chicago, IL).

RESULTS

Effects of Long-Term Exposure to
Guazatine in Arabidopsis
Due to the use of polyaminoguanidines (guazatine) as
fungicide in agriculture, we studied the effects of guazatine
treatment in germination and growth of the weed Arabidopsis.
Exposure of Arabidopsis (Col-0) to increasing concentrations
of guazatine from 0 to 25 µM did not affect germination
(Figure 1A). Conversely, treatment with guazatine inhibited
growth of Arabidopsis seedlings, produced chlorosis and
affected chloroplast integrity (Figures 1A–C). Accumulation of
osmophilic bodies that resembled plastoglobules was observed in
chloroplasts of guazatine-treated leaves (Figure 1C). Guazatine
concentrations as low as 2.5 µM were sufficient to inhibit
growth in different Arabidopsis accessions, whereas chlorosis
exhibited a dose-dependent response depending on the accession
(Figures 1A,B). We concluded that long-term exposure to
µM concentrations of guazatine is detrimental for Arabidopsis
growth and reduces chlorophyll levels, for which quantitative
variation between accessions was observed.

Quantitative Variation of Chlorophyll Levels
in Response to Guazatine in 107
Arabidopsis Accessions
We selected 2.5 µM for the quantitative analysis of the natural
variation in response to guazatine in 107 Arabidopsis accessions
originally collected from worldwide. Higher concentrations were
lethal for most natural accessions, whereas 2.5 µM guazatine
was optimal to generate a large degree of phenotypic variation
(Figures 2A,B and Table S1). We determined total chlorophyll
levels as proxy for the quantification of guazatine tolerance
traits. Quantification of chlorophyll in guazatine treated and
untreated seedlings evidenced the occurrence of quantitative
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FIGURE 1 | Effects of guazatine treatment in Arabidopsis germination, growth and chlorophyll content. (A) Phenotype of 12-days-old Arabidopsis

seedlings germinated and grown under different concentrations of guazatine from 0 to 25 µM. (B) Quantitation of chlorophyll loss by guazatine treatment in four

genetically different accessions (CS28277, Ge-1; CS28583, Old-1; CS28692, Rou-0; Col-0). Values are normalized to chlorophyll levels at 0 µM guazatine for every

genotype and expressed as %. Values are the mean from at least five independent biological replicates ±SD. (C) TEM images of 12-days-old wild-type Col-0

seedlings treated with 2.5 µM guazatine (+) or 0 µM guazatine (−). P, plastoglobules. Scale bar: 1 µM.

variation for this trait, with some accessions exhibiting high
sensitivity and others increased tolerance to the fungicide
(Figure 2B). Guazatine resistant and sensitive accessions were
evenly distributed in populations from Austria, Czech Republic,
France, Germany, The Netherlands, Portugal, UK and USA,
with a high frequency of guazatine tolerance in accessions from
Germany. We concluded that guazatine tolerant and sensitive
accessions are not geographically restricted. Their distributions
do not exhibit evident population patterns, although the
frequencies of tolerant and sensitive accessions vary between
populations (Figure 2B).

GWAS Analysis for Chlorophyll Levels in
Response to Guazatine
GWAS was conducted to identify genetic factors underlying
the response to guazatine in Arabidopsis natural populations
using chlorophyll levels. The GWAS profiles showed a complex
regulation of guazatine tolerance using both the accelerated
mixed model (AMM) and linear regression (LM) methods
(Figures 3A,B; Seren et al., 2012). Confounding due to
population structure between both methods was assessed using
Q–Q plots (Figure S1). The AMM method presented lower
deviation from the identity line than the LM method, indicating
an efficient control for population structure (Figure S1). Several
strong associations were identified on the top of chromosome

one between 6.74 and 6.87 Mb (Figure 3B) using the LM
method. Remarkably, this association was absent under control
conditions (Figure S2). The difference between methods seems
to be due to the correction for population structure. The
risk of P-value overcorrection is absent in the LM method
when applied to traits correlated with population structure.
Considering the advantages and disadvantages of both methods,
we investigated potential gene candidates obviously associated
with the variation of chlorophyll content within the associated
region. CHLOROPHYLLASE 1 (CLH1, At1g19670), involved
in the chlorophyll degradation pathway (Hörtensteiner, 2006),
is located in the associated region on chromosome one
(Figure 3C). Pairwise linkage disequilibrium (LD) between SNPs
for this region indicated LD values higher than 0.4 near
CLH1 (Figure 3D), denoting strong LD. The CLH1 gene has
one gene paralog, CLH2 (At5g43860), located on chromosome
5 for which associations could not be detected regardless
of the method (Figures 3A,B and Figure S3). We concluded
that CLH1 was an obvious candidate for gene validation
studies.

