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Light exposure results in distinct responses in specific seedling tissues during
photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as
development and elongation of roots, whereas light inhibits elongation of hypocotyls.
For distinct plant responses such as shade avoidance, far-red light or shifts in spectral
light quality similarly have disparate impacts on distinct plant tissues, resulting in
elongation of stems or petioles and a reduction in growth of leaf blades for many
species. The physiological bases of such tissue- and organ-specific light responses
were initially studied using localized irradiation of specific tissues and organs, or
irradiation of dissected plant parts. These historical approaches were used to identify
spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or
organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive
phytochromes have been the most widely studied among photoreceptors in this regard.
Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-
specific light responses were identified, the underlying signaling networks responsible
for mediating the observed responses have not been well defined. Recent approaches
used to investigate the molecular bases of spatiotemporal light responses include
selective irradiation of plants harboring mutations in specific photoreceptors, tissue-
specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds,
or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive
integration of such approaches for regulating the availability of localized pools of
phytochromes with the use of transcriptomic or proteomic analyses for assessing
the genes or proteins which these spatially discrete pools of phytochrome regulate
is yielding emergent insight into the molecular bases of spatiotemporal phytochrome
signaling pathways responsible for regulating spatiotemporal light responses of which
we have been aware of at the physiological level for decades. Here, | discuss
historical and emerging approaches to elucidating spatiotemporal signaling mediated
by phytochromes during photomorphogenesis.

Keywords: interorgan signaling, light signaling, organ-specific responses, photomorphogenesis, phytochrome,
spatiotemporal responses, tissue-specific responses
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INTRODUCTION

Plants exhibit developmental plasticity or an adaptive
ability to alter growth and development in response to

external cues. Among important environmental signals,
light greatly impacts plant growth and development,
productivity, and survival. Major photoreceptor families

responsible for light perception and signaling in plants
include the widely studied red (R)/far-red (FR) reversible
phytochromes, blue (B)/ultraviolet-A (UV-A) responsive
cryptochromes and phototropins, and ultraviolet-B (UV-B)
absorbing photoreceptors, including UVRS8 (Josse et al., 2008;
Franklin and Quail, 2010; Kami et al.,, 2010; Rizzini et al.,
2011; Galvdo and Fankhauser, 2015; Li and Mathews, 2016).
The integrated signaling driven by these photoreceptors
results in the regulation of numerous light-dependent growth
and developmental responses, including seed germination,
transition from skotomorphogenesis (i.e., dark-mediated
seedling morphology) to photomorphogenesis (i.e., light-
dependent morphology and growth), leaf development,
chloroplast differentiation and development, and other processes
throughout the life cycle, such as flowering and ultimately
senescence.

Light has distinct effects on different tissues during the
process of photomorphogenesis and throughout various stages
of the plant life cycle. During photomorphogenesis, light
inhibits growth in the hypocotyl, but promotes growth and
development in cotyledons and emerging true leaves, as well
as in roots (Figure 1). Such divergent responses in distinct
tissues could be maintained through having distinct pools
of photoreceptors regulating the promotion of growth in
cotyledons or roots, and distinct photoreceptors inhibiting
hypocotyl elongation. Indeed, phytochromes and cryptochromes,
which have critical roles in photomorphogenesis, accumulate
at different levels and patterns in distinct tissues and due
to developmental cues (Adam et al, 1994; Somers and
Quail, 1995a,b; Goosey et al., 1997; Nagatani, 1997; To6th
et al., 2001; Sharrock and Clack, 2002). However, these
photoreceptors also exhibit significant overlap in their patterns
of expression, which do not fully support a role for spatially
distinct photoreceptors in the control of divergent light-
dependent growth responses in different tissues (Toth et al,
2001). Thus, the distinct impacts of light on promoting
growth in some tissues and inhibiting expansion in others is
likely due to distinct signaling cascades downstream of the
activated photoreceptors in distinct tissues. Throughout the last
decade or so, the history of and advances in understanding
tissue- and organ-specific light signaling, or spatiotemporal
light signaling, during plant development and how these
responses are coordinated have been discussed (Jiao et al,
2007; Bou-Torrent et al., 2008; Endo and Nagatani, 2008;
Josse et al, 2008; Montgomery, 2008; Endo et al, 2016).
Although initially identified and studied at the physiological
level, insight into the molecular bases of spatiotemporal
phytochrome responses and distinct players in the regulation
of tissue- and organ-specific light-dependent responses is
emerging.

