'.\' frontiers
in Plant Science

ORIGINAL RESEARCH
published: 12 April 2016
doi: 10.3389/fpls.2016.00488

OPEN ACCESS

Edited by:
Frederic J. J. Chain,
McGill University, Canada

Reviewed by:

Longjiang Fan,

Zhejiang University, China

Xue-jun Ge,

South China Botanical Garden, China
Baojun Wu,

Wayne State University, USA

*Correspondence:
Ling-Yun Chen
lychen83@qgq.com;
Qing-Feng Wang
qfwang@wbgcas.cn

Specialty section:

This article was submitted to
Evolutionary and Population Genetics,
a section of the journal

Frontiers in Plant Science

Received: 25 January 2016
Accepted: 25 March 2016
Published: 12 April 2016

Citation:

Zhao SY, Chen LY, Muchuku JK,

Hu GW and Wang QF (2016) Genetic
Adaptation of Giant Lobelias (Lobelia
aberdarica and Lobelia telekii)

to Different Altitudes in East African
Mountains. Front. Plant Sci. 7:488.
doi: 10.3389/fpls.2016.00488

CrossMark

Genetic Adaptation of Giant Lobelias
(Lobelia aberdarica and Lobelia
telekii) to Different Altitudes in East
African Mountains

Shu-Ying Zhao'?, Ling-Yun Chen'2*, John K. Muchuku'?, Guang-Wan Hu? and
Qing-Feng Wang2*

! Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences,
Wuhan, China, ? Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China

The giant lobelias in East African mountains are good models for studying molecular
mechanisms of adaptation to different altitudes. In this study, we generated RNA-seq
data of a middle-altitude species Lobelia aberdarica and a high-altitude species L. telekii,
followed by selective pressure estimation of their orthologous genes. Our aim was
to explore the important genes potentially involved in adaptation to different altitudes.
About 9.3 Gb of clean nucleotides, 167,929-170,534 unigenes with total lengths of
159,762,099-171,138,936 bp for each of the two species were generated. OrthoMCL
method identified 3,049 1:1 orthologous genes (each species was represented by
one ortholog). Estimations of non-synonymous to synonymous rate were performed
using an approximate method and a maximum likelihood method in PAML. Eighty-
five orthologous genes were under positive selection. At least 8 of these genes are
possibly involved in DNA repair, response to DNA damage and temperature stimulus,
and regulation of gene expression, which hints on how giant lobelias adapt to high
altitudinal environment that characterized by cold, low oxygen, and strong ultraviolet
radiation. The negatively selected genes are over-represented in Gene Ontology terms
of hydrolase, macromolecular complex assembly among others. This study sheds light
on understanding the molecular mechanism of adaptation to different altitudes, and
provides genomic resources for further studies of giant lobelias.

Keywords: dN/dS ratio (), giant lobelias, natural selection, RNA-Seq, high altitude

INTRODUCTION

The upland East Africa is characterized by isolated mountains that reach alt. of 4000 m or higher.
Vegetation in these mountains displays a conspicuous altitudinal zonation, starting with a montane
forest belt, followed by an (subalpine) ericaceous belt, and finally an afro-alpine belt above 3500
4000 m alt. (Hedberg, 1951, 1970). The climate of montane forest is relatively temperate and
seasonal, with temperatures falling below 10°C in cold season and rising to above 30°C in warm
season. The belt contains moderate levels of species richness, which is higher than the surrounding
lowlands (Agnew and Shirley-Agnew, 1994). Typical plants include bamboo, Hagelia, Podocarpus,
etc. Species richness decreases with increase in altitude and fluctuating temperature (Hedberg,
1969). The afro-alpine belt is characterized by an extreme weather pattern with “summer every
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day and winter every night” [intense insolation in daytime and
heavy frost at night; Hedberg (1957, 1964)]. The number of
vascular plants at afro-alpine belt is significantly reduced, with
only 70-150 species at each of the mountains (Hedberg, 1957).
Typical plants in afro-alpine zone include the well-known giant
senecios, giant lobelias among others.

