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Plants exposed to excess metals are challenged by an increased generation of reactive

oxygen species (ROS) such as superoxide (O•−), hydrogen peroxide (H2O2) and the2

hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often

dependent on metal-specific properties and might play a role in stress perception,

signaling and acclimation. Although ROS were initially considered as toxic compounds

causing damage to various cellular structures, their role as signaling molecules became

a topic of intense research over the last decade. Hydrogen peroxide in particular is

important in signaling because of its relatively low toxicity, long lifespan and its ability to

cross cellular membranes. The delicate balance between its production and scavenging

by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse

signaling cascades that finally lead to plant acclimation to metal stress. In this review,

our current knowledge on the dual role of ROS in metal-exposed plants is presented.

Evidence for a relationship between H2O2 and plant metal tolerance is provided.

Furthermore, emphasis is put on recent advances in understanding cellular damage and

downstream signaling responses as a result of metal-induced H2O2 production. Finally,

special attention is paid to the interaction between H2O2 and other signaling components

such as transcription factors, mitogen-activated protein kinases, phytohormones and

regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced

senescence in plants. Elucidating the signaling network activated during metal stress is

a pivotal step to make progress in applied technologies like phytoremediation of polluted

soils.

Keywords: metals, hydrogen peroxide, oxidative stress, damage, signaling, crosstalk

THE RELATIONSHIP BETWEEN METALS AND OXIDATIVE
STRESS IN PLANTS

Pollution of soils, air, (ground)water and sediments with toxic metals is one of the major problems
our industrialized world is currently facing. Naturally occurring levels of these metals have been
significantly exceeded by anthropogenic activities over the past two centuries. Mining and industry,
as well as the use of phosphate fertilizers and sewage sludge in agriculture have jointly contributed
to an increased production and emission of metals. As opposed to many organic contaminants,
metals are non-biodegradable, resulting in their extended persistence in the environment. In
addition, food and feed crop plants facilitate the entry of toxic metals into the food chain,
thereby leading to bio-enrichment and enhanced risks for human health (Cuypers et al., 2009;
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Sharma and Dietz, 2009). The latter has been demonstrated by a
plethora of in vitro, in vivo and epidemiological studies, revealing
that the highest health risks are associated with exposure to
cadmium (Cd), lead (Pb) and mercury (Hg). Adverse metal-
induced health effects are wide-ranging, for example with kidney
damage, bone effects and cancer related to human Cd exposure
(Järup, 2003; Nair et al., 2013). Nevertheless, metal exposure
persists and even increases in less developed countries (Järup,
2003), urging the need to remediate metal-polluted soils.

Metals are categorized as essential or non-essential for plant
growth, with different dose-response curves for both classes (Lin
and Aarts, 2012). Essential micronutrients such as copper (Cu),
iron (Fe), nickel (Ni) and zinc (Zn) function as cofactors in over
1500 proteins crucial for the plant’s metabolism. For example,
Cu is cardinal for photosynthesis and mitochondrial respiration,
while Zn-containing enzymes are important regulators of
transcription and translation. For that reason, either too low or
high levels of these essential metals would adversely affect plant
growth and development (Hänsch and Mendel, 2009; Pilon et al.,
2009). To avoid both deficiency and excess, plant cells possess
different mechanisms to tightly control the concentrations of
essential metals (Lin and Aarts, 2012). However, even low
concentrations of non-essential metals such as Cd, Pb and Hg
disturb biochemical and physiological processes and decrease
plant productivity (Lin and Aarts, 2012).

Sharma and Dietz (2009) have described three major
mechanisms underlying metal toxicity in plants. First, different
metals show a high affinity toward sulfur or nitrogen donors
within proteins, which might interfere with cellular metabolism.
Metals are also able to displace essential cations from their
specific binding sites within an enzyme. For example, Cd2+

was suggested to competitively bind to the essential calcium
(Ca2+) site in photosystem II during photoactivation (Faller
et al., 2005). Finally, multiple studies have demonstrated

FIGURE 1 | Schematic overview of metal-induced oxidative stress. Redox-active metals such as Cu and Fe can participate in the Fenton and Haber-Weiss

reactions, finally leading to the formation of highly toxic •OH radicals from H2O2. On the other hand, non-redox-active metals such as Cd and Zn can only indirectly

contribute to ROS production by (1) displacing essential cations, (2) depleting cellular antioxidants, (3) increasing the activity of ROS producing enzymes and/or

(4) enhancing ROS production in organelles. The net result for both classes of metals is the induction of oxidative stress, an imbalance between ROS and antioxidants

in favor of the former. Abbreviations: APX, ascorbate peroxidase; CAT, catalase; H2O2, hydrogen peroxide; M(n), oxidized redox-active metal; M(n−1), reduced

redox-active metal; O•−

2 , superoxide; OH−, hydroxide ion; •OH, hydroxyl radical; SOD, superoxide dismutase.

that exposure of plants to a diverse array of metals elicits
oxidative stress, indicating a misbalance between the production
and neutralization of reactive oxygen species (ROS) such as
superoxide (O•−

2 ), hydrogen peroxide (H2O2) and the hydroxyl
radical (•OH) (Schützendübel and Polle, 2002; Sharma andDietz,
2009). In view of the different chemical properties of metals,
two modes of action can be distinguished. Under physiological
conditions, redox-active metals such as Cu and Fe exist in
different oxidation states (Cu+/2+ and Fe2+/3+). This enables
bothmetals to directly participate in the Fenton andHaber-Weiss
reactions, finally leading to the formation of highly toxic •OH
radicals from H2O2 (Figure 1; Schützendübel and Polle, 2002;
Hänsch andMendel, 2009; Sharma andDietz, 2009). On the other
hand, physiologically non-redox-active metals such as Cd, Hg,
and Zn only indirectly contribute to increased ROS production,
for example by depleting or inhibiting cellular antioxidants
(Figure 1; Schützendübel and Polle, 2002; Sharma and Dietz,
2009).

The term “oxidative stress” implies a harmful process, which
is mainly related to the oxidizing nature of ROS. However,
intense research over the past decades has shifted this paradigm,
pointing toward a dual role for ROS as damaging vs. signaling
compounds (Foyer and Noctor, 2005). Currently, ROS and
H2O2 in particular are considered as essential components of
signal transduction used by plants to respond to developmental
and environmental cues. In this review, it is our intent to
provide an overview of the experimental evidence underlying
a dual role for H2O2 during metal stress in plants. Within
this framework, both H2O2-induced damage and signaling—
including its targets and interaction with other signaling
pathways and regulating systems—are highlighted. Ultimately,
the term “oxidative challenge” is preferred, as this implies the
harmful vs. beneficial effects of H2O2 produced in metal-exposed
plants (Figure 2).
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FIGURE 2 | Generalized model for the central role of hydrogen

peroxide (H2O2) in metal-induced oxidative damage vs. signaling

responses. Ascorbate peroxidase (APX) and catalase (CAT) are the two most

important enzymes that counterbalance metal-induced H2O2 production in

plants. However, APX has a much higher affinity for H2O2 as compared to

CAT. Therefore, the former enzyme is considered to be primarily involved in the

fine-tuning of H2O2 levels crucial for their signaling function. Conversely, CAT

is important for the bulk removal of excess H2O2 produced in stressed plants.

In addition, while APX uses AsA as a reducing agent to detoxify H2O2, CAT

does not need any reducing equivalents. Depending on its extent, the

metal-induced rise in H2O2 content can lead to molecular and cellular damage

and/or signaling. Different studies highlight the interaction between ROS/H2O2

and signaling components such as redox-active transcription factors (TFs),

mitogen-activated protein kinases (MAPKs), phytohormones, Ca2+, NO• and

regulating systems like miRNAs. Finally, detoxification, repair and acclimation

responses are activated, with accelerated senescence as a potential last resort

in metal-exposed plants.

HYDROGEN PEROXIDE, A SIGNALING
MOLECULE IN DISGUISE

Both energy transfer to as well as incomplete reduction of
O2 generate ROS such as singlet oxygen (1O2) and O•−

2 ,
H2O2 and •OH respectively. These reactive intermediates are
byproducts of physiological processes such as photosynthesis
and respiration, with a high oxidizing potential toward DNA,
lipids and proteins. However, not all ROS are equally reactive,
with O•−

2 and H2O2 being rather selective in their reactions and
•OH attacking all molecules in its surroundings (Halliwell, 2006;
Møller et al., 2007). Under steady-state conditions, antioxidant
enzymes and metabolites tightly control ROS concentrations
in different cellular compartments to prevent oxidative damage
(Mittler et al., 2004, 2011). In addition, plants have developed
a way to employ low levels of ROS as signaling compounds to
appropriately and coordinately respond to developmental as well

as environmental cues (Petrov and Van Breusegem, 2012). It
has long been known that different biotic (e.g. pathogen attack)
and abiotic (e.g. drought, salinity, heat and metal stress) stimuli
increase ROS generation in plants, leading to a misbalance
between ROS and antioxidants in favor of the former (Dat et al.,
2000; Apel and Hirt, 2004). Especially under these conditions, the
use of ROS in signal transduction can contribute to acclimation
and eventually tolerance to various stressors (Hossain et al.,
2015).

Among all ROS, H2O2 is often put forward as the most
attractive signaling molecule (Neill S. et al., 2002; Neill S. J.
et al., 2002; Foyer and Noctor, 2005; Petrov and Van Breusegem,
2012). It is produced by a two-step reduction of molecular
O2. Superoxide—generated after the first reduction step—is
converted into H2O2, for example by superoxide dismutase
(SOD). Subsequently, H2O2 can give rise to highly toxic •OH
radicals through the Fenton and Haber-Weiss reactions with
the help of free redox-active metal ions (Figure 1; Halliwell,
2006). With a half-life of 1 ms, H2O2 is relatively stable as
compared to O•−

2 and •OH that have a half-life of only 1
µs and 1 ns, respectively (Møller et al., 2007). Additional
advantages are its high cellular abundance (up to the low
millimolar range) (Cheeseman, 2006; Møller et al., 2007), its
small size (Petrov and Van Breusegem, 2012) and its ability
to cross cellular membranes through aquaporins and thereby
migrate to different cellular compartments (Bienert et al., 2006,
2007; Bienert and Chaumont, 2014). Furthermore, H2O2 is an
uncharged non-radical with an intermediate oxidation number
(−1 for each oxygen atom), implying both oxidizing and
reducing properties (Bienert et al., 2007; Bienert and Chaumont,
2014). With regard to H2O2 scavenging, it is important to
keep in mind the unique property of catalase (CAT) among
all antioxidative enzymes: it is able to convert H2O2 to
H2O2 and O2 without the use of reducing equivalents (see
Section “Production and Scavenging of H2O2 in Metal-Exposed
Plants”) (Bienert et al., 2007; Das and Roychoudhury, 2014).
The fact that H2O2 scavenging by CAT occurs in an energy-
efficient way can be a crucial asset under environmental stress
conditions, when energy is required to set up an appropriate
defense response (Gechev et al., 2006; Das and Roychoudhury,
2014).