HISTORICAL AND GENERAL
APPROACHES TO INVESTIGATING
SPATIOTEMPORAL PHYTOCHROME
RESPONSES

A number of different experimental approaches have been used
to investigate the roles of photoreceptors in regulating tissue-
or organ-specific light responses in plants. Historically, localized
irradiation or microbeam irradiation was used to activate a small,
and spatially limited, pool of photoreceptors and subsequently
the impact of localized irradiation on responses in local or
distal tissues was assessed. Tissue dissection and irradiation
also have been used to identify spatial-specific light responses
in plant tissues. Here, I focus primarily on investigations into
the roles of phytochromes in spatiotemporal light responses in
plants.

Microbeam Irradiation

Microbeam or localized tissue irradiations have long been
used to explore tissue-specific photoreceptor regulation of
distinct aspects of plant growth and development. These
experiments largely provided physiological evidence for
organ- and tissue-specific photoreceptor responses, as well
as insight into interorgan responses. Localized irradiation
studies indicated distinct responses in nearly every tissue
of seedlings, including cotyledons, hypocotyls and roots.

light

cotyledon —>

hypocotyl

Bars, 0.5 cm

FIGURE 1 | Photomorphogenesis in seedlings. Shown are Arabidopsis
thaliana seedlings grown in either complete darkness (left) or in continuous
white light (right). Light exposure of seedlings results in inhibition of growth in
the hypocotyl, whereas light promotes expansion and development of
cotyledons (and later true leaves) as well as root development, including lateral
root formation and root hair initiation.
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Early studies uncovered light-dependent organ-autonomous
responses and interorgan coordination of plant growth and
development. Cotyledon-specific ~ photoreceptors  regulate
interorgan signals controlling hypocotyl elongation and
hook opening (Klein et al., 1956; De Greef and Caubergs,
1972a; Black and Shuttleworth, 1974; Caubergs and De Greef,
1975; Powell and Morgan, 1980). Such a response would
be critically important in natural contexts for positioning
leaves in optimal light environments. Cotyledons and leaves
in an optimal light context for promoting photosynthesis
and limiting photoinhibition or light-associated damage
would be primed to send a strong signal to hypocotyls or
stems to inhibit their elongation to maintain a favorable
position. Alternatively, when the photosynthetic organs
are in a less than favorable environment, a signal may
be propagated to stems to initiate elongation in order
to allow foraging for more optimal positioning in the
photoenvironment.

Local and interorgan signals also control distinct aspects
of leaf development, including leaf expansion (De Greef and
Caubergs, 1972b) and plastid development and greening (De
Greef et al,, 1971; De Greef and Verbelen, 1972). As a part
of leaf development, local and long distance phytochrome-
dependent signals contribute to CAB gene expression (Bischoft
et al.,, 1997). Similarly, anthocyanin accumulation in leaves was
determined to be regulated by local and intertissue signals
using localized irradiation (Nick et al., 1993). Interorgan signals
from shoots also can impact root development (T6th et al.,
2001; Correll and Kiss, 2005; Salisbury et al., 2007), among
other aspects of deetiolation in several plant species (Oelze-
Karow and Mohr, 1974; De Greef et al, 1975; Lecharny,
1979; Mandoli and Briggs, 1982; Tanaka et al., 2002). Again,
such responses are critical for integrative development of
separate organs of the plant. In addition to shoot-originated
interorgan signals impacting roots, identified local roles for
photoreceptors in roots also emerged from studies using localized
irradiation of seedlings (Jaffe, 1970; Tepfer and Bonnett, 1972).
Although a role for photoreceptors, such as phytochromes, in
roots that are generally growing below soil may be somewhat
counterintuitive, phytochrome genes are expressed in roots
(Toth et al., 2001) and root-localized phytochrome holoproteins
have similar light-activated dynamics as phytochromes in
shoots (Chen et al., 2003). Root-localized phytochromes have
documented roles in regulating primary and lateral root
development in Arabidopsis (Reed et al., 1993; Salisbury et al.,
2007).