Giant lobelias (Lobeliaceae) in East African mountains
are good models for studying plant adaption to different
altitudes. Giant lobelias are perennial, rosette forming herbs
and gradiently occur at different ecological belts of East African
mountains (Thulin, 1984). The group represents an iconic
example of plant adaptation to alpine conditions (Hedberg,
1964, 1969) and a conspicuous landscape of East African
mountains. Five species of giant lobelias occur in Kenya
and northern Tanzania (according to our observation at Mt
Elgon, Cherangani hills, Aberdare mountains, Mt Kenya, Mt
Meru, and Mt Kilimanjaro; Figure 1 illustrated the general
distribution of giant lobelias at Mt Kenya and photos of
L. aberdarica and L. telekii). L. telekii Schweinf. occurs in the
afro-alpine zone from alt. 3400 m to a hostile environment
at high altitude (alt. 4640 m, Mt Kenya). This species is
also considered to reach the highest distribution in altitude
of giant lobelias in Africa. L. aberdarica REFr. & T.C.E.Fr.
commonly occurs in moorland, high lands along streams,
surrounding marshy area or mountain bogs, and montane
forest edges from 2360 m to 3300 m (Figure 1). L. giberroa

Hemsl. and L. bambuseti R.E.Fr. & T.C.E.Fr. occur in montane
forest belt. L. deckenii (Asch.) Hemsl. occurs in the afro-alpine
belt from ericaceous zone at lower altitude to lower edge of
upper alpine zone (3300-4380 m). Recent studies suggested
that these species are closely related, and the alpine ones
were recently derived from the low altitude relatives during
the Pliocene and Pleistocene (4.0-0.8 million years ago [Ma])
(Knox and Palmer, 1998; Chen et al., 2016). Chromosome
number for the five species are 2n = 28 (Knox and Kowal,
1993).

Hedberg (1964) and Beck et al. (1982) investigated the
adaptive trends in the afro-alpine flora which included L. telekii,
L. deckenii, and giant senecios. These rosette plants have
evolved to present a conspicuous structure good for temperature
insulation. In daytime, most of their leaves unfold for
photosynthesis, whereas at night they are folded up and
become firmly compressed, forming a compact cabbage-like
head, which maintains temperature above freezing (Hedberg,
1964). Flowers of L. telekii are concealed among long, hairy
bracts, which can buffer vigorous daily temperature fluctuations
in hostile alpine environment (Hedberg, 1964). These features
were not observed in the mountain forest species such as
L. aberdarica. The progressive adaptation of giant lobelias to
afro-alpine conditions might have been facilitated by extensive
volcanism through creating new habitats (Hedberg, 1970), and
by induced mutations in flower buds through radiant heat

bambuseti

Drained Wet

FIGURE 1 | Distribution and photos of giant lobelias. (A) Generalized distribution on Mt Kenya along altitude and moisture [modified from Knox and Palmer
(1998)]. *Lobelia gregoriana was treated as L. deckenii subsp. keniensis in Thulin (1984). (B) Lobelia aberdarica (left), photographed at Aberdare Mountains (Kenya),
alt. c. 2800 m (photo: Ling-Yun Chen); L. telekii (right), photographed at Mt Kenya (Kenya), alt. c. 4200 m (photo: Ling-Yun Chen).

Frontiers in Plant Science | www.frontiersin.org

April 2016 | Volume 7 | Article 488


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Zhao et al.

Adaptive Evolution of African Giant Lobelias

shocks (Pettersson, 1961). Although previous works shed light
on understanding the adaptive evolution of giant lobelias to
different altitudes (Hedberg, 1951, 1957, 1964, 1969, 1970; Beck
et al., 1982; Knox and Kowal, 1993; Knox and Palmer, 1998),
the genes that could be involved in the adaptation remain
unknown.