Reactive oxygen species are able to transmit a signal by
oxidizing a target molecule, for example a transcription factor
(Mittler et al., 2004). The relatively long-living H2O2 can travel
a cellular distance up to 1 µm and brings the signal close to
its target, thereby acting as primary messenger. However, the
cellular distance traveled by more short-living ROS ranges from a
mere nm (•OH) up to 30 nm (1O2 and O

•−

2 ). These will therefore
react with a cellular compound close to their production site,
with the oxidation product acting as second messenger (Møller
et al., 2007). However, both routes lead to the same net signaling
result for ROS with different physicochemical properties. In the
following paragraphs, the production and scavenging of H2O2

is discussed in the light of metal stress. Furthermore, results
from priming experiments and screenings of metal tolerant vs.
sensitive genotypes/ecotypes have revealed a strong relationship
between H2O2 and metal tolerance in plants.
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Production and Scavenging of H2O2 in
Metal-Exposed Plants
In plants, H2O2 and other ROS are continuously produced
in different subcellular compartments as byproducts of various
metabolic reactions. While most ROS in plant cells originate
from chloroplasts and peroxisomes, mitochondria are the
most important ROS producers under dark conditions and
in non-photosynthetic tissues (Navrot et al., 2007; Das and
Roychoudhury, 2014). In chloroplasts and mitochondria, leakage
of electrons to O2 as a consequence of electron transport
chain over reduction can generate O•−

2 radicals, which can
subsequently be converted to H2O2. In peroxisomes, H2O2

can be directly produced by oxidation reactions of fatty acids
and glycolate formed during photorespiration (Petrov and Van
Breusegem, 2012).

On the other hand, ROS can also be enzymatically generated
in the apoplast. At the plasma membrane, O•−

2 is generated
by NADPH oxidases. These enzymes are homologs of the
mammalian respiratory burst oxidase gp91phox and are therefore
referred to as respiratory burst oxidase homologs (RBOHs)
(O’Brien et al., 2012). Using NADPH as a cytosolic electron
donor, they catalyze the reduction of apoplastic O2 to O

•−

2 , which
can then be dismutated to H2O2 either non-enzymatically or
by the action of SOD. Furthermore, apoplastic ROS can also be
produced by cell wall-anchored class III peroxidases. Although
these enzymes are also involved inH2O2 scavenging, they are able
to generate H2O2 in the presence of a strong reductant. Reactive
oxygen species produced by the action of these peroxidases play
an important role in several developmental processes including
cell wall cross-linking and loosening (O’Brien et al., 2012;
Kärkönen and Kuchitsu, 2015).

While ROS production in organelles and the apoplast
continuously occurs under physiological growth conditions, it
can be greatly enhanced by biotic and abiotic stress factors
(Gechev et al., 2006; Petrov and Van Breusegem, 2012). As
demonstrated in Table 1, exposure to even environmentally
relevant metal concentrations increased the production of H2O2

in a wide variety of plant species. As discussed before, the
mechanisms underlyingmetal-induced ROS production in plants
are dependent on the chemical properties of the metal. Indirect
metal-induced ROS production can be achieved by several
mechanisms (Cuypers et al., 2012). Metals can for example
inhibit the activity of various enzymes by binding to their
functional groups or by displacement of essential cations in
specific binding sites (Gupta et al., 2009; Cuypers et al.,
2011). In this way, they can disturb the action of enzymes
involved in antioxidative defense and physiological processes
such as respiration and photosynthesis, thereby increasing ROS
production. Furthermore, metals are able to deplete the pool
of the important antioxidant glutathione (GSH), thereby also
disturbing the ROS balance (Lee et al., 2003). In addition,
several metals were shown to increase ROS production by plasma
membrane-bound NADPH oxidases (Figure 1; Romero-Puertas
et al., 2004; Hao et al., 2006; Remans et al., 2010).

In order to prevent cellular damage as a result of increased
ROS production, plants possess an extensive antioxidative
defense system consisting of both non-enzymatic and enzymatic

compounds (Figure 1). Two important non-enzymatic
antioxidants are the water-soluble metabolites ascorbate
(AsA) and GSH. Ascorbate can directly scavenge O•−

2 , H2O2,

and •OH radicals and is involved in the regeneration of other
antioxidants such as α-tocopherol (Das and Roychoudhury,
2014). Furthermore, it plays an important role in the AsA-GSH
cycle. In the first step of this cycle, ascorbate peroxidase (APX)
detoxifies H2O2 to H2O using AsA as the reducing agent.
Subsequently, the reconversion of AsA to its reduced form is
coupled to the oxidation of GSH, which is again reduced by
the action of glutathione reductase (GR) (Cuypers et al., 2012).
In addition to its involvement in the AsA-GSH cycle, GSH can
also directly detoxify ROS and is the substrate of glutathione-S-
transferase (GST) enzymes, catalyzing the conjugation of GSH
with electrophilic compounds. Plant GSTs are subdivided into
several classes and are involved in a wide range of functions
including the detoxification of xenobiotics (e.g. herbicides) and
products of oxidative DNA and lipid damage (Marrs, 1996;
Gill and Tuteja, 2010). Furthermore, GSH plays a role in the
scavenging of metals via its sulfhydryl group and is also the
precursor of metal-chelating phytochelatins (PCs) (Jozefczak
et al., 2012; Noctor et al., 2012). In addition to PCs, also
metallothioneins (MTs) are able to bind metals such as Cu,
Cd and Zn through the thiol groups of their cysteine residues.
Furthermore, several studies suggest that MTs are directly
involved in ROS scavenging (Hassinen et al., 2011).

In contrast to the water-soluble AsA and GSH, α-tocopherol
and carotenoids are important lipid-soluble antioxidative
metabolites. They are involved in protecting membranes against
lipid peroxidation and preventing damage to the photosynthetic
machinery, respectively (Das and Roychoudhury, 2014). In
addition, the amino acid proline accumulates in plants under
abiotic stress conditions including metal exposure (Sharma
and Dietz, 2006). Proline is able to quench 1O2 and scavenge
•OH radicals in vitro, and several studies have attributed an
antioxidant function to proline under metal stress in vivo as well
(Sharma and Dietz, 2006). For example, pretreatment of Oryza
sativa plants with proline decreased the accumulation of H2O2

and lipid peroxidation after Hg exposure (Wang et al., 2009).
These observations might be related to the fact that proline is
able to protect and stabilize ROS scavenging enzymes such as
CAT and peroxidases (Sharma and Dietz, 2006; Szabados and
Savouré, 2009).

Among the antioxidative enzymes, SODs are responsible
for the conversion of O•−

2 to O2 and H2O2. Based on the
metal present in the active center, these enzymes are classified
as Cu/Zn-SOD (localized in the apoplast, cytosol, chloroplasts
and peroxisomes), Mn-SOD (localized in mitochondria) or Fe-
SOD (localized in chloroplasts) (Alscher et al., 2002; Das and
Roychoudhury, 2014). Scavenging of H2O2 is performed by
CAT, ascorbate peroxidase (APX), glutathione peroxidase (GPX),
guaiacol peroxidase, class III peroxidases and peroxiredoxins.
In general, peroxidases oxidize a wide range of substrates,
thereby reducing peroxides including H2O2 (Mathé et al., 2010).
While APX reduces H2O2 to H2O using the reducing power
of AsA, GPX uses thioredoxin and GSH as electron donors
(Das and Roychoudhury, 2014; Bela et al., 2015; Passaia and
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TABLE 1 | Metal-induced H2O2 production and scavenging in plants.

Metal Species H2O2 scavenging References

APX CAT

H2O2 Activity Gene Activity Gene

production expression expression

Essential Cu Arabidopsis thaliana x x x x x Cuypers et al., 2011

x Liu et al., 2015

x Martínez-Peñalver et al., 2012

x x x Opdenakker et al., 2012a

x Yuan et al., 2013

Cucumis sativus x x İşeri et al., 2011

Hordeum vulgare x x x Hu et al., 2015

Ipomoea batatas x Kim et al., 2010

Matricaria chamomilla x Kováčik et al., 2010b

x x Kováčik et al., 2010a

Medicago truncatula x Macovei et al., 2010

Nicotiana tabacum x x Xia et al., 2012

Oryza sativa x x x Mostofa et al., 2015a

x x Thounaojam et al., 2012

Pauwlonia fortunei x x x Wang J. et al., 2010

Silene dioica x x Kováčik et al., 2010b

Silene vulgaris x x Kováčik et al., 2010b

Solanum lycopersicuma x x İşeri et al., 2011

Spirodela polyrhiza x x x Upadhyay and Panda, 2010

Ni Brassica juncea x x Khan and Khan, 2014

Brassica napus x x x Kazemi et al., 2010

Vicia sativa x x Ivanishchev and Abramova,

2015

Zn Arabidopsis thaliana x x x x x Remans et al., 2012a

Brassica juncea x x Feigl et al., 2015

x x Khan and Khan, 2014

Gossypium hirsutum x x x Anwaar et al., 2015

Ipomoea batatas x Kim et al., 2010

Lactuca sativa x Barrameda-Medina et al., 2014

Myracrodruon urundeuva x x x Gomes et al., 2013

Pauwlonia fortunei x x x Wang J. et al., 2010

Phaseolus vulgaris x Michael and Krishnaswamy,

2011

Populus × canescens x x x Shi et al., 2015

Solanum melongena x x Wu et al., 2015

Solanum nigrum x x x x x Xu Q. S. et al., 2010

Spirodela polyrhiza x x x Upadhyay and Panda, 2010

Verbacum thapsus x x Morina et al., 2010

Non-

essential

Al Cucumis sativus x x x Pereira et al., 2010

Nicotiana tabacum x x Yin et al., 2010

(Continued)
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TABLE 1 | Continued