Localized, or spot-light irradiation, also was used to
determine the tissue specificity of additional responses in
plants. One response investigated was phototropism, in
which phytochromes have regulatory roles together with
phototropins.  Localization of phototropic control was
distinct for monocots vs. dicots, with the topmost part of
the hypocotyl being identified simultaneously as the local
photoperception region and the light-responsive area where
actual bending occurs in the dicot Arabidopsis (Yamamoto
et al., 2014). Comparatively, the site of light perception
for phototropism is separate and distinct from the site of

coleoptile bending in monocots (Briggs, 1963; lino and Briggs,
1984). Tissue-specific responses during shade avoidance
include phytochrome-dependent elongation of petioles and
reduced growth of the lamina. Localized irradiation has been
used to investigate such tissue-specific shade avoidance
responses in some plants (Von Wettberg and Schmitt,
2005).

Tissue Dissection and Irradiation

Some very early studies investigating tissue-specific light
responses were conducted with isolated plant parts such as
fruits. Detached tomatoes were used to demonstrate organ-
specific phytochrome responses in fruits that were correlated
with phytochrome-dependent regulation of carotenoid synthesis
and accumulation (Piringer and Heinze, 1954; Khudairi and
Arboleda, 1971; Thomas and Jen, 1975; Alba et al., 2000).
Such responses can occur through tissue-specific regulation of
a phytochrome-dependent effector, such as the fruit-specific
regulation of phytoene synthase activity by phytochromes
(Schofield and Paliyath, 2005). Alternatively, in some cases the
expression of the phytochrome genes themselves is regulated
in a tissue-specific fashion such as in rice (Baba-Kasai
et al, 2014), which can contribute to tissue-specific light
responses.

Studies with irradiation of dissected tissues or irradiation
of whole seedlings or plants with specific tissues or organs
blocked from light exposure, e.g., aluminum foil-covered
plant parts or shoots of soil-grown plants, also have been
conducted to gain insight into the roles of localized pools
of phytochromes. The use of foil to target light exposure to
distinct tissues provided support for the finding that light
absorption by cotyledons results in a strong ‘halt’ signal being
propagated to hypocotyls to inhibit elongation (Black and
Shuttleworth, 1974). However, dissected stems also appear
capable of perceiving far-red light and initiating organ-specific
growth (Garcia-Martinez et al., 1987), which may be associated
with repositioning of the photosynthetic leaves in whole plants
in natural environments as described above. Selective covering of
plant parts during irradiation and localized irradiation also were
used to identify local versus interorgan signals from cotyledons
and leaves as important for initiating internode elongation in
response to far-red treatment in Sinapis alba (Casal and Smith,

1988a,b).

In addition to the localized irradiation studies with
roots introduced above (see Microbeam Irradiation),
more recent studies in which Arabidopsis roots were

either obscured from or exposed to light indicated a role
of root-localized phytochromes in organ autonomous
signaling and development, as well as in coordinating
root-hypocotyl ratios (Novak et al, 2015). Additionally, a
recent study using plants with darkened roots compared
to light-exposed roots implicated phytochrome-dependent
photomorphogenesis and its establishment of photosynthesis
as important for cotyledon-induced sucrose serving as a
component of an interorgan signal transmitted to impact
root development in response to light (Kircher and Schopfer,
2012).
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INTEGRATING MOLECULAR
APPROACHES INTO UNDERSTANDING
SPATIOTEMPORAL LIGHT-DEPENDENT
REGULATION OF PLANT GROWTH AND
DEVELOPMENT