Acquisition of advantageous mutations by positive
selection has been associated with adaptation to differentiated
environments (Clark et al., 2007; Zhang et al., 2013; Poppe
et al, 2015). Negative (purifying) selection plays important
roles in maintaining the stability of biological structures by
removal of alleles that are deleterious (Loewe, 2008). Positive
and negative selection can be inferred by estimating the ratio of
non-synonymous substitution rate to synonymous substitution
rate (dN/dS, equivalent to w) (Yang, 1998). Facilitated by next
generation sequencing technology, the genetic basis of human
and animal adaptation to different altitudes has been largely
investigated by genome comparison (Yi et al., 2010) and assessing
the selective pressure of orthologous genes (Simonson et al.,
2010; Qiu et al., 2012; Qu et al., 2013). However, the genetic basis
of plant adaptation to different altitudes has been poorly studied
(but see Chapman et al., 2013; Zhang et al., 2013). Zhang et al.
(2013) compared the RNA-seq data of Primula poissonii and
P. wilsonii. Nevertheless, the distribution altitudes of the two
species are similar' (eFlora of China).

As part of a suite of works to explore the molecular mechanism
of plant adaptation to high altitude, we here generated RNA-
seq data for L. aberdarica and its closest alpine relative L. telekii
(Knox and Palmer, 1998; Chen et al., 2016), and tested the
selective pressure in orthologs of the two species. Our aims were
to (1) increase the limited genetic resources of African mountain
plants, and (2) identify candidate genes involved in adaptation
to different altitudes by analyzing functions of the positively
selected genes (PSGs) and environmental differences of the two
species.

MATERIALS AND METHODS

Materials and Sequencing

Seeds of L. aberdarica and L. telekii were collected from
Aberdare mountains (00°31727.27" S; 36'43'17.13 E; 2925 m
alt.) and Mt Kenya (00° 08 12. 65" S; 037°21'16.60" E;
4214 m alt.) respectively, in July 2014. The corresponding
specimens (SAJIT-P.P1 and SAJIT-002116) were deposited at
Botanische Staatssammlung Miinchen (M) and herbarium of
Wuhan Botanical Garden (HIB), respectively. Tissues preserved
in RNAlater storage solution did not yield high quality total
RNA in our preliminary study. Therefore, seeds were grown in
a plant growth incubator for 4 months with day temperature
of c. 15°C and night temperature of c. 10°C. Whole plant
of one individual for each species was used for total RNA
extraction using RNAiso TMPlus (Takara, Qingdao, China) and
then treated with RNase-free DNase I (Takara, Qingdao, China)
for 45 min. Quality of RNA was checked using 2% agarose gel

Uhttp://www.efloras.org/flora_page.aspx?flora_id=2

electrophoresis. Double stranded cDNA was sequenced using the
Ilumina HiSeq™ 2000 sequencer (90 bp paired-end) in Beijing
Genomics Institute (Wuhan, China) following the methodology
in Chen et al. (2015).

Assembling and Functional Annotation

Raw reads were cleaned by removing adaptor sequences, reads
with unknown base calls (N) more than 5%, and low quality
reads (>20% of the bases with a quality score<10) using Filter_fq
(an internal program of Beijing Genomics Institute). De novo
assembly was carried out with the program Trinity v. 20130225
(Grabherr et al., 2011). Contigs were assembled to unigenes by
Trinity using pair-end information. The unigenes were further
processed by the TGI Clustering Tool (TGICL) v. 2.1 (Pertea
et al., 2003) to remove redundancies, and assembled to acquire
non-redundant unigenes as long as possible. Overlaps of at least
40 bp, and maximum length of unmatched overhangs of 20 bp
were used in parameters of TGICL.