Metal Species H2O2 scavenging References

APX CAT

H2O2 Activity Gene Activity Gene

production expression expression

Non-

essential

Cd Arabidopsis thaliana x x x x Cuypers et al., 2011

x Martínez-Peñalver et al., 2012

x x Tao et al., 2013

Boehmeria nivea x x Tang et al., 2015

Brassica campestris x Anjum et al., 2014

Brassica juncea x Masood et al., 2012

Brassica napus x x x Ali et al., 2013

Citrus paradisi ×

Poncirus trifoliata

x x Podazza et al., 2012

Dittrichia viscosa x x x Fernández et al., 2013

Glycine max x x x Pérez-Chaca et al., 2014

Helianthus annuus x x x Saidi et al., 2014

Ipomoea batatas x Kim et al., 2010

Kosteletzkya virginica x x x Han et al., 2013

Lactuca sativa x x x Monteiro et al., 2012

Lepidium sativum x x x Gill et al., 2012

Lupinus luteus x Arasimowicz-Jelonek et al.,

2012

Nicotiana tabacum x x x Iannone et al., 2010

Oryza sativa x x x Chou et al., 2011

x x x Mostofa et al., 2015b

x x Singh and Shah, 2014

x x Srivastava et al., 2014

x x Srivastava et al., 2015

x Wang et al., 2014

x Yu et al., 2015

Populus cathayana x x He et al., 2013

Populus nigra x x x He et al., 2013

Populus popularis x x He et al., 2013

Populus × canadensis x Di Baccio et al., 2014

Populus × canescens x x x He et al., 2011

Sedum alfredii x x Tian et al., 2011

Solanum lycopersicum x x x Ahammad et al., 2013

x x x Monteiro et al., 2011

Solanum nigrum x x x Deng et al., 2010

x x x Liu et al., 2013

Trigonella

foenum-graecum

x x x Zayneb et al., 2015

Triticum aestivum x Moussa and El-Gamal, 2010

Vigna radiata x Anjum et al., 2014

Zea mays x Wahid and Khaliq, 2015

Zygophyllum fabago x x x Yildiztugay and

Ozfidan-Konakci, 2015

Hg Juncus maritimus x x x Anjum et al., 2015

Medicago sativa x Montero-Palmero et al., 2014

(Continued)
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TABLE 1 | Continued

Metal Species H2O2 scavenging References

APX CAT

H2O2 Activity Gene Activity Gene

production expression expression

Non-

essential

Pb Arabidopsis thaliana x x Tao et al., 2013

x Yu et al., 2012

Atractylodes

macrocephala

x x x Wang et al., 2013

Brassica napus x x x Ali et al., 2014

Hordeum vulgare x Legocka et al., 2015

Lemna trisulca x Samardakiewicz et al., 2015

Nymphoides peltatum x x Qiao et al., 2013

Oryza sativa x x Srivastava et al., 2014

Pauwlonia fortunei x x Wang J. et al., 2010

Talinum triangulare x x x Kumar et al., 2013

Triticum aestivum x x x Kaur et al., 2013

x x x Kaur et al., 2015

Vicia faba x Shahid et al., 2012

Zygophyllum fabago x x x López-Orenes et al., 2014

a In article as Lycopersicum esculentum.

Metals have the capacity to induce oxidative stress in plants. An increase in H2O2 levels is an indicator of the disturbed redox balance. Plant cells have defense mechanisms to

scavenge excess ROS, such as the antioxidative enzymes ascorbate peroxidase (APX) and catalase (CAT). The following table catalogs recent research articles (published since 2010)

that reported metal-induced H2O2 production. The effects on APX and CAT, at the level of both gene expression and enzymatic activity, are indexed according to essential (Cu, Ni, and

Zn) and non-essential metals (Al, Cd, Hg, and Pb) and plant species.

Margis-Pinheiro, 2015). On the other hand, guaiacol peroxidase
prefers aromatic compounds such as guaiacol and pyrogallol as
electron donors to reduce H2O2 (Das and Roychoudhury, 2014).
As mentioned before, class III peroxidases can both scavenge
and produce ROS. In their regular peroxidative cycle, they
catalyze the reduction of H2O2 using a variety of electron donors
including phenolic compounds, lignin precursors, secondary
metabolites and auxins (Mathé et al., 2010; Zipor and Oren-
Shamir, 2013). In contrast to the above-mentioned peroxidases,
peroxiredoxins detoxify H2O2 by oxidizing their own thiol
groups, which are back-reduced by the action of thioredoxin,
glutaredoxin, cyclophilin or GSH (Tripathi et al., 2009).
While GPX, guaiacol peroxidase, class III peroxidases and
peroxiredoxins are also involved in other cellular processes,
CAT and APX are specifically dedicated to H2O2 scavenging
and the regulation of redox homeostasis. Therefore, both
enzymes are discussed in more detail in this review (Table 1).
Catalase is a tetrameric heme-containing enzyme catalyzing the
detoxification of H2O2 to H2O and O2, which is mainly present
in peroxisomes. The APX enzyme is localized in the cytosol,
mitochondria, chloroplasts and peroxisomes and converts H2O2

into H2O during the first step of the AsA-GSH cycle (Das
and Roychoudhury, 2014). While APX uses AsA as a reducing
agent for H2O2 detoxification, the action of CAT does not
require any reducing equivalents. This provides plants with
an energy-efficient way of H2O2 removal, which can be of
particular interest under stress conditions (Gechev et al., 2006).
However, it is important to note that the affinity of APX

for H2O2 is much higher than that of CAT (micromolar vs.
millimolar range). Therefore, APX is assumed to be mainly
involved in the fine-tuning of H2O2 detoxification important
for its signaling function, while CAT is responsible for the
bulk removal of excess H2O2 generated during stress conditions
(Figure 2; Mittler, 2002). As shown in Table 1, both H2O2

scavenging enzymes are affected at transcriptional and activity
level in metal-exposed plants. For example, Cuypers et al. (2011)
demonstrated differential effects of Cd and Cu on CAT and
APX gene expression in Arabidopsis thaliana plants. Dependent
on the metal concentration and isoform considered, expression
levels were specifically affected in roots or leaves. Furthermore,
expression changes were not always mirrored by the enzyme
activities, suggesting that CAT and APX regulation also occurs at
the post-transcriptional level under metal stress (Cuypers et al.,
2011).

The Link between H2O2 and Metal
Tolerance in Plants
In recent years, multiple studies have focused on the role of H2O2

in plant tolerance to a diverse array of abiotic stress conditions.
Research has shown that pretreatment of plants with H2O2 can
decrease the extent of adverse effects induced by subsequent
exposure to abiotic stress factors including salinity, drought,
heat, chilling and metals, a phenomenon which is generally
referred to as H2O2 priming (Hossain et al., 2015). Exposure
of plants to low concentrations of H2O2 (ranging from 100
to 500 µM) prior to metal treatment was shown to minimize
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metal-induced growth reduction, lipid peroxidation, chlorophyll
degradation and programmed cell death in different plant species
(Chao et al., 2009; Hu et al., 2009; Bai et al., 2011; Xu et al.,
2011; Guzel and Terzi, 2013; Yildiz et al., 2013). Heat shock,
known to increase H2O2 levels, can also induce metal tolerance
in plants (Chao et al., 2009; Chou et al., 2012). Even though
the mechanisms underlying these observations are not fully
elucidated yet, available data so far point to the involvement of
metal chelation, antioxidative defense and osmotic regulation in
increased metal tolerance.

One of the key players in H2O2-induced metal tolerance
is GSH. Indeed, many studies demonstrate an elevated GSH
level in metal-exposed plants pretreated with H2O2 as compared
to non-primed plants (Hu et al., 2009; Bai et al., 2011; Xu
et al., 2011). As GSH is an important component of the
AsA-GSH cycle, the elevated GSH level induced by H2O2

pretreatment of metal-exposed plants can contribute to an
enhanced H2O2 detoxification, thereby reducing the negative
effects of metal-induced oxidative stress (Apel and Hirt, 2004).
Furthermore, GSH can directly chelate metals, which have a
high affinity toward its sulfhydryl group. In addition, GSH is
the main constituent of metal-chelating PCs. Metals sequestered
by GSH and PCs are transported to the vacuole, decreasing the
concentrations of free metal ions in the cytosol and thereby
preventing metal-induced damage to cellular macromolecules
such as DNA, proteins and membrane lipids. Moreover, vacuolar
compartmentalization can also affect the transport of metals
from roots to aerial plant parts (Liu W. J. et al., 2010; Jozefczak
et al., 2012; Najmanova et al., 2012; Noctor et al., 2012).
Indeed, Hu et al. (2009) and Bai et al. (2011) demonstrated a
reduced root-to-shoot translocation of Cd in O. sativa plants
pretreated withH2O2. In contrast, Yildiz et al. (2013) showed that
H2O2 priming increased root-to-shoot translocation of Cr(VI) in
Brassica napus plants. In these experiments however, H2O2 was
able to counteract the decrease in fresh weight and the induction
of lipid peroxidation caused by subsequentmetal exposure. These
data suggest that the mechanisms underlying H2O2-induced
metal tolerance strongly depend on the metal and the plant
species under study.

In addition to GSH, other antioxidants also seem to be
involved in H2O2-induced metal tolerance. Xu et al. (2011) have
shown that H2O2 priming enhanced the Al-induced increase
in AsA levels in root tips of an Al-sensitive Triticum aestivum
genotype. However, this was not observed in an Al-tolerant
genotype, indicating that the inherent plant metal tolerance can
influence the effect of exogenous H2O2 on the responses to
subsequent metal exposure. Besides their levels, also the redox
state of GSH and AsA can be affected, as indicated by increases in
reduced vs. oxidized metabolite ratios by H2O2 priming in root
tips of both T. aestivum genotypes after Al exposure (Xu et al.,
2011).

Besides metabolic antioxidants such as GSH and AsA, also
antioxidative enzymes could be involved in H2O2 priming.
Indeed, several studies demonstrated differences in the activities
of antioxidative enzymes such as SOD, CAT and APX between
metal-exposed plants that were either primed with H2O2 or not
(Chao et al., 2009; Hu et al., 2009; Xu et al., 2011; Yildiz et al.,

2013). This is either related to the fact that H2O2 priming (1)
counteracts a metal-induced reduction in antioxidative enzyme
activities, probably due to binding of the metal to the protein’s
cysteine residues or (2) increases basal antioxidative enzyme
activities to protect plants frommetal-induced oxidative damage.
Furthermore, it has been shown that H2O2 pretreatment can
further stimulate metal-induced increases in the activity of GST
(Hu et al., 2009; Bai et al., 2011). Together, these data suggest
that H2O2 priming reduces the negative consequences of metal
exposure, while stimulating the plant’s defense mechanisms. This
H2O2-induced enhancement of antioxidative defense, combined
with an increase inmetal scavenging, can possibly explain the fact
that H2O2 priming often diminished metal-induced increases in
ROS levels (Hu et al., 2009; Xu et al., 2011; Guzel and Terzi, 2013).

In addition to its effects onmetal scavenging and antioxidative
defense, other processes were also affected by H2O2 priming
in metal-exposed plants. A study by Guzel and Terzi (2013)
showed that H2O2 pretreatment counteracted the reductions
in dry matter production, relative water content and water
potential in leaves of Cu-exposed Zea mays. In addition, H2O2

priming reduced the negative effects of Cu on the levels of
soluble proteins, sugars, and mineral ions and enhanced the Cu-
mediated increase in proline content. These results suggest that
the water balance may be a target of H2O2 priming in metal-
exposed plants (Guzel and Terzi, 2013). Interestingly, proline
levels are constitutively enhanced in different metal-tolerant
plant species (Sharma and Dietz, 2006). While this may be
related to its role in osmoregulation, proline might also confer
metal tolerance through its function as metal chelator and ROS
scavenger as discussed before (reviewed by Sharma and Dietz,
2006).