Characterization of clh1 and clh2 Mutants
in Response to Guazatine Treatment
We isolated clh1 (clh1-2 and clh1-3) and clh2 (clh2-2 and clh2-
3) T-DNA insertion mutants that exhibited reduced or no
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FIGURE 2 | (A) Geographical distribution of Arabidopsis accessions used in this work. The origins of accessions are indicated in yellow spots and detailed in Table S1.

(B) Levels of chlorophylls in Arabidopsis accessions grown in the presence of 2.5 or 0 µM guazatine for 12 days. Accessions were sorted according to populations

and guazatine tolerance. Only populations for which four or more individuals were available are shown. Values are the mean of at least five biological replicates ± SD.

expression of CLH1 and CLH2 genes, respectively, (Figure S4).
In agreement with that previously reported for clh1-1, clh2-1,
and clh2-2, mutants (Schenk et al., 2007), clh1-2, clh1-3, and
clh2-3 in this work did not show visually evident phenotypes
on development or natural senescence differing from wild-
type plants. We tested the tolerance of these genotypes to
5 µM guazatine, which is twice the concentration at which
mostArabidopsiswild-type accessions, including Col-0, exhibited
susceptibility (Figure 1B). Remarkably, loss of chlorophyll and
growth inhibition induced by 5 µM guazatine treatment was
significantly attenuated in clh1-2, clh1-3, clh2-2, and clh2-
3 seedlings compared to the wild-type (Figures 4A,B). This
indicated that CLH1 and/or CLH2 loss-of-function or expression
down-regulation enhances guazatine tolerance. The double clh1-
2 clh2-3 mutant exhibited higher chlorophyll and biomass in
the presence of guazatine than single clh1-2, clh1-3, or clh2-
2, clh2-3 mutants, which is consistent with an additive effect
by individual mutations (Figures 4A,B). In the root system,
we observed that guazatine concentrations as low as 1.5 µM
inhibited primary root elongation in wild-type Arabidopsis

seedlings and this response was attenuated in clh1-2 and clh1-
3 but not so significantly in clh2-2 or clh2-3 (Figure 4C and
Figure S5). The lower dosage required for root growth inhibition
might be due to direct uptake by root cells without the need
of transport. The double clh1-2 clh2-3 responded similarly to
clh1 loss of function (Figure 4C). We concluded that CLH1

and/or CLH2 loss-of-function or their down-regulation promote
guazatine tolerance in Arabidopsis.

Polyamine Levels in Response to
Guazatine Treatment
Free putrescine (Put), spermidine (Spd) and spermine (Spm)
levels were quantified in clh1-2, clh1-3, clh2-2, clh2-3, double
clh1-2 clh2-3 and wild-type seedlings treated or not with 5 µM
guazatine during 16 days. Free Put levels accumulated up to
6.7-fold in guazatine-treated seedlings compared to untreated
controls (Figure 5). No evident differences in Put levels were
apparent between clh1-2, clh1-3, clh2-2, clh2-3 or double clh1-2
clh2-3 mutants and the wild-type (Figure 5). The levels of free
Spd did not change in response to guazatine treatment, whereas
those of free Spm were slightly reduced in all genotypes tested
(Figure 5). We concluded that guazatine leads to accumulation
of free Put and slight reduction of Spm, and this response
was similar in clh1, clh2 and wild-type plants. Therefore,
CLH1 and CLH2 mutations do not affect PA responsiveness to
guazatine.