The non-redundant unigenes of the two species were
annotated to NCBI non-redundant protein database (NR), Swiss-
Prot protein database’ (Swiss-Prot), Kyoto Encyclopedia of
Genes and Genomes® (KEGG), Cluster of Orthologous Groups
database* (COG), and Gene Ontology (GO) using BLASTX (E-
value < 107°). The unigenes were also annotated to NCBI
nucleotide database (NT) by BLASTN (E-value < 1073).
Sequence direction of the unigenes was determined using the best
aligning results between the unigenes and the protein databases.
Incongruent results from different databases were settled by a
priority order of NR, Swiss-Prot, KEGG, and COG. Coding
sequences (CDSs) of the unigenes were predicted by firstly
aligning to NR, then Swiss-Prot, then KEGG and finally COG
with BLASTX. CDSs and protein sequences were predicted by
using ESTScan v. 1.1 (Iseli et al., 1999).

Identification of Orthologous Genes

The orthologous genes between L. aberdarica and L. telekii were
identified using the program OrthoMCL v.1.4 (Li et al., 2003)
with all-against-all BLASTP comparisons of the predicted protein
sequence. Putative orthologous relationships were identified
between pairs of genomes by reciprocal best similarity pairs
(Li et al, 2003). A third species can increase efficiency in
computational screening for orthologs (Lee et al., 2002; Li et al.,
2003; Wu et al., 2006). Therefore, protein sequences of Vitis
vinifera, which show high similarity to the two lobelia species,
were downloaded from Genoscope’. Redundant sequences of
V. vinifera were removed, and used for ortholog identification.
Only orthlogous clusters with a single gene for each of the
three species and CDS length longer than 150 bp were kept.
One strategy was further used to exclude possible paralogs: a
local BLAST database was constructed using protein sequences
accessed from NCBI (Auguest 2015) with the software NCBI
blast+ v. 2.2.31 (Camacho et al., 2009). Protein sequences of 19

Zhttp://www.expasy.ch/sprot
Shttp://www.genome.jp/kegg/
*http://www.ncbi.nlm.nih.gov/COG/
“http://www.genoscope.cns.fr/spip/
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species, which showed high similarity to sequences of lobelias
in our preliminary analyses, were incorporated, viz. Amborella
trichopoda, Arabidopsis thaliana, Brassica napus, Camelina sativa,
Citrus sinensis, Cucumis sativus, Elaeis guineensis, Fragaria
vesca, Glycine max, Gossypium raimondii, Malus domestica,
Medicago truncatula, Nelumbo nucifera, Populus trichocarpa,
Prunus mume, Ricinus communis, Sesamum indicum, V. vinifera,
and Zea mays. Orthologs between L. aberdarica and L. telekii
were used as queries to search the local database using BLASTX
with E-value = 10> and default settings. The matched sequence
with the highest score for each gene was kept. If two orthologs
within one pair were matched to different sequences, they were
excluded from further analyses. After removing the sequences of
V. vinifera, CDS of the putative orthologs between L. aberdarica
and L. telekii were aligned by MUSCLE (Edgar, 2004) with
default parameters. Finally, the aligned sequences were inspected
in BioEdit v. 7.1.3 (Hall, 1999). All gaps and codons with
mismatches were deleted. Orthologs with mismatches more than
20 bp or stop codons were excluded from further analyses.

Estimation of Selective Pressure

Pairwise comparison was implemented to test the selective
pressure of each gene. An approximate method proposed by
Yang and Nielsen (2000) and a maximum likelihood (ML)
method were used. The approximate analysis was conducted
using yn00 in PAML toolkit v. 4.8 (Yang, 2007). The ML
analysis was conducted using codeml in PAML toolkit with
seqtype = 1, codonfreq = 2, runmode = —2. After preliminary
analyses, orthologs with dS > 0.1 (Bustamante et al., 2005), or
® > 98 caused by extremely low dS value, were excluded to
avoid potential paralogs and bias on results of selective pressure
estimation.