It is interesting to note that whereas H2O2 priming affects
plant responses to metal stress, H2O2 alone (without subsequent
metal exposure) does not always influence the parameters
studied. As mentioned, metal-induced increases in antioxidative
enzyme activities are often enhanced by H2O2 pretreatment.
This does not always imply, however, that the activities of these
enzymes are also increased in H2O2-primed plants that are
not subsequently exposed to metal stress. In a recent review
on this topic, Hossain et al. (2015) propose that pretreatment
with H2O2 induces a mild oxidative challenge activating a ROS-
dependent signaling network which results in the accumulation
of latent defense proteins including antioxidative enzymes and
transcription factors. As a consequence, plants enter a primed
state that enables enhanced defense responses upon exposure to
subsequent abiotic stressors such as metals.

It has been demonstrated that metal-induced oxidative stress
is more powerful in sensitive genotypes or ecotypes (reviewed
by Sharma and Dietz, 2009). Among the flowering plants, the
metal hyperaccumulating plants A. halleri, Noccaea caerulescens,
and Alyssum bertolonii exhibit a greater antioxidative capacity
than their sensitive relatives (Sharma and Dietz, 2009). For
example, activities of APX and class III peroxidases were highly
increased in the Cd and Zn hyperaccumulator A. halleri as
opposed to its sensitive counterpart A. thaliana (Chiang et al.,
2006). In addition, CAT activity was more than 500 times
higher in roots of the Ni hyperaccumulator A. bertolonii as
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compared to the non-hyperaccumulator Nicotiana tabacum,
explaining the higher increase in H2O2 levels in the latter after
Ni exposure (Boominathan and Doran, 2002). Interestingly,
results of different studies on contrasting ecotypes or species
indicate that H2O2 in particular is a crucial mediator of metal
phytotoxicity. Indeed, tolerant and hyperaccumulating plant
species often display a constitutively increased level of H2O2

scavenging enzymes (Sharma and Dietz, 2009). For example, Cho
and Seo (2005) observed a higher survival rate and less lipid
peroxidation in Cd-resistant A. thaliana mutants as compared
to wild-type (WT) plants exposed to 300 or 500 µM Cd, even
though the Cd content in the mutants was higher. The decreased
Cd sensitivity of the mutants was mainly related to increased
activities of several antioxidative enzymes such as APX and GR.
Interestingly, the authors did not observe a relation between CAT
activity and Cd tolerance. Nevertheless, Cd-resistant mutants
had lower H2O2 levels as compared to WT plants (Cho and
Seo, 2005), again supporting a role for H2O2 in plant metal
tolerance. Furthermore, ROS production under metal stress
could also mediate cross-tolerance to pathogens as reviewed by
Poschenrieder et al. (2006). Underlying mechanisms could be
the induction of antioxidants and the synthesis of secondary
metabolites involved in mechanical defense against pathogen
attack (Poschenrieder et al., 2006).

HYDROGEN PEROXIDE MEDIATES
DAMAGE AND/OR SIGNALING IN
METAL-STRESSED PLANTS

The balance between the generation and removal of ROS affects
which reactive oxygen compound is present and at which level.
This ultimately determines the extent of oxidative damage and/or
signaling (Møller et al., 2007). Indeed, antioxidants function
to limit the levels of ROS, thereby enabling them to execute
beneficial cellular functions without causing too much damage
(Halliwell, 2006). Based mainly on its concentration, but also on
its production site and the plant’s developmental stage, H2O2

affects plant stress responses in two ways (Petrov and Van
Breusegem, 2012). In general, high levels of H2O2 induce cell
death (Gechev and Hille, 2004; Petrov and Van Breusegem,
2012; Petrov et al., 2015). This process is critical during leaf
senescence and the hypersensitive response, which are both
known to occur in response to different developmental as well as
environmental cues (Gechev et al., 2006; Quan et al., 2008; Petrov
and Van Breusegem, 2012). At low concentrations, H2O2 acts as a
signaling molecule by (1) directly affecting the activity of a target
molecule involved in signaling or transcription, (2) oxidizing a
biological molecule that in its turn acts as second messenger
or (3) shifting the cellular redox balance to a more oxidized
state (Apel and Hirt, 2004; Petrov and Van Breusegem, 2012).
The essential role of H2O2 in cellular signaling is underlined
by the global transcriptomic analysis of Desikan and coworkers,
who demonstrated a H2O2-induced change in expression for
approximately 1% of all Arabidopsis genes represented on the
microarray (Desikan et al., 2001). In addition, H2O2 is a crucial

mediator of plant responses to metal stress as discussed in the
following sections.

Ample studies have demonstrated the occurrence of
ROS-induced oxidative damage at the molecular level in
plants exposed to various metals (Table 2). Lipids [especially
polyunsaturated fatty acids (PUFAs)], DNA and proteins can be
oxidatively damaged by ROS, depending on the reactivity of the
latter. Hydrogen peroxide is moderately reactive as compared to
other ROS and therefore only directly targets sulfur-containing
residues in proteins (Møller et al., 2007). However, H2O2 can
indirectly contribute to oxidative damage when it—together with
O•−

2 —is converted to highly toxic •OH radicals in the Fenton
and Haber-Weiss reactions (Figure 1). Hydroxyl radicals are able
to abstract a hydrogen atom from PUFA residues in a membrane,
thereby initiating lipid peroxidation. The resulting carbon-
centered radical quickly reacts with O2 to produce peroxyl
radicals, attacking neighboring PUFA side chains and generating
lipid hydroperoxides. These can freely decompose into different
reactive species such as aldehydes (e.g. malondialdehyde) and
lipid epoxides. Overall, lipid peroxidation leads to increased
membrane leakiness and damage to receptors, enzymes and ion
channels (Halliwell, 2006). Lipid peroxidation—concomitantly
with a rise in H2O2/ROS levels—was shown to occur in different
plant species exposed to Al (Pereira et al., 2010), Cd (Masood
et al., 2012), Cu (Opdenakker et al., 2012a), Hg (Montero-
Palmero et al., 2014), Ni (Khan and Khan, 2014), Pb (Kaur
et al., 2015), and Zn (Khan and Khan, 2014; Table 2). It must be
noted that redox-active metals accelerate lipid peroxidation by
catalyzing the Fenton and Haber-Weiss reactions and splitting
up lipid hydroperoxides into alkoxyl and new •OH radicals
to feed the chain reaction (Halliwell, 2006). This was clearly
demonstrated by the results of Opdenakker et al. (2012a),
comparing H2O2 levels and lipid peroxidation in A. thaliana
plants exposed to either Cu or Cd in a similar setup. Both
parameters were more rapidly increased and higher after
exposure to the redox-active Cu as opposed to Cd, pointing
toward a greater and quicker disturbance of the cellular redox
state by the former metal (Opdenakker et al., 2012a). However,
plant responses to specific metals must always be interpreted
with the applied metal concentration, the duration of exposure,
the cultivation system and the considered tissue(s) in mind.
Interestingly, oxygenation of PUFAs leads to the production of
oxylipins in an enzymatic or non-enzymatic manner (see Section
“A Relationship between H2O2 and Oxylipins in Metal-Exposed
Plants”). As oxylipins mediate plant responses to different
stressors (Mithöfer et al., 2004; Dave and Graham, 2012),
ROS-induced oxidation of lipids causes the emergence of new
signaling molecules (Chmielowska-Bąk et al., 2015).

Although H2O2 itself is poorly reactive, different studies have
demonstrated oxidative DNA damage and protein oxidation
accompanied by an increased H2O2 level in various plant
species under metal stress (Table 2). Oxidative DNA damage
is often assessed by the amount of 8-hydroxyguanosine, the
most commonly observed ROS-induced modification (Møller
et al., 2007). Its levels were increased in Al-exposed N. tabacum
(Yin et al., 2010) and Cu-treated Medicago truncatula plants
(Macovei et al., 2010). Moreover, the alkaline comet assay
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TABLE 2 | Oxidative damage in plants related to an elevated H2O2 content induced by metal exposure.

Metal Species Damage

Molecular Cellular References

Lipid

peroxidation

DNA

damage

Protein

oxidation

Hallmark

genes

Chloroplast Cell

death

Essential Cu Arabidopsis thaliana x Cuypers et al., 2011

x Opdenakker et al., 2012a

x x Martínez-Peñalver et al.,

2012

Cucumis sativus x İşeri et al., 2011

Hordeum vulgare x x Hu et al., 2015

Matricaria chamomilla x Kováčik et al., 2010a,b

Medicago truncatula x x x Macovei et al., 2010

Nicotiana tabacum x Xia et al., 2012

Oryza sativa x x Mostofa et al., 2015a

x Thounaojam et al., 2012

Paulownia fortunei x x Wang J. et al., 2010

Solanum

lycopersicuma
x İşeri et al., 2011

Spirodela polyrhiza x x Upadhyay and Panda, 2010

Ni Brassica juncea x x Khan and Khan, 2014

Brassica napus x x Kazemi et al., 2010

Chlamydomonas

reinhardtii

x x x Zheng et al., 2013

Vicia sativa x Ivanishchev and Abramova,

2015

Zn Brassica juncea x x Khan and Khan, 2014

Brassica napus x x Feigl et al., 2015

Brassica oleracea x Barrameda-Medina et al.,

2014

Lactuca sativa x Barrameda-Medina et al.,

2014

Myracrodruon

urundeuva

x Gomes et al., 2013

Oryza sativa x Thounaojam et al., 2012

Paulownia fortunei x x Wang J. et al., 2010

Phaseolus vulgaris x Michael and Krishnaswamy,

2011

Populus × canescens x Shi et al., 2015

Solanum melongena x Wu et al., 2015

Solanum nigrum x x Xu J. et al., 2010

Spirodela polyrhiza x Upadhyay and Panda, 2010

Non-

essential

Al Cucumis sativus x x x Pereira et al., 2010

Nicotiana tabacum x x Yin et al., 2010

Triticum aestivum x x Sun et al., 2015

Cd Arabidopsis thaliana x Cuypers et al., 2011

x Keunen et al., 2015

x x Martínez-Peñalver et al.,

2012

x x x Tao et al., 2013

(Continued)
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TABLE 2 | Continued

