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OVERVIEW OF THE ABA-INDUCED SIGNALING LEADING TO THE
REGULATION OF STOMATAL MOVEMENT

Plants regulate the gas exchange with the environment through microscopic pores formed by
specialized cells called guard cells that constitute the stomata. The control of water loss and
CO2 uptake of plants relies on the size of the stomatal pore. Abscisic acid (ABA) is the master
hormone governing the intricate network of molecular switches and physiological responses of
guard cells that determine the degree of stomatal aperture. Once plants sense water deficit, ABA is
synthesized, and enters the guard cells triggering a series of signals that result in stomatal closure
and preservation of the water status of the whole plant. ABA signaling in guard cells involves
several mechanisms sustained by enzymes, small molecules, and second messengers that finally
promote the inactivation of inward-rectifying K+ (IK, in) channels, activation of outward-rectifying
K+ (IK, out) channel, and activation of slow and rapid-anion channels (MacRobbie, 2006), resulting
in the facilitation of solute efflux from guard cells and stomatal closure. The ABA receptor is a
complex structure formed by a family of soluble proteins known as pyrabactin resistance/regulatory
component of ABA receptor (PYR/PYL/RCAR) (Ma et al., 2009; Park et al., 2009), which interacts
with a protein phosphatase-kinase complex, functioning as a double negative regulatory system
(Umezawa et al., 2009; Vlad et al., 2009). The phosphatases ABA insensitive 1 (ABI1), ABA
insensitive 2 (ABI2), and homology to ABI1 (HAB1) belong to clade A type 2C protein phosphatase
(PP2C) and the kinases belong to the group III of the sucrose non-fermenting 1 (SNF1)-related
protein kinase 2 SnRK2.2; 2.3; and the 2.6, the last one also known as open-stomata 1 (OST1)
(Kulik et al., 2011). Once ABA binds to its receptor, it generates a conformational change of the
PYR/PYL/RCAR-ABA complex that promotes the binding of PP2C allowing the phosphorylation,
and hence the activation, of SnRK2. Downstream, SnRK2 phosphorylates numerous target proteins
involved in ABA responses, including the NADPH oxidase (NADPHox) respiratory burst oxidase
homolog F (RbohF) (Sirichandra et al., 2009). Plant NADPHox RbohD and RbohF play an active
role in the production of reactive oxygen species (ROS) during ABA-induction of stomatal closure.
Furthermore, it has been recently found that activated OST1 interacts with type 2A protein
phosphatase (PP2A)-subunits (Waadt et al., 2015), which are functional proteins proposed to
positively and negatively regulate the ABA signaling in guard cells (Kwak et al., 2002; Pernas et al.,
2007).
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The production of the second messenger nitric oxide (NO)
is required for ABA-dependent induction of stomatal closure
(Desikan et al., 2002; Garcia-Mata and Lamattina, 2002; Neill
et al., 2002; Suhita et al., 2004; He et al., 2005; Kolla et al., 2007).
NO regulates a subset of ABA-evoked responses by inactivating
IK, in channels via a cGMP/cADPR-dependent increase of
cytosolic Ca2+ concentration ([Ca2+]cyt) (Garcia-Mata et al.,
2003). NO also induces the production of the lipid second
messenger phosphatidic acid (PA) in guard cells (Distefano
et al., 2008). PA is generated by phospholipase D (PLD) or by
PLC through the hydrolysis of polyphosphoinositides (PPIs) in
concerted action with diacylglycerol kinases. In addition, the
hydrolysis of PPIs by PLCs also produces water-soluble inositol
polyphosphates (InsPPs), that diffuses to the cytosol, promoting
the release of Ca2+ from intracellular stores in guard cells
(Lemtiri-Chlieh et al., 2003) and contributing to the increase of
[Ca2+]cyt. Results have shown that NO-induction of stomatal
closure was impaired when either PLC or PLD activity was
inhibited (Distefano et al., 2008). These evidences suggest that
PLD and PLC are participating in the NO-signaling pathway in
guard cells (Distéfano et al., 2010). Regarding PA, it binds to
both RbohD and RbohF, increasing their activity and leading to
superoxide (O.−