Functional Annotations

All orthologs were annotated to a local protein database using
BLASTX in NCBI blast+ v. 2.2.31. The local database was
constructed by blast+ v. 2.2.31 using all protein sequences
of Arabidopsis thaliana accessed from NCBI (Auguest 2015).
E-value of 1.07° and 1 BLAST hit were used. GO terms
for each sequence were obtained by converting ‘GenBank
Protein Accession’ to ‘GO ID’ using the website BioDBnet®.
Orthologs were divided into three datasets: one included (PSGs,
98 > w > 1), one included negatively selected genes (NSGs,
0 < o < 1), and one included strongly negatively selected genes
(SNSGs, @ = 0). To detect which molecular functions, biological
processes and cellular component were over-represented, we
compared the GO terms among the three datasets using WEGO
(Ye et al, 2006). GO enrichment analysis was also conducted
using agriGO (Du et al., 2010).

Only two species were used in the estimation of selective
pressure. Therefore, the genes under positive selection might
represent adaption to different altitudes, or other species-specific
traits unrelated to altitude adaptation. In order to find out the
candidates for adaptation to different altitudes, we accessed the
possible functions of the positively selected genes using literature

Chttp://biodbnet.abee.nciferf.gov/

searches and gene annotations in The Arabidopsis Information
Resource (TAIR). The positively selected genes were used as
queries to search “TAIR10 Proteins’ dataset using BLASTX with
default settings’. Annotations of Arabidopsis genes with the
highest scores were used. The positively selected genes with
possible functions matching the environmental differences such
as cold stimulus were identified as candidates for adaptation to
different altitudes.

Extremely high (>80%) or low GC (<25%) content have
low power to accurately estimate selective pressure (Gharib
and Robinson-Rechavi, 2013). GC content for each ortholog
was calculated using perl scripts to check whether the value is
extremely high or low. Mean GC content for the three datasets
was also calculated.

RESULTS

De Novo Assembly and Annotation of

Unigenes

We generated c. 104 million clean reads, c. 9.3 Gb of nucleotides
for L. aberdarica and L. telekii separately. The clean reads
were submitted to the NCBI Sequence Reads Archive (nos.
SRR3180742 and SRR3180743). The unigenes, which were
assembled by using contigs, were 951 and 1004 bp on average
with N50 of 1,951 and 1,997 bp, respectively, for the two species
(Supplementary Table S1).

All the non-redundant unigenes were annotated using NR,
Swiss-Prot, KEGG, COG, and NT. The results indicated that
79,825 unigenes of L. aberdarica (48%) and 84,296 unigenes of
L. telekii (49%) have significant matches (E-value < 107°). NR
has the highest proportion of successful annotations, while COG
has the lowest proportion. The three top-hits for the two species
in the NR database were V. vinifera, Lycopersicon esculentum, and
Amygdalus persica (Supplementary Figure S1).

Selective Pressure Analyses

In total, 3,978 pairs of putative 1:1 orthologous genes between
L. aberdarica and L. telekii were identified by OrthoMCL. After
removing the pairs that were not consistent in the BLAST
analyses, 3,182 pairs were retained. After removing the pairs with
unexpected stop codons and mismatches more than 20 bp, 3049
pairs were retained. Sequences for the 3049 pairs were provided
in Supplementary data.

One hundred and sixty-eight (5.5%) pairs of orthologous
genes with 98 > ® > 1 was recovered with the approximate
analysis while 86 (2.8%) pairs was recovered with the ML analysis.
For conciseness, one orthologous pair was counted as one gene
hereafter. 85 (2.8%) pairs with 98 > w > 1 were shared between
the two analyses. 2357 (77.3%) pairs with 0 < o < 1 were
recovered in the two analyses. 480 pairs (15.7%) with w = 0 were
recovered in the two analyses. w = 0 (caused by dN = 0) indicates
stringent negative selection. Table 1 summarizes the results of the
two analyses; Figure 2 plots the distribution of the values of dN
and dS.