Examination of Tissue-Specific
Expression of Light-Regulated Genes

As results began to emerge from studies such as those described
above with isolated tomato fruits and dissected plant parts,
the underlying cause of some spatiotemporal light responses
became clear as being associated with photoreceptor-dependent,
tissue-specific gene expression (Schofield and Paliyath, 2005).
To gain greater insight into light-dependent regulation of
gene expression in specific tissues, transcriptomic approaches
emerged as a valuable tool to assess spatiotemporal gene
expression in distinct tissues. In such studies, global tissue-
specific gene expression in response to light was investigated
in Arabidopsis (Jiao et al., 2005; Ma et al., 2005) and rice (Jiao
et al., 2005). In Arabidopsis, data emerged supporting distinct
gene expression profiles in cotyledons, organs which expand
in response to light, compared to hypocotyls, which exhibit
an inhibition of growth when exposed to light (Jiao et al,
2005; Ma et al., 2005). Distinct light-dependent expression of
genes in cotyledons and the shoot apical meristem also were
reported (Lopez-Juez et al, 2008). In additional analyses of
tissue-specific light regulon data for cotyledons vs. hypocotyls
from Ma et al. (2005), it was determined that the opposing
growth responses in cotyledons and hypocotyls in response to
light were not associated with a simple opposite regulation of a
core set of genes in different organs (Josse et al., 2008). These
analyses suggested that distinct gene networks downstream of
the phytochromes caused disparate growth responses in different
tissues (Josse et al., 2008). Tissue-specific expression of shade-
induced genes also has been observed and the expression of
many of the identified shade-responsive genes is phytochrome-
dependent (Nito et al., 2015). Using a combination of localized
irradiation and collection of specific tissues for transcriptomic
studies, interorgan phytochrome signaling, e.g., cotyledon to
apex, and organ-autonomous signaling were implicated in
plant spatiotemporal shade responses (Nito et al, 2015).
Transcriptomics-based analyses of red light-exposed roots also
have been used to determine root-specific phytochrome regulons
(Molas et al., 2006).

Examination of Physiology and
Development in Specific Tissues or
Organs of Phytochrome Mutants

Analyses of the development of specific tissues or organs
in plants which possess mutations or deletions in specific
phytochromes genes or deletions in genes encoding the
phytochrome chromophore biosynthesis enzymes, which are
responsible for synthesis of the single chromophore used
by all phytochromes (Muramoto et al, 1999; Kohchi et al.,
2001; Emborg et al, 2006), have been used to understand

tissue-specific phytochrome responses. Tissue- or organ-specific
gene expression analyses also have been conducted with
phytochrome mutants to identify effectors associated with
spatiotemporal phytochrome responses. Such studies have
led to genetic associations of phytochromes, or specific
phytochrome family members, and phytochrome-dependent
effectors with physiological responses previously documented at
the physiological level by exposing plants to wavelengths of light
used to preferentially activate phytochromes.

Interorgan phytochrome-dependent regulation of hypocotyl
growth was reported using a combination of mutant analyses
and tissue-specific gene expression in Brassica rapa (Procko et al.,
2014). Additionally, roles for phytochromes and cryptochromes
in regulating the contrasting growth responses of the petiole
compared to the lamina in shade avoidance have been noted
(Kozuka et al., 2005). Local or systemic roles for phytochromes
in the regulation of elongation or phototropic responses of roots
also have been reported based on analyses of phy mutants and
chromophore biosynthesis mutants (De Simone et al., 2000a,b;
Correll et al., 2003; Kiss et al., 2003; Correll and Kiss, 2005; Molas
and Kiss, 2008; Costigan et al., 2011; Sindelar et al., 2014).