2 ) production and H2O2 formation, and thereby
contributing to the induction of stomatal closure (Zhang et al.,
2009). In addition, it has been shown that PA interacts with and
inhibits ABI1 (PP2C) (Zhang et al., 2004), and activates SnRK2s
type I SnRK2.4 and 2.10 (Testerink et al., 2004) and PP2A (Gao
et al., 2013), all of them components of the ABA signaling. Yet,
there is no conclusive evidence supporting that both NO and PA
production is via the activation of the PYL/PYR/RCAR receptor.
Figure 1 summarizes the core of the signaling components
under the control of NO and PA downstream ABA that, once
integrated, determine the control of stomatal movements. There,
it is highlighted the dual and compensatory mechanisms exerted
by NO in the promotion and attenuation of the ABA-stimulated
stomatal closure.

BREAKING THE SENSE OF THE IMPULSE,
THE NO-MEDIATED ATTENUATION OF
ABA SIGNALING IN GUARD CELLS

One of the most intriguing and less understood processes in
signal transduction is how do cells put a brake to multi-
directional signal cascades with just one output. New available
evidences suggest that NO could also function as blocker of
the ABA-induced stomatal closure through the inhibition of
the signaling by post-translational modifications of some key
components of the cascade. The S-nitrosylation of Cysteine
residues by NO-derived compounds is considered the most
important NO-dependent post-translational modification of
proteins due to its versatility and occurrence under physiological
conditions (Astier and Lindermayr, 2012). It was demonstrated
that Arabidopsis RbohD ability to form ROS is negatively
regulated by the S-nitrosylation in cell death processes and
immunity (Yun et al., 2011). The S-nitrosylation of Cys 890
of the Arabidopsis RbohD was sufficient to abolish its activity

FIGURE 1 | A simplified model of ABA signaling in guard cells. Nitric

oxide (NO) promotes and attenuates the ABA-induced and

phospholipid-mediated stomatal closure. The positive ABA-stimulus inducing

the stomatal closure and involving NO and phospholipid-derived signals are in

green. The negative effects of NO linked to post-translational modifications of

proteins and attenuating the ABA signaling are in red. The model shows that

ABA binds to its receptor pyrabactin resistance/regulatory component and

recruits the protein phosphatase 2C [ABA-PYL/PYR/RCAR-PP2C], resulting in

the activation of the kinase open stomata 1 (OST1). Then, OST1

phosphorylates and activates NADPH oxidase (NADPHox), with the

consequent generation of reactive oxygen species (ROS) and downstream,

the formation of NO through the enzymatic activities nitrate reductase (NR) and

NO synthase-like (NOS-like). NO induces the formation of phosphatidic acid

(PA) via the activation of phospholipase C (PLC) and phospholipase D (PLD) by

a still unknown mechanism. PA in turn activates NADPHox and inhibits PP2C

and inward-rectifying K+ (IK, in) channels. The activity of PLC also generates

inositol phosphates (IP3/6) contributing to the release of Ca2+ from

intracellular stores through endomembranes Ca2+-channels (EM Ca2+ Ch).

The increase of cytosolic Ca2+ concentration ([Ca2+]cyt) activates slow -anion

channels (SLAC) which also inhibits IK, in. The production of ROS also

participates in the regulation of [Ca2+]cyt through the activation of plasma

membrane Ca2+ channels (PM Ca2+ Ch). The model also shows a pathway

proposing that ABA is able to induce the production of NO via the

dephosphorylation and activation of NR through the activity of protein

phosphatase 2A (PP2A) (Heidari et al., 2011). The attenuating effects of NO by

breaking the ABA stimulus include the inhibition and degradation of the ABA

receptor PYL/PYR/RCAR through the nitration of Tyr residues (Tyr-NO), and

the inactivation of OST1 and NADPHox via S-nitrosylation (S-NO).