Metal Species Damage

Molecular Cellular References

Lipid

peroxidation

DNA

damage

Protein

oxidation

Hallmark

genes

Chloroplast Cell

death

Non-

essential

Cd Boehmeria nivea x x Tang et al., 2015

Brassica campestris x Anjum et al., 2014

Brassica juncea x x Masood et al., 2012

Brassica napus x x Ali et al., 2013

Citrus paradisi ×

Poncirus trifoliata

x Podazza et al., 2012

Dittrichia viscosa x x Fernández et al., 2013

Glycine max x x Pérez-Chaca et al., 2014

Helianthus annuus x Saidi et al., 2014

Kosteletzkya virginica x x x Han et al., 2013

Lactuca sativa x x x Monteiro et al., 2012

Lepidium sativum x x x Gill et al., 2012

Lupinus luteus x x Arasimowicz-Jelonek et al.,

2012

Nicotiana tabacum x Iannone et al., 2010

Oryza sativa x x Chou et al., 2011

x x Mostofa et al., 2015b

x x Singh and Shah, 2014

x x x Srivastava et al., 2014

x x x Srivastava et al., 2015

x x Yu et al., 2015

Paulownia fortunei x x Wang J. et al., 2010

Populus cathayana x He et al., 2013

Populus deltoides x He et al., 2013

Populus ×

euramericana

x He et al., 2013

P. alba × P. glandulosa x He et al., 2013

Sedum alfredii x Tian et al., 2011

Solanum lycopersicum x x Ahammad et al., 2013

x x Monteiro et al., 2011

Solanum nigrum x Deng et al., 2010

x Liu et al., 2013

Trigonella

foenum-graecum

x x Zayneb et al., 2015

Triticum aestivum x x Moussa and El-Gamal,

2010

Vigna radiata x Anjum et al., 2014

Zea mays x Wahid and Khaliq, 2015

Zygophyllum fabago x x Yildiztugay and

Ozfidan-Konakci, 2015

Hg Juncus maritimus x x Anjum et al., 2015

Medicago sativa x Montero-Palmero et al.,

2014

Pb Arabidopsis thaliana x x x Tao et al., 2013

Atractylodes

macrocephala

x x Wang et al., 2013

(Continued)
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TABLE 2 | Continued

Metal Species Damage

Molecular Cellular References

Lipid

peroxidation

DNA

damage

Protein

oxidation

Hallmark

genes

Chloroplast Cell

death

Non-

essential

Pb Brassica napus x Ali et al., 2014

Hordeum vulgare x x Legocka et al., 2015

Nymphoides peltatum x x Qiao et al., 2013

Oryza sativa x x x Srivastava et al., 2014

Paulownia fortunei x x Wang J. et al., 2010

Talinum triangulare x x x x Kumar et al., 2013

Triticum aestivum x x Kaur et al., 2013

x Kaur et al., 2015

Vicia faba x x Shahid et al., 2012

Zygophyllum fabago x x López-Orenes et al., 2014

a In article as Lycopersicum esculentum.

Exposure to excess metals affects H2O2 production and causes molecular and cellular damage in plants. At the molecular level, lipids, DNA and proteins can be oxidized by H2O2.

Expression of genes that are commonly induced by oxidative stress (Gadjev et al., 2006) can be assessed as marker of metal-induced oxidative damage. Furthermore, damage at the

level of the chloroplast and even cell death are often observed under metal stress conditions. The effects of excess essential metals (Cu, Ni, and Zn) as well as non-essential metals (Al,

Cd, Hg, and Pb) are shown and categorized based upon the metal and plant species studied. Only recently published papers (starting from 2010) demonstrating a metal-induced rise

in H2O2 content and damage at molecular and/or cellular level were included in this overview.

revealed DNA damage in roots of Al-exposed Allium cepa
(Achary et al., 2008), Cd-treated Lactuca sativa (Monteiro et al.,
2012) and Pb-exposed Talinum triangulare plants (Kumar et al.,
2013). Although many studies concentrated on DNA oxidation,
it is now postulated that RNA is more susceptible to this
process. Therefore, targeted RNA oxidation by ROS might be a
novel mechanism to post-transcriptionally regulate expression of
defense genes (Chmielowska-Bąk et al., 2015).

High intracellular levels of H2O2 oxidize both cysteine (-SH)
and methionine (-SCH3) residues present in various proteins
such as Cu/Zn- and Fe-SOD (Das and Roychoudhury, 2014).
Although this may disrupt their enzymatic function and thereby
lead to irreversible cell damage, it has been recently postulated
to be a way to perceive and further relay a H2O2 signal in plant
cells (Hardin et al., 2009; Petrov and Van Breusegem, 2012).
In addition, protein carbonylation is commonly observed under
metal stress (Table 2). For example, Al increased the carbonyl
protein content inA. cepa roots (Achary et al., 2008) andCucumis
sativus seedlings (Pereira et al., 2010). Protein carbonyls were
significantly enhanced in roots and leaves of L. sativa plants
after Cd exposure (Monteiro et al., 2012), while similar results
were observed in roots and shoots of O. sativa seedlings exposed
to Pb (Srivastava et al., 2014). Not all proteins are equally
sensitive to oxidation (Møller et al., 2007). For example, it
has been demonstrated that mainly mitochondrial proteins are
oxidized under well-irrigated and drought stress conditions in
T. aestivum leaves (Bartoli et al., 2004). Moreover, Kristensen
et al. (2004) have revealed specific subpopulations of O. sativa
leaf mitochondrial matrix proteins that were carbonylated after
in vitro treatment with H2O2 or Cu. Again, the possibility exists
that ROS-mediated protein oxidation in plant mitochondria (and
other compartments) functions as stress indicator, provoking
an alarm signal to induce plant responses to developmental as
well as environmental changes (Møller and Kristensen, 2004;

Møller and Sweetlove, 2010; Chmielowska-Bąk et al., 2015).
In conclusion, various oxidatively modified molecules serve as
signaling compounds, supporting the view that oxidative damage
and signaling are two sides of the same coin (Møller et al., 2007).
Providing experimental evidence for this hypothesis duringmetal
stress is an intriguing research challenge for the future.

In addition to damage at the molecular level, metal-
exposed plants also suffer from (sub)cellular damage. This
is often visible at the chloroplast level, leading to inhibition
of photosynthesis (Table 2; Cuypers et al., 2009). Chlorophyll
content was decreased in various plant species exposed to Al
(Pereira et al., 2010), Cd (Zawoznik et al., 2007), Cu (Hu
et al., 2015), Ni (Kazemi et al., 2010), Pb (Legocka et al.,
2015), and Zn (Khan and Khan, 2014). In addition, different
photosynthetic parameters (e.g. net photosynthesis rate) were
reduced in A. thaliana plants exposed to Cd or Pb (Tao
et al., 2013). Levels of H2O2 were significantly increased
after metal exposure in all of the above-mentioned studies,
pointing toward a correlation between H2O2 and the observed
effects at the chlorophyll/photosynthesis level. In addition to
chloroplast function and morphology, Cd exposure disturbed
the distribution and mobility of mitochondria in A. thaliana
protoplasts (Bi et al., 2009). Finally, it is important to note that
metals are able to initiate H2O2-induced programmed cell death
(Table 2). In Cd-exposed N. tabacum cells, NADPH oxidase
was activated by a rise in cytosolic free Ca2+ concentrations,
leading to H2O2 production and cell death (Garnier et al., 2006).
Cadmium was also shown to increase the production of H2O2,
which preceded cell death in A. thaliana cell suspension cultures
(De Michele et al., 2009). Similarly, other studies indicate a
relationship between metal exposure, oxidative stress and cell
death using roots, root tips or leaf disks and different techniques
to assess cell viability (Table 2; Pan et al., 2001; Achary et al.,
2008; Iannone et al., 2010; Arasimowicz-Jelonek et al., 2012;
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Kumar et al., 2013; Feigl et al., 2015). Reactive oxygen species
and H2O2 in particular are considered as crucial signals that
modulate (programmed) cell death in plants (Gechev and Hille,
2004; Gadjev et al., 2008; Petrov et al., 2015), again highlighting
the intimate relationship between ROS-mediated damage and
signaling (Figure 2).

HYDROGEN PEROXIDE DIRECTLY
MEDIATES METAL-INDUCED OXIDATIVE
SIGNALING

The use of ROS as signaling molecules offers various potential
advantages as discussed by Mittler et al. (2011). Their levels
can rapidly change by shifting the balance between production
and scavenging, which are both tightly controlled in space
because of the presence of pro- and anti-oxidative enzymes at
different subcellular locations (Mittler et al., 2004). The different
molecular properties of various ROS offer the potential to
transmit specific signals, also with regard to second messenger
products formed after oxidative modification. Signaling is
possible both within and across cells, generating a so-called
ROS “wave” (Mittler et al., 2011; Baxter et al., 2014). Finally,
ROS signaling integrates with several other signaling molecules
and mechanisms such as Ca2+ and protein phosphorylation.
In addition, ROS are directly linked to the plant’s cellular
homeostasis and metabolism. Therefore, they are perfectly suited
to signal any metabolic change occurring during developmental
and environmental stimuli (Mittler et al., 2011; Baxter et al.,
2014).

Foyer and Noctor (2005) have described ROS-induced
signaling through a “ripple” or domino effect over space
and/or time, starting with a localized and/or transient oxidative
burst affecting the expression of defense and regulatory genes
in a transient or more sustained manner. Indeed, ROS
are shown to activate various signaling compounds such as
kinases/phosphatases, metabolites and hormones, which in
their turn affect the expression of different target genes. This
finally triggers acclimation to the altered developmental or
environmental conditions a plant is experiencing (Mittler et al.,
2004; Bienert and Chaumont, 2014). Particularly with regard
to H2O2, it is interesting to note that it is produced in
response to a wide variety of internal and external stimuli
and therefore potentially contributes to cross-tolerance toward
various stressors (Neill S. J. et al., 2002; Perez and Brown, 2014).
Although oxidative stress commonly occurs in various stress
conditions, the underlying signaling mechanisms may be highly
stress-specific. This is underlined by the identification of marker
transcripts specifically regulated by 1O2, O

•−

2 or H2O2 after
exposure to different oxidative stress-causing agents. However,
several transcripts were classified as general oxidative stress
response markers because they responded to most of the applied
treatments (Gadjev et al., 2006) and were also induced by Cd
stress (Keunen et al., 2015; Table 2). Interestingly, Sewelam et al.
(2014) have shown that H2O2 originating specifically from either
chloroplasts or peroxisomes did have a differential impact on the
A. thaliana transcriptome. Specificity of ROS-induced signaling
might be related to the ROS type, amount, source and subcellular

location of production, as well as their perception by different
sensors (Miller et al., 2008; Cuypers et al., 2012).