Some of these studies linked tissue-specific regulation of
distinct downstream effectors to photoreceptor function in
spatiotemporal light regulation. For example, hypocotyl-specific
regulation of beta-tubulin TUBI was associated with PhyA and
PhyB in such an approach (Leu et al, 1995). Additionally,
mesophyll-specific CUE1 was identified as a regulator of gene
expression in a tissue-specific light response (Li et al., 1995).
Expression of ACT?7 in hypocotyls is regulated by light in a tissue-
specific manner in the transition from etiolated growth during
skotomorphogenesis to deetiolated growth that occurs during
photomorphogenesis (McDowell et al,, 1996). Additionally,
specific light-regulated genes have been shown to contribute
to hypocotyl-localized phytochrome responses based on reverse
genetic analyses (Khanna et al., 2006).

Tissue-Specific Expression of
Photoreceptors and

Photoreceptor-Dependent Effectors

Tissue-specific expression of photoreceptors in wild-type or
particularly in null mutant backgrounds emerged recently as a
powerful tool to probe spatiotemporal pools of photoreceptors
controlling distinct aspects of growth or development. Such an
approach has been used successfully for both cryptochromes
and phytochromes (Endo et al, 2005; Endo et al, 2007;
Endo and Nagatani, 2008). Directed-overexpression of PHYA
and localized plant irradiation were employed to probe
tissue-specific roles of the phyA photoreceptor in tobacco
(Rousseaux et al., 1997). These studies confirmed a role
for leaf-localized phyA in some localized FR light-induced
responses such as the regulation of chlorophyll content or
specific leaf weight, as well as in regulating stem elongation
through an interorgan-dependent signal (Rousseaux et al,
1997). Additionally, roles for tissue-specific phyB emerged
from targeted gene expression studies, including evidence
that mesophyll-specific phyB regulates an intertissue signal
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controlling flowering and hypocotyl elongation (Endo et al.,
2005). Tissue-specific expression of phyB in a phyB null mutant
background also showed that phyB in the mesophyll, phloem,
or stomata all restore stomatal development, indicating that a
phyB-dependent signal from leaves is functioning locally in the
stomata or generates an intertissue, or systemic, response (Casson
and Hetherington, 2014). A similar approach has been used
to investigate tissue-specific roles of the B/UV-A cryptochrome
2 receptor in regulating flowering in Arabidopsis (Endo et al.,
2007), as well roles for phototropin 2 in tissue-autonomous
regulation of palisade cell development in leaves (Kozuka et al.,
2011).

Following success with tissue-specific expression of
photoreceptors in mutant backgrounds as an effective
approach for identifying spatiotemporal pools of receptors
controlling development, similar approaches for studying
the photoreceptor-associated effectors have begun to emerge.
Tissue-specific expression of SPAI, for example, has indicated
that specific pools of SPA1 regulate distinct aspects of seedling
de-etiolation, leaf development, or SPA-dependent regulation
of flowering induction (Ranjan et al, 2011). Recent studies
investigating the roles of phytochrome-interacting factor
PIF7 in the spatially specific shade avoidance responses
implicated PIF7 in tissue-specific growth responses during
shade detection (de Wit et al, 2015). Also, root localized
photoreceptors, including phytochromes, regulate root-
specific effector SCAR during light-dependent regulation
of root elongation and development (Dyachok et al,
2011).

Tissue-Specific Ablation of

Photoreceptors

Transgenic modulation of protein synthesis or accumulation has
been proposed as a valuable method for investigating protein
signaling networks in planta (Warnasooriya and Montgomery,
2011b). A transgenic approach targeting degradation of the
tetrapyrrole phytochrome chromophore in vivo to regulate
accumulation of phytochromes has been developed as a
robust tool for investigating phytochrome functions (Lagarias
et al, 1997; Montgomery et al, 1999, 2001). Given that
phytochromes covalently attach a dedicated chromophore, as
compared to blue light photoreceptors that use flavin-based
chromophores that serve additional roles in cells, modulation
of the phytochrome chromophore can be utilized specifically
to regulate phytochrome synthesis and accumulation in vivo.
Use of a phytochrome chromophore degrading tool in a
tissue-specific fashion, then, allows probing spatiotemporal
phytochrome responses. Tissue-specific induction of localized
phytochrome deficiency has been used to provide molecular
evidence for a role of cotyledon- or leaf-localized phytochromes
in the regulation of hypocotyl elongation (Montgomery, 2009;
Warnasooriya and Montgomery, 2009), which had previously
been observed at the physiological level using localized
irradiation of plants (discussed above in Section “Microbeam
Irradiation”). Additionally, the regulation of organ-specific
anthocyanin accumulation was identified through targeted

