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Accurate and reliable gene expression data from qPCR depends on stable reference

gene expression for potential gene functional analyses. In this study, 15 reference

genes were selected and analyzed in various sample sets including abiotic stress

treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots,

seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder

and RefFinder, were utilized to assess the suitability of reference genes based on their

stability rankings for various sample groups. For abiotic stress, PP2A and CYP were

identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue

sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed

by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all

the sample sets. These results also indicated that the use of two candidate reference

genes would be sufficient for the optimization of normalization studies. To further verify

the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene

expression levels were normalized using the most and least stable sorghum reference

genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first

systematic study of the selection of the most stable reference genes for qPCR-related

assays in Sorghum bicolor that will potentially benefit future gene expression studies in

sorghum and other closely related species.

Keywords: qPCR, RefFinder, Sorghum bicolor, gene expression stability, reference gene, normalization

INTRODUCTION

Sorghum is the fifth most important cereal crop that is widespread in the semi-arid regions of the
world with an annual production of 65.5 Mt (FAO, 2011), possesses strong drought-tolerance traits
and a high forage value. Sorghum seeds are utilized for both human and animal feed, and cultivars
are processed for syrup, sugar, and alcohol. Additionally, sorghum cultivars have great economic

Abbreviations: MACP, Malonyl CoA-Acyl Carrier protein; 6PGDH, 6-Phosphogluconate dehydrogenase; SAMDC,

S-adenosylmethionine decarboxylase; CYP, Cyclophilin/Peptidylprolyl Isomerase; PP2A, Serine/threonine-Protein

Phosphatase 2A; qPCR, Quantitative Real-Time Polymerase Chain Reaction.
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potential as they can be valorized for second-generation
biofuels to produce environment-friendly energy (Vermerris,
2011; Calviño and Messing, 2012). Sorghum is related to
many C4 plants including maize, sugarcane, foxtail millet and
switchgrass, which tend to have larger polyploid genomes
containing repetitive sequences (Price et al., 2005). In contrast,
sorghum is a diploid with a small genome (750Mbp) and
possesses an extraordinary germplasm diversity that greatly
aids gene discovery and analysis through comparative and
functional genomics, making it highly useful as model cereal for
structural and functional genomic studies aimed at improving
agronomically important traits (Paterson et al., 2009).

Coupled with species phenotypes, functional genomics can
provide important insights into complex biological processes
including abiotic stress responses. Functional genomic studies are
now being used to identify the roles of regulatory and structural
genes. The importance of sorghum functional genomics has
increased following the sequencing of its genome (Paterson
et al., 2009). Despite a wide range of available experimental
approaches for exploring gene expression at the transcriptional
level, e.g., northern blotting, ribonuclease protection assays,
reverse transcription PCR (RT-PCR), quantitative real-time PCR
(qPCR) and DNAmicroarrays (Valasek and Repa, 2005). Among
them, qPCR is the most efficient for quantification of gene
expression levels due to its simplicity, sensitivity, accuracy
and cost (Wong and Medrano, 2005); however, despite these
advantages, the utility of this method is often limited due to the
absence of reliable reference genes for qPCR data normalization.

Classically, most of the reference genes fall in the category of
housekeeping genes, which have major roles in the maintenance
of basic cellular metabolism irrespective of physiological
conditions (Bustin, 2002). These reference genes have been
widely used in qPCR assays in molecular and functional
genomic studies as internal calibrators (Vandesompele et al.,
2002; Eisenberg and Levanon, 2013); however, recent studies
have shown that these reference genes are often not stably
expressed under various experimental conditions (Thellin et al.,
1999; Zhu et al., 2013; Gimeno et al., 2014). Consequently,
the selection and validation of suitable reference genes that are
uniformly and stably expressed across experimental conditions
have become imperative (Jian et al., 2008; Li et al., 2012).
Various statistical tools, e.g., geNorm, NormFinder, BestKeeper
and RefFinder, have been developed to determine reference
gene suitability for qPCR data normalization (Vandesompele
et al., 2002; Andersen et al., 2004; Pfaffl et al., 2004). Stable
reference gene validation has been performed in many plant
species, including model species and crop plants such as
Arabidopsis thaliana (Czechowski et al., 2005; Remans et al.,
2008), Brassica napus (Yang et al., 2014a; Machado et al., 2015),
Hordium vulgare (Zmienko et al., 2015), Fagopyrum tataricum
(Demidenko et al., 2011), Cajanus cajan (Sinha et al., 2015),
Oryza sativum (Jain et al., 2006; Li et al., 2010; Ji et al., 2014),
Arachis hypogaea (Reddy et al., 2013), Pennisetum glaucum (Saha
and Blumwald, 2014; Reddy et al., 2015b), Solanum tuberosum
(Nicot et al., 2005; Mariot et al., 2015), Glycine max (Jian
et al., 2008; Nakayama et al., 2014), Saccharum officinarum
(Iskandar et al., 2004; Ling et al., 2015), Lycopersicon esculentum

(Expósito-Rodríguez et al., 2008), Triticum aestivum (Paolacci
et al., 2009), and Zea mays (Manoli et al., 2012; Lin et al.,
2014).