Natural Allelic Variation at clh1 and clh2
The sequence of CLH1 and CLH2 genes from 53 accessions
used in this study (Table S1) was obtained from the 1001
genomes project (www.1001genomes.org) and used to construct
CLH1 and CLH2 phylogenies (Figure 6). CLH1 alleles from
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FIGURE 3 | GWA mapping for guazatine tolerance in 107 Arabidopsis accessions. GWA mapping profiles using the (A) accelerated mixed model (AMM) and

(B) linear regression (LM) methods. Chromosomes are shown in different colors. (C) Schematic representation of the CLH1 flanking region. (D) LD triangle plot for the

CLH1 genomic region.

guazatine tolerant accessions were found in different branches
of the CLH1 tree. However, we observed that 10 out of the
22 guazatine tolerant accessions analyzed in this phylogeny,
clustered together in the same branch of the tree (clade III),
which indicated that they carry similar CLH1 alleles. Guazatine
tolerant accessions in this clade belonged to populations from
Germany (Kl-5, Mnz-0, Do-0, and Ga-0), Austria (Gr-1 and Gr-
5), Italy (Sei-0), Czech Republic (Da1-12) and Sweden (Lom1-
1). Most guazatine tolerant accessions in this CLH1 clade did
not cluster together in the CLH2 phylogeny, for which variation
was higher (Figure 6). Hence, the CLH1 clade III was not likely
due to simple genetic relationship between accessions, except
for Gr-1 and Gr-5. Because of the contribution of both CLH1
and CLH2 genes to guazatine tolerance, and the high diversity
of CLH2 alleles detected that does not correlate with CLH1
phylogeny, we could not identify straightforward associations
between specific CLH1 polymorphism(s) and guazatine tolerance
traits by simple comparison between tolerant and sensitive
variants.

CLH1 and CLH2 expression was studied in 11 natural
accessions that showed contrasted guazatine-tolerance traits
(Figure 7). This analysis evidenced the absence of variation
in CLH1 and CLH2 transcript levels between the accessions.
Therefore, changes in CLH1 and CLH2 expression are unlikely to
underlie guazatine tolerance in Arabidopsis natural populations.
Rather, we suggest that non-synonymous substitutions in the
coding sequence of CLH1 and CLH2 may cause the quantitative
variation observed (Figure 7).

Overall, we report that genetic variation at both
CLH1 and CLH2 genes conditions guazatine tolerance
in Arabidopsis. The occurrence of multiple (rare) CLH2
alleles contributing to guazatine tolerance may limit the
identification of associations between CLH2 and guazatine
tolerance by GWAS, which was validated by mutant
analysis.

DISCUSSION

In this work, we report the deleterious effects derived from
the exposure to low (2.5 µM) concentrations of guazatine
in Arabidopsis seedlings, the occurrence of extensive natural
variation for guazatine tolerance traits in a set of 107 accessions,
and the identification of genes involved in this response by
GWA mapping. Guazatine is used in agriculture as fungicide
recommended for cereals and citrus fruits. We have observed
that treatment of the weed Arabidopsis with micromolar
concentrations of guazatine inhibits growth, primary root
elongation and depletes chlorophyll levels (Figures 1, 4). Due
to these effects, we conclude that guazatine may be used
as herbicide. The 107 accessions selected were sufficient to
perform GWA mapping for guazatine tolerance traits and
identify CLH1 as candidate gene (Figure 3C), that together
with CLH2, were further validated using loss-of-function
mutants.

The identification of CLH genes underlying guazatine-
tolerance traits indicates the involvement of chlorophyll
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FIGURE 4 | Chlorophyll levels (A), biomass (B) and primary root length

(C) in clh, clh2 and double clh1 clh2 mutants grown in the presence of

5 or 0 µM guazatine. Values are the mean of at least five biological

replicates ±SD. Letters indicate values that are significantly different according

to Student-Newman-Keuls test at P < 0.05.

degradation pathways in this response. Arabidopsis carries two
CLH coding genes (CLH1 and CLH2; Benedetti, 1998; Tsuchiya
et al., 1999; Benedetti and Arruda, 2002) but associations with
guazatine tolerance were only detected for CLH1 (Figure 3).
Because CLH2 exhibits higher allelic diversity (Figure 6), we
reason that the occurrence of multiple, low frequent CLH2
alleles contributing to guazatine tolerance, might affect the
identification of this locus by GWAS. Furthermore, predominant
activity of CLH1 over CLH2 in Arabidopsis has been reported
(Schenk et al., 2007). Interestingly, no variation in CLH1
and CLH2 expression was evidenced in Arabidopsis accessions
differing in their tolerance to guazatine (Figure 7). We suggest
that SNPs leading to non-synonymous substitutions in the
coding sequence of CLH1 and CLH2 may underlie the naturally
occurring variation observed, which is compatible with GWAS
analysis.