“https://www.arabidopsis.org/Blast/index.jsp
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TABLE 1 | Summary of the selective pressure analyses.

1<w<98 O<w<1 dNordS =0
Approximate analysis 168 2358 480
ML analysis 86 2483 523

Co-existed between
two analyses

GC content (%)

85 (dataset 1) 2357 (dataset 2) 480 (dataset 4)

46.3 (39.4-55.0)  45.7 (38.6-60.6)  46.2 (35.4-62.3)

Numbers of orthologous pairs recovered from approximate analysis implemented
in yn00 and maximum likelihood (ML) analysis implemented in codeml, numbers
of pairs shared between the two analyses, and GC contents of the orthologs are
shown.

Functional Annotations

Some of the 85 positively selected genes might be related to
species-specific traits rather than altitude adaptation as only
two species were used in our analyses. Annotations suggested
that at least 8 of the 85 positively selected genes (PSGs)
are involved in functions including DNA repair, regulation of
photosynthesis, response to cold, light, or desiccation stimuli
(Table 2). Functions of the eight genes can be associated with
the environments in which giant lobelias inhabit (Table 2). For
example, CL8493.Contig, which encodes a putative psbP protein,
is essential for regulation and stabilization of photosystem II
in higher plants (Huynh et al, 2005); Unigene78063, which

Approximate method

0.1

0.08

0.06

danN

0.04

0.02

0.02

0.04 0.06
S

line. The pairs with dS > 0.1 are not shown.

FIGURE 2 | Distribution of dN and dS for the 3,049 pairs of putative orthologous genes estimated using the approximate method with the program
yn00 and maximum likelihood method with the program codeml. The pairs with w > 1 fall above the solid line while those with w < 0.5 fall below the dashed

Maximum likelihood method

TABLE 2 | Candidate genes for adaptation to different altitudes.

Seq. ID Arabidopsis E-value Gene or protein names Possible functions and biological process
accession nos. (BLASTX)
CL11124.Contigl ~ AT5G43210.1 3e-39 Excinuclease ABC, C subunit, N-terminal Nuclease activity; Involved in: DNA repair
CL10902.Contig2 ~ AT4G25130.1 7e-90 A chloroplast-localized methionine sulfoxide Involved in: cellular protein modification process, cellular
reductase, a member of the MSRA family response to oxidative stress, protein repair, response to
cytokinin, response to light stimulus
CL6679.Contig AT5G62390.1 1e-83 A member of Arabidopsis BAG proteins Involved in: apoptotic process, cellular response to cold,
cellular response to heat, cellular response to unfolded
protein, protein folding
CL14161.Contig AT1G05260.1 1e-76 Encodes a cold-inducible cationic peroxidase Involved in: hyperosmotic salinity response, plant-type cell
that is Involved in: the stress response wall organization, response to cold, response to desiccation
Unigene26608 AT3G02820.1 6e-62 Zinc knuckle (CCHC-type) family protein Involved in: cell cycle, replication fork protection, response
to DNA damage stimulus
CL8493.Contig AT1G77090.1 9e-87 Mog1/PsbP/DUF1795-like photosystem |I Involved in: photosynthesis; Located in: chloroplast
reaction center PsbP family protein
Unigene78063 AT5G48130.1 3e-12 Phototropic-responsive NPH3 family protein Functions in: signal transducer activity; Involved in:
(BTB/POZ-like) response to light stimulus; Located in: chloroplast
Unigene29384 AT1G09540.1 2e-82 Encodes putative transcription factor Involved in: regulation of stomatal movement, regulation of

transcription, DNA-templated, response to auxin, root
development

The listed genes are a subset of the 85 positively selected genes based on annotations of TAIR, and a literature search. Since the two orthologs within an orthologous
pair matched to same sequence, only sequence ID and E-values for sequences of Lobelia aberdarica are provided.
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encodes putative phototropic-responsive NPH3 family protein, is
located in chloroplast and involved in response to light stimulus
(Motchoulski and Liscum, 1999). Four of the 85 PSGs are
putative zinc finger family proteins, including Unigene36113,
CL11459.Contigl, Unigene40961, and CL22102.Contigl. These
PSGs are multifunctional genes, involved in the regulation
of transcription, nucleic acid binding among other functions.
See Supplementary Table S2 for detail information of the 85
orthologous genes.