Perception of H2O2 during Metal Stress
Researchers have long been puzzled by the mechanism(s)
used by plants to perceive stress-induced increases in H2O2

production and to relay this signal. Aminimum of three potential
mechanisms has been described: (1) H2O2 receptors that remain
unidentified to date, (2) redox-sensitive transcription factors and
(3) ROS-mediated inhibition of phosphatases (Mittler et al., 2004;
Miller et al., 2008). Currently, it is still assumed that redox-
sensitive transcription factors are oxidized by H2O2 and directly
activate downstream signaling cascades (Neill S. et al., 2002;
Miller and Mittler, 2006; Dietz, 2014). For example, class A
heat shock factors (HSFs) are known to respond to oxidative
stress in animals and plants (Petrov and Van Breusegem, 2012).
The potential involvement of HSFs in perceiving H2O2 during
metal stress (Miller and Mittler, 2006) is supported by the
observed production of heat shock proteins in various metal-
exposed plants (di Toppi and Gabbrielli, 1999; Cuypers et al.,
2009). Miller et al. (2008) have proposed a model for ROS
signaling using plants that lack the cytosolic APX1 isoform. In
this model, different HSFs function as H2O2 sensors upstream
of other transcription factors of the zinc finger protein ZAT
(ZAT7, 10 and 12) and WRKY family (e.g. WRKY25) (Miller
et al., 2008). Interestingly, expression levels of ZAT12 and
WRKY25 genes were induced in A. thaliana plants exposed to
Cd or Cu (Opdenakker et al., 2012a). Both genes were more
rapidly induced upon exposure to Cu than to Cd in the roots,
corresponding with the observed differences in H2O2 levels and
potentially related to the contrasting redox properties of both
metals (Opdenakker et al., 2012a).

A central protein involved in ROS sensing is the
serine/threonine protein kinase oxidative signal-inducible 1
(OXI1). This enzyme is directly induced by H2O2 and forms
an essential part of the signal transduction pathway linking
ROS production to diverse downstream responses (Rentel et al.,
2004). It also connects redox to lipid signaling via phosphatidic
acid in a phosphoinositide-dependent kinase (PDK1)-related
manner (Anthony et al., 2004, 2006). Interestingly, Opdenakker
et al. (2012a) demonstrated highly increased OXI1 transcription
in Cd- or Cu-exposed A. thaliana plants. Again, its upregulation
was higher and earlier induced after exposure to Cu, potentially
related to its redox-active properties. Results by Smeets et al.
(2013) underscore the key role of OXI1 in cellular signaling
responses to Cu stress using oxi1 knockout A. thaliana mutants.
As compared to WT plants, plants lacking OXI1 responded
differently to redox-induced changes (Smeets et al., 2013).
Downstream of OXI1, mitogen-activated protein kinases
(MAPKs) control the activation of multiple defense mechanisms
in response to oxidative stress as discussed in the following
section.

Hydrogen Peroxide Signal Transduction by
MAPKs and Transcription Factors
One of the typical downstream signaling events associated with
H2O2 sensing is the activation of MAPK pathways (Table 3;
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TABLE 3 | Signaling responses related to an elevated H2O2 content induced by metal exposure.

Metal Species TFs MAPKs Phytohormones References

Essential Cu Arabidopsis thaliana WRKY, ZAT MPK3/6 Opdenakker et al., 2012a

Aux Yuan et al., 2013

Oryza sativa JAa Mostofa et al., 2015a

Spirodela polyrhiza JAa Upadhyay and Panda, 2010

Ni Brassica juncea Eth Khan and Khan, 2014

Zn Brassica juncea Eth Khan and Khan, 2014

Brassica oleracea JAa Barrameda-Medina et al., 2014

Lactuca sativa JAa Barrameda-Medina et al., 2014

Populus × canescens ABA, SA Shi et al., 2015

Solanum melongena ABA, Aux, CK Wu et al., 2015

Non-essential Cd Arabidopsis thaliana MPK3/6 Liu X. M. et al., 2010

WRKY, ZAT MPK3/6 Opdenakker et al., 2012a

JAa Remans et al., 2010

JA Keunen et al., 2013

SA Tao et al., 2013

Brassica juncea Eth Masood et al., 2012

Citrus paradisi × Poncirus trifoliata JAa Podazza et al., 2012

Kosteletzkya virginica Aux, CK, Eth, SA Han et al., 2013

Lupinus luteus SA Arasimowicz-Jelonek et al., 2012

Oryza sativa JAa Mostofa et al., 2015b

Aux Yu et al., 2015

Triticum aestivum ABA Moussa and El-Gamal, 2010

Hg Medicago sativa Eth Montero-Palmero et al., 2014

Pb Arabidopsis thaliana SA Tao et al., 2013

Zygophyllum fabago SA López-Orenes et al., 2014

aSolely reported as an effect on LOX gene expression or LOX activity in article.

During metal stress, several signaling responses are induced by increased H2O2 levels. Several transcription factors (TFs) and MAPKs and are activated by H2O2. In addition, multiple

phytohormone signaling pathways are affected by different metals. The effects of excess essential metals (Cu, Ni, and Zn) as well as non-essential metals (Al, Cd, Hg, and Pb) are

shown and categorized based upon the metal and plant species studied. Only recently published papers (starting from 2010) demonstrating a metal-induced rise in H2O2 content and

signaling were included in this overview. Abbreviations: ABA, abscisic acid; Aux, auxins; CK, cytokinin; Eth, ethylene; JA, jasmonic acid; SA, salicylic acid.

Mittler et al., 2004; Colcombet and Hirt, 2008). These signaling
modules are found in all eukaryotic cells and consist of at
least three kinases (MAP3K, MAP2K and MAPK) specifically
phosphorylating and thereby activating each other (Colcombet
and Hirt, 2008; Opdenakker et al., 2012b). Several authors have
reported the involvement of MAPK signaling during exposure to
Cd, Cu, Hg, Pb and Zn in different plant species (Opdenakker
et al., 2012b and references therein). Upstream of MAPKs, the
OXI1 kinase is considered to be a central player in metal-
induced oxidative stress responses. Rentel et al. (2004) have
shown that the activation of the MAPK isoforms MPK3 and
MPK6 by H2O2 is reduced in A. thaliana plants lacking OXI1.
Concurrently with OXI1, expression levels of its targets MPK3
and MPK6 were enhanced in Cd- or Cu-exposed A. thaliana
plants (Opdenakker et al., 2012a). Jonak et al. (2004) studied the
kinetics of different MAPK activities after exposure to either Cd
or Cu inM. sativa seedlings. Similar to the results at the transcript
level (Opdenakker et al., 2012a), Cu ions rapidly activated these
enzymes while Cd exposure led to a delayed stimulation (Jonak
et al., 2004). Since GSH effectively inhibited MPK3 and MPK6

activation in Cd-exposed A. thaliana plants, H2O2/ROS were
shown to play a crucial role in this process (Liu X. M. et al., 2010).

In addition to OXI1, also the MAP3K Arabidopsis NPK1-
like protein kinase 1 (ANP1) is directly activated by H2O2

and initiates a phosphorylation cascade via MPK3 and MPK6
(Kovtun et al., 2000). Expression levels of ANP1 were increased
in roots of Cu-exposed A. thaliana plants after 6 and 24 h
(Opdenakker et al., 2012a). Although MAPKs can be activated
by H2O2, they also trigger an H2O2-mediated oxidative burst
themselves (Mittler et al., 2004; Petrov and Van Breusegem,
2012). Indeed, MEK2 (the Nicotiana ortholog of Arabidopsis
MKK4/5) was implicated in ROS production upon fungal
infection in N. benthamiana by acting upstream of RBOH
genes known to evoke H2O2 production (Yoshioka et al., 2003).
Similarly, expression of constitutively active MKK4/5 led to
H2O2 generation and cell death in A. thaliana (Ren et al.,
2002). As MAPK cascades function both up- and downstream
of H2O2 (Mittler et al., 2004; Pitzschke and Hirt, 2006;
Pitzschke et al., 2009; Petrov and Van Breusegem, 2012), the
existence of positive feedback loops between H2O2 and MAPKs
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such as MKK4/5 deserves further attention under metal stress
conditions.

Activated MAPK cascades are able to regulate downstream
gene expression by activating or repressing transcription factors
(Colcombet and Hirt, 2008). Transcription factors of the ZAT,
WRKY, NAC, DREB, bZIP and MYB family therefore constitute
the final link in the signaling chain induced by H2O2 (Petrov
and Van Breusegem, 2012). Results by Pitzschke et al. (2009)
have demonstrated the involvement of a complete MAPK
cascade consisting of MEKK1, MKK1/MKK2, and MPK4 in
regulating ROS-induced stress signaling. Indeed, the majority
of transcription factors responsive to multiple ROS-producing
conditions are controlled by this pathway (Pitzschke et al.,
2009). Furthermore, MEKK1 is able to directly interact with and
phosphorylate the transcription factor WRKY53 (Miao et al.,
2007), which could be involved in metal-induced senescence (see
Section “Metal-Induced Responses at the Cellular Level: is H2O2

Involved in Root Growth Inhibition and Senescence?”).
Different members of the ZAT family of zinc finger

transcription factors were strongly induced by ROS at the
transcript level (Gadjev et al., 2006). In particular, isoforms 7, 10
and 12 have been put forward to be involved in ROS signaling
during abiotic stress (Davletova et al., 2005a; Miller et al., 2008).
In addition, WRKY transcription factors could function up- or
downstream of ZAT proteins (Miller et al., 2008). The WRKY
proteins, belonging to one of the largest transcription factor
families in plants (Eulgem and Somssich, 2007), all contain the
invariable WRKY amino acid signature and recognize W-box
cis elements in target gene promoter regions. The induction
of WRKY25 during oxidative stress was shown to be ZAT12-
dependent (Rizhsky et al., 2004). As mentioned before, both
ZAT12 and WRKY25 expression was induced in Cd- or Cu-
exposed A. thaliana plants (Opdenakker et al., 2012a), further
supporting their involvement in metal-induced ROS signaling.
For members of the NAC, DREB, bZIP and MYB family
associated with H2O2 signaling, their relation to metal stress is
to our knowledge generally unexplored to date. Nevertheless,
several NAC transcription factors were shown to be H2O2-
responsive (Balazadeh et al., 2010) and govern leaf senescence
in A. thaliana (Balazadeh et al., 2008). As discussed in the
Section “Metal-Induced Responses at the Cellular Level: Is H2O2

Involved in Root Growth Inhibition and Senescence?,” metal
exposure might induce a hastening of this naturally occurring
process and the role of NAC transcription factors herein might be
an interesting topic for future research. This is further supported
by promising results of Fang and coworkers, who recently
demonstrated the stress-responsive SNAC3 transcription factor
to confer tolerance to heat and drought stress in O. sativa plants
by modulating ROS (Fang et al., 2015).