FIGURE 5 | Levels of free puterscine, spermidine, and spermine in clh1,

clh2 and double clh1 clh2 mutants grown in the presence of 5 or 0 µM

guazatine. Values are the mean of at least five biological replicates ± SD.

Letters indicate values that are significantly different according to

Student-Newman-Keuls test at P < 0.05.

CLH and pheophytinase (PPH) activities catalyze the cleavage
of the lipophilic phytol chain of chlorophyll to produce
chlorophyllide, a more hydrophilic derivative (Hörtensteiner,
2006). However, the biological assessment of CLH function in
Arabidopsis indicated that CLH1 and CLH2 are not involved
in senescence-related chlorophyll breakdown (Schenk et al.,
2007; Hu et al., 2015). In Arabidopsis, PPH is localized in
chloroplasts (Schelbert et al., 2009) whereas CLH1 and CLH2
are not plastidial proteins (Schenk et al., 2007). CLH1 is located
in the ER and tonoplast of plant cells (Hu et al., 2015).
Because of the CLH1 localization, chlorophyll could only be
substrate of CLH activity upon release of chlorophyll from
the thylakoid membranes. This may be caused by different
types of abiotic and biotic stresses that damage plant tissues
(Karpinski et al., 2003), or the use of guazatine (Figure 1C).
In high amounts, some tetrapyrroles can generate ROS and
induce cell death (Kruse et al., 1995; Meskauskiene et al., 2001;
Hörtensteiner, 2006; Hirashima et al., 2009). Hu et al. (2015)
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FIGURE 6 | Neighbor-Joining (NJ) tree of At1g19670 (CLH1) and (At5g43860) CLH2 genes. Bootstrap values for different nodes are indicated (% from 1000

replicates). Alleles from guazatine-tolerant accessions are highlighted in red.

suggested that CLH and chlorophyll constitute a binary defense
system effective against certain chewing herbivores, due to the
inducible production of chlorophyllide upon attack, which is
toxic for Spodoptera litura larvae. Similarly, accumulation of
chlorophyllide is a defense mechanism against infection by
the necrotrophic fungus Alternaria brassicicola in Arabidopsis
(Kariola et al., 2005). Yagura et al. (1984) reported that the fungal
activity of guazatine is due to alterations in membrane integrity,
permeability and composition. In Arabidopsis, the physiological
effects of guazatine application have been less studied. Its use
as PAO inhibitor does not require long-term exposure and, for
PAO inhibition, guazatine is frequently added to protein extracts
for in vitro enzymatic reactions. In this work, we report that
long-term exposure to guazatine induces membrane damage in
Arabidopsis, which was evidenced in the alteration of chloroplast
integrity followed by chlorophyll degradation. Accumulation

of osmophilic bodies, which resembled plastoglobules, was
evidenced in guazatine-treated leaves (Figure 1C). Such particles
accumulate in response to different stresses and senescence,
in parallel to the break-down of thylakoid integrity (Austin
et al., 2006). Interestingly, guazatine toxicity is not evident in
monocots like oat (Capell et al., 1993). For auxinic herbicides,
selectivity between dicots and monocots is due to differences
in auxin translocation, degradation, perception, and vascular
physiology (Gauvrit and Gaillardon, 1991; Monaco et al., 2002;
Kelley and Reichers, 2007). Similar mechanisms may underlie
guazatine selectivity between dicots and monocots. However,
within-species variation in Arabidopsis can be explained by
genetic determinisms involving natural variation at CLH1 and
CLH2 genes.