Gene Ontology analyses using WEGO suggested that there
were significant differences (Pearson Chi-Square test, P < 0.05)
among the three orthologous datasets at GO levels 3, 4,
and 5. The negatively selected genes (0 < o < 1) and
strongly negatively selected genes (w = 0) were over-represented
in cytoplasmic part, hydrolase activity among others than
the positively selected genes. The strongly negatively selected
genes were over-represented in mitochondrial envelope, cellular
component biogenesis among others than the negatively selected
genes. The PSGs (98 > ® > 1) had a significantly higher
percentage of genes with functions related to cellular response to
stimulus, pyridine metabolic process, and regulation of nitrogen
compound metabolic process than the strongly negatively
selected genes (see Supplementary Table S3 and Figure 3).

Gene Ontology enrichment analysis using agriGO suggested
that there was no significant enrichment (Fisher test, P
value < 0.05) at the secondary level among the three ortholog
datasets. The PSGs had a higher percentage of genes with
functions related to cell part, organelle part, transcription
regulator activity, and binding than the other two datasets but
with P value > 0.05.

GC content for ortholog ranges from 35.4 to 62.3%. No
orthologs have extremely high or low GC content (>80 or<25%).
Average content for positively selected genes, negatively selected
genes and strongly negatively selected genes are 46.3, 45.7, and
46.2%, respectively (Table 1).

DISCUSSION

In this study, more than 100 million of RNA-seq reads were
generated and assembled into c. 160,000 unique sequences for
each of L. aberdarica and L. telekii. The RNA-seq data are
informative for SSR marker development and population genetic
studies of the giant lobelias.

Selective pressure estimation using approximate analysis and
ML analysis suggested that 168 and 86 pairs of orthologous
genes were under positive selection, respectively. Taken into
consideration that both methods have weaknesses [such as
the w biases when there are transition/transversion rate biases
(Yang and Nielsen, 2000)], only the 85 pairs recovered in
both methods were identified as PSG. L. aberdarica occurs in
relatively mild habitats while L. telekii occurs in habitats with
extremely strong ultraviolet radiation, fluctuating temperature
and low oxygen. At least 8 of the 85 genes might be involved
in adaptation to the different environments of L. aberdarica and
L. telekii based on literature searches (Table 2 and Supplementary
Table S2).

CL11124.Contigl is a putative endonuclease subunit slx1 gene,
which is required for homologous recombination and DNA
repair in eukaryotic cells (Castor et al., 2013; Gaur et al., 2015).
Unigene26608 is a putative zinc knuckle family protein, which
responds to DNA damage stimulus (Srivastava et al., 2010). In
consideration of the DNA damage or mutation of L. telekii
caused by heat shocks of volcanic eruptions (Pettersson, 1961),
UV and frost (Hedberg, 1969; Sinha and Hader, 2002), these
genes are likely important in the genetic adaptation of this
species. Similarly, transcriptome analyses of Primula poissonii
(collected at alt. 3314 m) and P. wilsonii (collected at alt.
2450 m) indicated that several genes related to DNA repair and
homologous recombination were under positive selection and
over-represented (Zhang et al., 2013). In contrast, no negatively
selected genes were indicated as putative slx genes or zinc
knuckle family genes, thus highlighted the roles of the two
genes.