Although OXI1, MPK3 andMPK6 were shown to be activated
in metal-exposed plants, information on upstream signaling
pathways as well as downstream targets under metal stress
conditions is rather scarce. Nevertheless, defined end points
of specific MAPK signaling pathways are critical to activate
the plant’s antioxidative defense during metal-induced oxidative
stress (Cuypers et al., 2012). In response to H2O2, MAPK
regulation of ZAT12 led to enhanced expression of the APX1

gene in A. thaliana (Rizhsky et al., 2004). This gene, encoding
a cytosolic H2O2 scavenging enzyme, was shown to protect
the chloroplast redox state during light stress (Davletova et al.,
2005b). Interestingly, also the CAT1 gene was shown to be
regulated by MAPK signaling in A. thaliana (Xing et al., 2007,
2008). Both APX1 and CAT1 are critical in scavenging metal-
induced H2O2 and were induced in A. thaliana plants exposed
to Cd, Cu, or Zn (Table 1; Cuypers et al., 2011; Remans et al.,
2012a). Interestingly, Davletova et al. (2005b) have postulated
the involvement of MAPK-regulated RBOHD expression in
ROS signal amplification during light stress, and further studies
confirmed its role in abiotic stress-induced systemic signaling
(Miller et al., 2009). Expression ofRBOHDwas also induced upon
Cd, Cu and Zn exposure in A. thaliana (Remans et al., 2010,
2012a; Cuypers et al., 2011). Although all of the above-mentioned
components have been separately assessed under metal stress
conditions, further efforts should be made to reveal the sequence
of events from stress perception to response in metal-exposed
plants.

Metal-induced MAPK signaling pathways show extensive
crosstalk with phytohormone signaling. Upon activation, both
MPK3 and MPK6 can phosphorylate 1-aminocyclopropane-1-
carboxylate synthase (ACS) isoforms 2 and 6, increasing their
half-life and the production of ethylene by these enzymes (Liu
and Zhang, 2004; Joo et al., 2008; Han et al., 2010). Transcription
of both ACS isoforms can also be enhanced by MPK3/6 via the
WRKY33 transcription factor (Li et al., 2012). In addition, Yoo
et al. (2008) have shown that a MKK9-MPK3/6 cascade promotes
ethylene signaling by phosphorylating the nuclear transcription
factor ethylene-insensitive 3 (EIN3) in A. thaliana. Increasing
evidence supports a role for ethylene in regulating metal stress
responses in plants (reviewed by Thao et al., 2015; Keunen
et al., 2016). It has been demonstrated that the increase in
ethylene levels was mainly related to upregulatedACS2 andACS6
expression in Cd-exposed A. thaliana plants (Schellingen et al.,
2014). Furthermore, MPK3 andMPK6 were proposed to connect
ROS production to ethylene signaling in A. thaliana leaves under
Cd exposure. Cadmium activates NADPH oxidases that produce
ROS, which are sensed by OXI1. This kinase then activates MPK3
and MPK6, both affecting ACS2 and ACS6 enzymes at various
levels (Schellingen et al., 2015). In conclusion, ethylene shows
extensive crosstalk with signaling by ROS or H2O2 under metal
stress (Thao et al., 2015; Keunen et al., 2016), which should
definitely be explored in more detail in future studies. Also the
production of other phytohormones such as abscisic acid (ABA),
auxins, cytokinins, jasmonic acid (JA) and salicylic acid (SA) is
affected by metal exposure in different plant species (Table 3).
Compelling evidence for a role of endogenous SA in Pb and Cd
tolerance of A. thaliana was provided by Tao et al. (2013). Metal-
induced phytotoxicity was potentiated by elevating endogenous
SA levels, while plants with lower SA levels performed better
when exposed to Pb or Cd. One of the underlying mechanisms of
SA-mediated toxicity is related to plant redox homeostasis, with
SA-accumulating plants showing higher metal-induced H2O2

concentrations as compared to SA-deficient plants (Tao et al.,
2013). As discussed by Petrov and Van Breusegem (2012),
interactions between H2O2 and SA can range from cooperation
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to inhibition depending on the used experimental conditions.
Therefore, much work remains to be done to fully unravel the
interaction between H2O2 and phytohormones such as ethylene
and SA during metal stress in plants. In addition, a link between
H2O2 and JA in metal-exposed plants is evident and discussed
in the Section “A Relationship between H2O2 and Oxylipins in
Metal-Exposed Plants”.

HYDROGEN PEROXIDE INTERACTS WITH
OTHER SIGNALING PATHWAYS AND
REGULATING MECHANISMS

As mentioned before, H2O2 is connected to a variety of
signaling molecules (e.g. MAPK) and plant hormones (e.g.
ethylene). In this section, we discuss its relation to Ca2+,
nitric oxide (NO•), oxylipins and microRNAs in general and
demonstrate evidence for their involvement during the metal-
induced oxidative challenge in plants (Figure 2).

Interaction between H2O2 and Ca2+ in
Metal-Exposed Plants
Compelling evidence indicates a reciprocal relationship between
H2O2 and Ca2+, two crucial messengers involved in plant
responses to multiple stress conditions (Tuteja and Mahajan,
2007; Quan et al., 2008; Mazars et al., 2010; Petrov and Van
Breusegem, 2012). Rentel and Knight (2004) observed a biphasic
increase in cytosolic Ca2+ levels of Arabidopsis seedlings upon
treatment with H2O2. Enhancing or reducing the height of the
Ca2+ peaks had a corresponding effect on the expression of
the H2O2-responsive GST1 gene, indicating crosstalk between
H2O2 and Ca2+ signaling in plants (Rentel and Knight, 2004).
Whereas ROS modulate cytosolic Ca2+ levels through the
activation of Ca2+ channels in the plasma membrane, H2O2

production by NADPH oxidases reversely depends on Ca2+

(reviewed by Mazars et al., 2010). In Cd-exposed bright yellow-2
N. tabacum cells, H2O2 production was preceded by an enhanced
cytosolic Ca2+ level essential to activate NADPH oxidases
(Garnier et al., 2006). Indeed, Ca2+ directly binds EF-handmotifs
in the cytosolic N-terminal domain of the NADPH oxidase
enzyme and leads to phosphorylation of the N-terminus by
activating a calcium-dependent protein kinase (CDPK) (Sagi and
Fluhr, 2006; Kobayashi et al., 2007; Ogasawara et al., 2008).
The potential involvement of CDPK in metal stress responses
is supported by the transcriptional induction of the CDPK1
gene in roots of Cd-exposed A. thaliana plants (Smeets et al.,
2013). Furthermore, several CDPK isoforms in T. aestivum
were responsive to H2O2 treatment, indicating a role for these
enzymes in oxidative signaling in plants (Li et al., 2008; Schulz
et al., 2013). Interestingly, an increased Ca2+ concentration
in peroxisomes caused by elevated cytosolic Ca2+ levels was
shown to stimulate CAT3 activity in vivo. The resulting rise
in peroxisomal H2O2 scavenging potential (Costa et al., 2010)
could also be important during metal-induced oxidative stress.
In this regard, the cellular response of Pisum sativum plants to
long-term Cd exposure was shown to involve extensive crosstalk
between Ca2+, ROS and NO• (Rodríguez-Serrano et al., 2009) as

discussed in the following section. Finally, Baliardini et al. (2015)
recently reported a positive correlation between the expression
of a gene encoding a Ca2+/H+ exchanger (CAX1) and Cd
tolerance in Arabidopsis. Indeed, its expression was higher in the
Cd-tolerant A. halleri as compared to its Cd-sensitive relative
speciesA. lyrata andA. thaliana. Plants without functional CAX1
also show increased accumulation of H2O2 when exposed to
Cd, suggesting a role for CAX1 in maintaining cytosolic Ca2+

levels and thereby avoid uncontrolled ROS accumulation during
oxidative stress conditions (Baliardini et al., 2015).

Nitric Oxide and H2O2: Friends or Foes
during Metal Exposure?
Nitric oxide (NO•) production is often induced by abiotic
stress in plants, for example during exposure to different
metals (reviewed by Xiong et al., 2010). In contrast, P. sativum
plants showed reduced NO• levels under long-term (14 days)
Cd exposure (Rodríguez-Serrano et al., 2009). The authors
hypothesized, since NO• is able to react with O•−

2 , that these
lower NO• levels could result in O•−

2 accumulation under Cd
stress. This was further supported by decreased O•−

2 levels
when NO• production was restored in Cd-exposed plants by
application of additional Ca (Rodríguez-Serrano et al., 2009).
Different authors have reported the potential of exogenous
NO• to alleviate metal toxicity in plants (Xiong et al., 2010).
For example, it has been proposed that NO•-induced Cu
tolerance in Lycopersicon esculentum plants was mediated by
H2O2 detoxification and the accumulation of Cu-scavenging
metallothioneins (Wang L. et al., 2010). Although external
application of NO• activated the antioxidative defense system,
endogenous NO• could also contribute to metal phytotoxicity
(reviewed by Arasimowicz-Jelonek et al., 2011). For example,
NO• is known to promote the upregulation of genes involved in
Fe uptake under Cd stress, thereby also contributing to increased
Cd uptake in A. thaliana (Besson-Bard and Wendehenne, 2009;
Besson-Bard et al., 2009). On the other hand, it is proposed that
NO• produced by plants challenged with low Cd concentrations
couldmediate signaling responses leading towardmetal tolerance
(Arasimowicz-Jelonek et al., 2011). It is clear that further research
is required to fully unravel the role of NO• and its interaction
with H2O2 and oxidative stress (Petrov and Van Breusegem,
2012) during metal exposure in plants.

A Relationship between H2O2 and
Oxylipins in Metal-Exposed Plants
Various stress stimuli, such as exposure to different metals,
activate biosynthetic enzymes responsible for the accumulation
of oxylipins. These are derived from the oxidation of PUFAs by
lipoxygenase (LOX) enzymes, with the phytohormone JA and
its volatile derivative methyl jasmonate (MeJA) often considered
to be the most important in signaling (Browse, 2009; Dave and
Graham, 2012; Santino et al., 2013; Wasternack and Hause,
2013). In addition, a non-enzymatic route triggered by ROS
is responsible for the synthesis of phytoprostane oxylipins that
are also involved in plant stress responses (Dave and Graham,
2012). Evidence for a role of oxylipins during metal stress is
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provided by the observed induction of LOX at the transcript
and activity level in various plant species (Table 3; Skórzyńska-
Polit et al., 2006; Tamás et al., 2009; Remans et al., 2010; Keunen
et al., 2013; Barrameda-Medina et al., 2014). Furthermore, JA
levels increased in A. thaliana and Phaseolus coccineus plants
exposed to Cd or Cu (Maksymiec et al., 2005), supporting a role
for JA signaling in mediating stress responses in metal-exposed
plants (Maksymiec, 2007). For example, MeJA was shown to
upregulate the same set of genes involved in GSH biosynthesis
that were also induced in Cd- or Cu-exposed A. thaliana plants
(Xiang and Oliver, 1998). Interestingly, exogenously applied
MeJA induced H2O2 production, lipid peroxidation and LOX
activity in Taxus chinensis cells (Wang and Wu, 2005). Similarly,
application of MeJA toA. thaliana roots strongly increased H2O2

concentrations in the leaves (Maksymiec and Krupa, 2002). This
points toward a link between both JA and H2O2, suggesting that
JA may contribute to metal-induced oxidative stress responses in
plants (Rodríguez-Serrano et al., 2009).