CLH1 and/or CLH2 loss-of-function or expression down-
regulation attenuate guazatine toxicity inArabidopsis.We suggest
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FIGURE 7 | Gene expression analyses of CLH1 and CLH2 and guazatine tolerance. Expression values in different accessions were obtained from

Genevestigator (Hruz et al., 2008). Values were obtained from biological triplicates, normalized to UBIQUITIN 10 as housekeeping gene, and expressed relative to

Col-0 ± SD. Guazatine tolerance was measured by calculating the fold-change of total chlorophyll levels in 2.5 µM guazatine-treated seedlings vs. untreated control

(see Materials and Methods). Letters indicate values that are significantly different according to Student-Newman-Keuls test at P < 0.05.

that loss of CLH activity limits chlorophyll degradation under
stress conditions that damage the integrity of chloroplast
membranes. This would prevent ROS generation and cell death
induced by CLH enzymatic activity. Interestingly, no significant
differences were observed between the PA profiles of wild-type,
clh1 and clh2mutants treated with guazatine. These observations
suggest that guazatine effects under long-term exposure of
Arabidopsis seedlings is not due to its activity as PAO inhibitor,
but to other mechanisms involving oxidative stress and/or
membrane damage.

PAs in the chloroplast are found as free or conjugated forms,
the latter forms produced by transglutaminase activities that
bind polyamines to stromal and thylakoid proteins (Kotzabasis
et al., 1993; Del Duca et al., 1994; Della Mea et al., 2004;
Ioannidis et al., 2009; Hamdani et al., 2011). PAs in the
photosynthetic apparatus are beneficial and protect against
photoinhibition and ROS production (Navakoudis et al., 2003;
Demetriou et al., 2007; Hamdani et al., 2011; Yaakoubi et al.,
2014). Surprisingly, guazatine application in osmotically stressed
oat leaves resulted beneficial and enhanced Spd and Spm levels,
which led to the prevention of chlorophyll loss and senescence
(Capell et al., 1993). This contrasts with the effects observed
in Arabidopsis, in which Put accumulated but Spd or Spm
increases were absent (Figure 5). Guazatine application to Vitis
vinifera also induced Put accumulation with no concomitant
changes in the levels of Spd or Spm (Agudelo-Romero et al.,
2014). In this case, the raise in Put levels was likely due to
activation of ABA pathway and increased expression of Arginine
Decaborxylase (ADC), encoding the first biosynthetic step in
the ADC pathway to Put biosynthesis (Agudelo-Romero et al.,
2014). We conclude that PA profiles by guazatine treatment vary
between species, which may be related to the predominance

of terminal catabolism and/or PA back-conversion pathways
between species.

Overall, we report natural mechanisms by which Arabidopsis
populations can overcome toxicity by polyaminoguanidine-
based fungicides used in agriculture, which might be the result
of local adaptation processes.
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Figure S1 | Quantile-Quantile (Q–Q) plots for GWAS analysis of chlorophyll

levels in response to guazatine using AMM and LM methods.

Figure S2 | Genome wide association mapping profile for chlorophyll

levels under control conditions (0 µM guazatine) in 107 Arabidopsis

accessions analyzed with the AMM and LM methods.

Figure S3 | Detailed view of the genome wide association mapping profile

for guazatine tolerance in 107 Arabidopsis accessions analyzed with the

AMM and LM methods in the CLH1 (At1g19670) and CLH2 (At5g43860)

loci.

Figure S4 | Schematic representation of 5 ′ and 3′ UTRs (white), exons

(black), introns (lines), and promoter region (gray) in CLH1 (At1g19670)

and CLH2 (At5g43860) genes. The position of T-DNA insertion in clh1-2, clh1-3,

clh2-2, and clh2-3 is indicated. The expression of CLH1 and CLH2 in 7-days-old

clh1 and clh2 seedlings, respectively, was determined by RT-PCR using

gene-specific primers and ACTIN2 as housekeeping control.

Figure S5 | Root phenotype of clh1-2, clh1-3, clh2-2, clh2-3 and double

clh1-2 clh2-3 16-days-old seedlings. Seedlings were germinated and grown

in the absence of guazatine during 4 days, and then transferred to vertical

plates containing 1.5 µM guazatine. Pictures were taken 12 days after

treatment.

Table S1 | List of Arabidopsis thaliana accessions used in this work.
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