Photosynthetic capacity of L. telekii is sensitive to temperature
change (Bodner and Beck, 1987). Photosynthesis of L. telekii
was found to be strongly reduced when temperature above 15°C
while frozen leaves regained full photosynthesis immediately
after thawing (Schulze et al., 1985). CL6679.Contig is a putative
BAG family molecular chaperone regulator seven gene (AtBAG?7)
that is an essential component of the unfolded protein response
during heat and cold tolerance (Williams et al., 2010). AtBAG7
knockouts are sensitive to heat and cold stimuli (Williams et al.,
2010). CL14161.Contig is a putative cold inducible cationic
peroxidase gene, which is in response to cold or desiccation
stimulus. In this study, GO enrichment analyses also indicated
that the GO terms associated with response to stimulus are
over-represented in the positively selected genes (Figure 3).
The functions of these genes are consistent with the extremely
cold and sometimes dry condition that L. telekii faces and the
peculiar mechanism of frost avoidance and freezing tolerance of
the species (Hedberg, 1964; Beck et al., 1982). CL10902.Contig2
is a putative peptide-methionine sulfoxide reductase (PMSR)
gene, which is involved in cellular response to oxidative stress,
oxidation-reduction process, protein repair, and response to light
stimulus (Gustavsson et al.,, 2002; Romero et al., 2004). Zhang
et al. (2013) found that several orthologs related to abiotic stress
(such as oxidative stress) were under positive selection, which is
consistent with our results.

Several orthologs are transcription factors involved in
regulation of gene expression or DNA binding. For example,
Unigene29384 encodes a putative transcription factor, which
regulates stomatal movement and transcription (Table 2 and
Supplementary Table S2). Several zinc finger proteins (ZFPs) were
identified in this study. ZFPs are a large family of transcription
regulators in plants for modulating several stress-responsive
genes. In Arabidopsis, functions of C;H, type ZFPs, including
ZAT6, ZAT10, and ZATI2, have been well characterized.
Previous studies have shown that modulation of ZFPs regulate
plant responses to abiotic stresses including cold and drought
(Davletova et al., 2005; Mittler et al., 2006; Shi et al., 2014).
Since L. aberdarica and L. telekii occur in different altitudes of
East African mountains, ZFPs might be involved in responses to
temperature and humidity.
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FIGURE 3 | Gene Ontology (GO) distribution plotted by WEGO. Only the GO with significantly different level (p-value of Pearson Chi-Square test < 0.05) were
shown. *indicates the GOs over-represented in positively selected genes. The original data for plotting this figure was provided in Supplementary data.

selected genes are important for maintaining key functions

of L. aberdarica and L. telekii. GO classification using WEGO

suggested that the negatively selected genes were constituted
of genes including functions on hydrolase, macromolecular
complex assembly, and generation of precursor metabolites and

energy with a higher percentage than the PSGs. These functions

All the above genes might contribute to the adaptive evolution
and processes might be involved in maintaining normal growth

of the two species. However, it is possible that some of the
identified PSGs are species-specific traits unrelated to habitat
adaptation. On the other hand, some of the genes involved

in habitat differences may remain obscure due to limited
annotations in giant lobelias.
The main consequence of negative selection is the extinction
of less-adapted wvariants (Loewe, 2008). The negatively of the two species.
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The molecular mechanisms of plant adaptation to different
altitudes are complex, very few studies have explored this
field. In this study, we identified 85 positively selected genes
between an afro-montane forest species L. aberdarica and an
upper afro-alpine distributed species L. felekii. At least 8 genes
related to cold stimulus, DNA repair and regulation of gene
expression were positively selected, which are consistent with
characters of high altitudinal environments. This study is a
tentative attempt to explore the complex molecular mechanism
of plant adaptation to different altitudes using non-model plants.
However, it is still limited in sampling as only two species were
used, and our pairwise approach cannot distinguish in which
lineage positive selection occurred. Moreover, gene turnover
and expression level could also reveal environmental adaptation
that is not detectable using dN/dS analysis. Further studies
with genome sequencing and more species of African giant
lobelias will be carried out to explore the adaption to different
altitudes.
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