MicroRNAs and Redox Signaling in
Metal-Exposed Plants
Together with small interfering RNAs (siRNAs), microRNAs
(miRNAs) are endogenous non-coding small RNAs involved
in the regulation of plant development and stress responses
(Vazquez et al., 2010). MicroRNAs negatively regulate their target
genes by (1) mRNA cleavage or inhibition of translation or
(2) DNAmethylation. Expression of different miRNAs is affected
by metal stress in different plant species (reviewed by Gielen
et al., 2012; Gupta et al., 2014). In general, miRNA-mediated
responses are related to metal complexation, antioxidative
defense and stress signaling. For example, miR395 regulates
sulfate assimilation and was induced in Cd-exposed B. napus
seedlings (Huang et al., 2010). Sulfate assimilation into cysteine
is ultimately required to synthesize GSH and PCs able to chelate
free Cd ions, suggesting a role for miR395 in regulating Cd
complexation in plants (Gielen et al., 2012). In Arabidopsis,
miR398 expression is downregulated by excess Cu, resulting in
transcriptional induction of its target genes Cu/Zn-SOD 1 and 2
(CSD1/2). As compared to Cu, Cd exposure oppositely affected
both miRNA398 and CSD1/2 expression levels, indicating metal-
specific regulation potentially related to the redox-active vs.
non-redox-active nature of Cu vs. Cd (Cuypers et al., 2011).
Interestingly, Cu exposure did not reduce miR398 expression
in leaves of A. thaliana plants lacking functional OXI1 as it
did in WT plants, pointing toward an interaction between
miR398 and MAPK signaling during metal stress (Smeets et al.,
2013). Finally, various target genes of metal-induced miRNAs
are involved in phytohormone biosynthesis and signaling,
often by affecting transcription factors (Gielen et al., 2012;
Gupta et al., 2014). Panda and Sunkar (2015) have recently
discussed the potential role of redox signaling and/or ROS in
inducing stress-responsive miRNAs in plants. This is further
supported by a genome-wide study in O. sativa, showing seven
miRNA families to be induced or downregulated by H2O2

treatment (Li et al., 2011). One of the miRNAs upregulated
by H2O2 is miR397, targeting laccase enzymes involved in

lignin biosynthesis. Interestingly, metal exposure was also shown
to induce miR397 (reviewed by Gielen et al., 2012; Gupta
et al., 2014), suggesting a potential role for H2O2 in mediating
this induction under metal stress conditions. Future studies
should aim to unravel the interplay between metal-induced
production of ROS/H2O2 and its effects on the induction
or downregulation of specific miRNAs targeting downstream
response genes.

METAL-INDUCED RESPONSES AT THE
CELLULAR LEVEL: IS H2O2 INVOLVED IN
ROOT GROWTH INHIBITION AND
SENESCENCE?

As indicated in Tables 1–3, metal exposure increases H2O2 levels
in a variety of plant species, thereby inducing both oxidative
damage and signaling responses. At the cellular level, this might
underlie metal-induced responses observed in roots (e.g. growth
inhibition) and leaves (e.g. premature senescence). For example,
Cd-induced oxidative stress could be related to the inhibition of
root initiation and elongation (Lux et al., 2011). However, also
plant hormones might regulate root growth of metal-exposed
plants (Remans et al., 2012b; De Smet et al., 2015). As ROS are
shown to interact with phytohormones such as ethylene, future
research efforts should be made to dissect their role as potential
modulators of root development under metal stress conditions.

Many of the parameters listed in Table 2 (e.g. lipid
peroxidation) can also be regarded as indicators of plant
senescence. Indeed, it is known that plants exposed to metals
such as Cu and Cd show an accelerated appearance of senescence
symptoms (Maksymiec, 2007). During the senescence process,
leaves are degraded in a highly regulated fashion in order to
remobilize nutrients to developing plant tissues. Leaf senescence
comprises the final stage of leaf development and its onset
is determined by the developmental age of leaves (Lim et al.,
2007). It has been shown, however, that this process can be
prematurely induced by several biotic and abiotic stress factors
such as pathogen attack, wounding, darkness, drought, salinity,
UV-B irradiation and ozone (Miller et al., 1999; John et al., 2001;
Espinoza et al., 2007; Zhou et al., 2011; Guo and Gan, 2012; Allu
et al., 2014; Zhou et al., 2014).

An important characteristic of senescence is the degradation
of cellular macromolecules such as chlorophyll, lipids, proteins
and nucleic acids. During the end stage of senescence, cells
undergo programmed cell death (Lim et al., 2007). As shown
in Table 2, many of these features are also affected by metal
exposure in plants. In addition, it is known that several
components of metal-induced signaling responses are also key
players in the initiation and regulation of the senescence process.
For example, changes in phytohormone levels are known to affect
the onset of leaf senescence. While cytokinins, gibberellins and
auxins delay the appearance of senescence symptoms, increases
in the levels of other phytohormones such as ethylene, ABA, JA
and SA have been shown to accelerate the process (Lim et al.,
2007; Fischer, 2012).
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Furthermore, transcriptional regulation mechanisms also play
an important role in leaf senescence. In A. thaliana leaves,
for example, more than 800 genes are differentially expressed
during senescence (Buchanan-Wollaston et al., 2005). While
certain genes such as those encoding photosynthetic proteins are
transcriptionally downregulated, the expression of many other
genes significantly increases when leaves enter the senescent
stage. The latter genes are generally termed “senescence-
associated genes” or SAGs and encode proteins involved in
the breakdown of cellular compounds (e.g. nucleases, proteases
and cell wall hydrolases) and the remobilization of nutrients to
developing plant tissues. Also numerous transcription factors,
many of which belong to the NAC and WRKY transcription
factor families, are considered as SAGs (Miao et al., 2004; Fischer,
2012). For example, overexpression of the NAC transcription
factor ORESARA1 SISTER1 (ORS1) accelerates senescence in
A. thaliana, whereas the appearance of senescence symptoms
is delayed in plants lacking functional ORS1. Furthermore, 42
genes were shown to be induced by ORS1, many of which
are known to be involved in age-dependent senescence and
in the response to long-term salinity (Balazadeh et al., 2011).
Of the WRKY transcription factors, WRKY53 is one of the
most studied genes with regard to senescence. It can affect
the expression of several other transcription factors including
other WRKYs, indicating that it might be a key player in a
transcription factor signaling cascade (Miao et al., 2004). In
addition, the MAP3K MEKK1 can directly phosphorylate the
WRKY53 protein thereby increasing its DNA-binding activity,
suggesting that MAPK signaling is also involved in the regulation
of senescence (Miao et al., 2007). This idea is supported by the
fact that plants overexpressing or lackingMKK9 andMPK6 show
an accelerated or delayed onset of senescence, respectively (Zhou
et al., 2009).

As mentioned above, metal exposure induces many effects
associated with senescence in a broad range of plant species
(Table 2). McCarthy et al. (2001) demonstrated Cd-induced
increases in lipid peroxidation and protease activity in P. sativum
leaves. Furthermore, they reported a decreased leaf chlorophyll
content and a disorganization of chloroplast structure in leaves of
Cd-exposed plants. Similar results were obtained by Rodríguez-
Serrano et al. (2006), showing Cd-induced lipid peroxidation in
P. sativum roots. In addition, levels of the senescence-promoting
phytohormones SA, JA and ethylene were significantly elevated
in roots of Cd-exposed plants as compared to those of
control plants. Interestingly, these changes were accompanied
by increases in O•−

2 and H2O2 levels, suggesting a role for
ROS in Cd-induced accelerated senescence. In addition to
Cd, other metals were shown to induce senescence-associated
processes as well. Upadhyay and Panda (2010) demonstrated
lipid peroxidation and decreased chlorophyll content associated
with increased ROS levels in Spirodela polyrhiza. Furthermore,
lipid peroxidation and negative effects on chlorophyll content or
chloroplast structure were reported in Pb-exposedCeratophyllum
demersum (Mishra et al., 2006) and Zn-exposed Hydrilla
verticillata (Xu et al., 2013).

Taken together, these data strongly suggest that metal
exposure induces accelerated senescence in plants. However, little

or no data are available on the effect of metal exposure on
SAG expression levels. It is known, however, that transcription
of many SAGs is increased in plants treated with H2O2 (Miao
et al., 2004; Yan et al., 2007; Zhou et al., 2013, Zhou et al., 2014).
Interestingly,ORS1 andWRKY53 expression was also induced by
H2O2, suggesting that both transcription factors play a key role
in the H2O2-induced senescence response in plants (Miao et al.,
2004; Balazadeh et al., 2011).

A role for ROS in regulating senescence is further supported
by the observed increased concentrations of O•−

2 and H2O2

in senescing tissues (Fischer, 2012). This can be caused by
lipid peroxidation, which is known to occur during senescence
(Zimmermann and Zentgraf, 2005). However, it could also be
due to a decrease in the plant’s antioxidative defense as reported
by several authors (Jiménez et al., 1998; Prochazkova et al.,
2001; Procházková and Wilhelmová, 2007). This hypothesis
is further supported by the fact that the Arabidopsis vtc1-1
mutant, which is deficient in the antioxidative metabolite
AsA, has a higher expression of certain SAGs and an earlier
appearance of senescence symptoms as compared to WT plants
(Barth et al., 2004). In addition to AsA, also the antioxidative
enzyme CAT could be involved in regulating senescence. Indeed,
Zimmermann et al. (2006) proposed that a downregulation
of the CAT2 isoform contributes to the senescence-associated
H2O2 peak, subsequently causing an increase in the expression
levels of the stress-responsive CAT3 gene. Interestingly,
Cuypers et al. (2011) reported a downregulation of CAT2
and an upregulation of CAT3 in Cd-exposed A. thaliana
plants, possibly pointing to a Cd-induced acceleration of
senescence.

As metals are known to increase ROS production, thereby
inducing an oxidative challenge, we hypothesize a role for
H2O2 in the damage and signaling events ultimately leading
to premature leaf senescence under metal stress. In order
to gain more insight into the effect of metal exposure
on leaf senescence, future research should aim to identify
the influence of different metals on the expression levels
of SAGs including transcription factors such as ORS1 and
WRKY53.

CONCLUSIONS AND A LOOK FORWARD

By compiling the gathered evidence, the role of ROS and
particularly H2O2 in regulating metal stress responses in plants
is unequivocally demonstrated. Furthermore, it is becoming
increasingly clear that oxidative damage and signaling are
two sides of the same coin, potentially cooperating to
establish plant acclimation and tolerance to metal exposure.
Different studies highlight the interaction between ROS/H2O2

and signaling components such as MAPKs, phytohormones,
Ca2+, NO•, oxylipins and regulating systems like miRNAs
(Figure 2). Nevertheless, our current knowledge only represents
the tip of the iceberg, encouraging further research efforts
in the field of H2O2 perception, signal transduction and its
role in plant acclimation to and growth under metal stress
conditions.
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