phytochrome ablation (Warnasooriya et al., 2011). Such studies
also led to insights into the roles of root-specific phytochromes
and phytochrome-driven shoot-root interactions in the light-
dependent regulation of root development and elongation
(Costigan et al., 2011; Warnasooriya and Montgomery, 2011a;
Hopkins and Kiss, 2012). A role for shoot meristem-specific
phytochromes in the photoperiod-dependent regulation
of rosette leaf size and number also was reported based
on targeted inactivation of the phytochrome chromophore
(Warnasooriya and Montgomery, 2009). This latter finding
corresponds to the identification of a shoot apex-specific set
of light-regulated genes in prior studies (Lopez-Juez et al,
2008).

The isolation of lines with distinct patterns of phytochrome
deficiency served as genetic resources for use in proteomic (Oh
and Montgomery, 2011) or transcriptomic studies (Oh et al,
2013) to identify specific factors functioning downstream of the
phytochromes that are involved in spatiotemporal phytochrome
responses, such as the interorgan cotyledon-dependent
regulation of hypocotyl elongation. Microarray analyses of
lines with induced deficiencies in mesophyll phytochromes
resulted in the identification of specific factors whose expression
was induced in cotyledons, but which impacted hypocotyl
elongation (Oh et al., 2013). Furthermore, specific factors
were identified that were involved in phytochrome-dependent
anterograde signaling between nucleus and chloroplasts and
aspects of deetiolation (Oh and Montgomery, 2013, 2014).
Although a role for light in coordinating expression of nuclear
and chloroplast genomes had been recognized previously as
important for seedling establishment (Hoober et al, 2007;
Waters et al., 2008), the specific photoreceptors and their
tissue localization or site of action emerged from an ability
to manipulate phytochrome levels in a spatial-specific fashion
(Oh and Montgomery, 2013, 2014). Proteomic studies of
lines with localized phytochrome chromophore depletion
identified several beta-gluosidase proteins as targets of local
and systemic repression by mesophyll-specific phytochrome
signaling (Oh and Montgomery, 2011). For additional future
advances, combining tissue dissection or organ-specific analyses
with tissue-specific ablation of phytochromes has the potential
to lead to the identification of additional effectors involved
in very specific aspects of spatiotemporal phytochrome-

dependent responses (Warnasooriya and Montgomery,
2010).
PERSPECTIVE

Newly emerging tools and genetic advances are allowing
innovative experiments to be conducted that revisit the long
known tissue- and organ-specific, as well as long-distance
interorgan, physiological responses to light in plants. To date,
such studies indicate that phytochromes initiate distinct signaling
cascades in different tissues which result in the divergent
responses seen to light. These spatiotemporal phytochrome
responses are central to coordinated plant growth, development
and metabolism, yet we are truly at the forefront of understanding
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the structure and coordination of the signaling networks
downstream of the photoreceptors that impact distinct light-
dependent growth responses. An ongoing focus on applying
cutting-edge techniques to address the roles of localized
pools of phytochromes in regulating and coordinating cell,
tissue, and organ autonomous photoresponses, as well as
in initiating interorgan signaling required for whole plant
responses will continue to expand our knowledge of the
mechanisms important for mediating distinct aspects of plant
growth and development. Furthermore, follow up studies on the
phytochrome-dependent factors and signals which comprise the
spatiotemporal phytochrome signaling networks are anticipated
to lead to greater understanding of the molecular basis of these
recognized spatiotemporal phytochrome-dependent responses.
Such advances in knowledge are essential for developing key tools
that will allow targeted control of such responses of agronomic or
biotechnological value.
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