of forming ROS intermediates and consistently, its mutation
also blocks any possibility of regulating NADPHox enzymatic
activity. Moreover, Cys890 is conserved and also S-nitrosylated
in humans and fly, suggesting a conserved post-translational
regulatory pathway of NADPHox during evolution (Yun et al.,
2011). As stated above PA binds to RbohD, and the PA-binding
motif localizes in amino acid residues 101–330 (Zhang et al.,
2009). In this region, mutation of the arginine residues 149, 150,
156, and 157 in RbohD resulted in the loss of PA binding and
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the loss of the activation of RbohD by PA (Zhang et al., 2009).
It would be interesting to know if there exists any structural
interference between the binding of PA and the S-nitrosylation
of RbohD.

In a general view of the regulating process governing ABA-
induced stomatal movement, NO could first induce lipid and
lipid-derived molecules which activate NADPHox, but at a later
time point, and probably based on increased and damaging
concentrations of H2O2 and NO, NO is able to stop ROS
production by inhibiting NADPHox activity directly by S-
nitrosylation (Yun et al., 2011). Nevertheless, the NO-dependent
post-translational modifications on RbohD still need to be
proven in guard cells.

As stated, OST1 is a serine/threonine protein kinase that
acts as a positive regulator mediating the ABA-induced stomatal
closure through the activation of downstream effectors (Wang
et al., 2013). In a very nice piece of work, two years later, Wang
et al. (2015) demonstrated that NO negatively regulates ABA
signaling in guard cells through the S-nitrosylation of OST1.
NO can S-nitrosylates OST1 in vitro and in vivo at cysteine
137, a residue adjacent to the kinase catalytic site, provoking the
dysfunction of its phosphorilating activity (Wang et al., 2015). At
a first glance, it can be perceived that NO possesses a multitasking
capacity of modulating ABA signaling in guard cells through a
complex biological activity. It includes both positive and negative
effects that can be summarized as an attenuated mechanism for
the regulation of stomatal closure induced by ABA, in a smooth
and continuously highly controlled adjustment. Figure 1 details
the interactions occurring in guard cells highlighting the positive
and negative effects of NO on the phospholipid-derived signals
and the ABA-induced signaling resulting in stomatal closure. It
includes (A) direct positive effects (increase of [Ca2+]cyt and
PA) and (B) negative effects leading to the attenuation of the
ABA signaling through the inhibition of key effectors of stomatal
closure (inhibition of NADPHox andOST1 by S-nitrosylation). A
recently published article adds new in vitro and in vivo evidences

showing that the family of ABA receptors PYR/PYL/RCAR
is inactivated by nitration of tyrosine residues leading to the
degradation of the receptor via proteasome. The non-reversible
nitration of tyrosine residues is a post-translational modification
of proteins that requires the formation of the strong oxidant
peroxynitrite, a compound formed from the fast reaction between
superoxide (O.−

2 ) and NO. In addition, the article shows that
the ABA receptor is also S-nitrosylated, resulting in a full
capacity of the receptor of inhibiting PP2C activity (Castillo et al.,
2015). Even if authors speculate about the relevance of the S-
nitrosylation and Tyr-nitration as a NO-mediated mechanism
that modulates the ABA receptor biological activity, it was not
yet proved whether it is functionally active in guard cells under
physiological conditions associated to drought stress. It would
be interesting to see if an increase of ABA concentration after
perceiving the drought stress is enough to promote the nitration
and degradation of the ABA receptor, leading to the loss of the
response to ABA and to the brake of ABA-induced stomatal
closure.

Overall, this opinion article tries to recall the already known
two sides of the NO “coin” as a ubiquitous, homeostatic, and

synchronizer molecule in cell physiology. Thereby, we highlight
here the rationale of NO acting both in promoting and arresting
the ABA-induced/phospholipid-mediated signals triggering the
stomatal closure, as a way to avoid the exacerbation of a hormonal
stimulus. In future investigations, however, it remains to be
deciphered if the multi targets of NO are reached simultaneously
or through a temporal and spatial pattern of its actions.
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