Until now, sorghum qPCR assays were performed using
a single reference gene to quantify target gene expression
in response to various experimental conditions. Traditional
reference genes including 18S RNA, Actin, EIF4α, Tubulin,
and Ubiquitin have been used as calibrators for quantifying
sorghum gene expression in response to abiotic stresses and
during plant growth and development (Yang et al., 2004; Jain
et al., 2008; Cook et al., 2010; Shen et al., 2010; Wang et al.,
2010; Dugas et al., 2011; Ishikawa et al., 2011; Koegel et al.,
2013; Li et al., 2013; Gelli et al., 2014; Shakoor et al., 2014;
Yang et al., 2014b; Yin et al., 2014; Kebrom and Mullet, 2015;
Li et al., 2015; Walder et al., 2015). Nevertheless, the reference
genes used in these studies were randomly selected from various
sources without any experimental validation. Moreover, single
gene quantification qPCR assays are well known to frequently
exhibit variability in gene expression under various experimental
conditions (Dheda et al., 2005). The Minimum Information for
Publication of Quantitative Real-Time PCRExperiments (MIQE)
guidelines developed for the proper selection (Bustin et al., 2009)
and validation of stable candidate reference genes for qPCR
experiments highly recommend averaging data from more than
2 reference genes (Bustin et al., 2010). To date, only one study
has evaluated reference genes in virus-infected Sorghum bicolor
tissues (Zhang et al., 2013), and to the best of our knowledge,
there are no systematic studies regarding the selection of suitable
stable sorghum reference genes in various tissues and abiotic
stress conditions.

This study tested 15 potential candidate reference genes, Acyl
Carrier Protein 2 (ACP2), ADP-Ribosylation Factor (ADPRF),
alpha Tubulin (α-TUB), beta Tubulin (β-TUB), Eukaryotic
Initiation Factor 4A-1 (EIF4a), Elongation Factor P (EF-P),
Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), Malonyl
CoA-Acyl Carrier Protein (MACP), Malate Dehydrogenase
(MDH), Cyclophilin/Peptidylprolyl Isomerase (CYP), Protein
Phosphatase 2C (PP2C), 6-Phosphogluconate Dehydrogenase
(6PGDH), S-adenosyl methionine Decarboxylase (SAMDC),
Serine/threonine-Protein Phosphatase (PP2A), and Ubiquitin
Protein 1, Isoform c (UBC1). The stabilities of these reference
genes were analyzed in sets of samples from treatments with
various abiotic stresses (salt, cold, heat, water stress, and ABA
stress) and tissues (seedlings, leaves, panicles, roots and mature
seeds). Additionally, to verify and support the identification of
the best-ranked candidate reference genes, SbHSF5 and SbHSF13
gene expression levels were assayed. The stable reference genes
identified in this study will be helpful in future qPCR-based
molecular and functional studies in sorghum and related species.

MATERIALS AND METHODS

Plant Materials and Abiotic Stress
Treatments
Sorghum bicolor genotypes (Parbani Moti, Phule Vasudha
(PVS), S35, M35, and BTx623) seeds were collected from the
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sorghum breeding unit of the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) in Patancheru,
India. Seeds were sown in pots filled with soil mixture
(3:2:1 clay:sand:manure) in a glasshouse. Various abiotic stress
treatments (salt, cold, heat, water stress, and ABA stresses)
were performed and various tissues (seedlings, leaves, panicles,
roots, and mature seeds) were sampled according to (Reddy
et al., 2015a). Leaf tissues were collected from sorghum cultivars
including Parbani Moti, Phule Vasudha, S35, M35, and BTx623
were grown under control conditions and under progressive
drought where at normalized transpiration ratio (NTR) of
reached at 0.1 (10% of soil moisture remaining in the pot) (Vadez
and Sinclair, 2001) then leaf samples were collected. Tissue
samples were collected from three individual seedlings for three
independent biological replicates, immediately snap frozen in
liquid nitrogen and stored at−80◦C until RNA extraction.

Total RNA Isolation and cDNA Synthesis
Total RNA was extracted from tissues using the Plant RNA
mini spin kit (MACHEREY-NAGEL GmbH and Co. KG,
Neumann-Neander-Straße 6-8, Duren, Germany) with the in-
column DNase I treatment according to the manufacturer’s
instructions. Sample quantity and purity were determined
using a NanoVue Plus Spectrophotometer (GE Healthcare).
RNA samples with an OD260/OD280 absorbance ratio between
1.9 and 2.2 were used for further analysis, and RNA
integrity was assessed on 1% denaturing formaldehyde agarose
gel. For each sample, 1 µg of total RNA was reverse
transcribed using the SuperScript First-Strand Synthesis System
for RT-PCR (Invitrogen) and oligo (dT) primers according to
manufacturer’s instructions. The reverse transcribed cDNAs were
then diluted 1:12 with nuclease-free water and used for qPCR
analysis.

Candidate Reference Gene Selection and
qPCR Primer Design
Fifteen candidate reference genes were identified from the
literature and the sequences of their corresponding homologs
were extracted from the NCBI and the Phytozome databases
(Table 1). The selected candidate reference genes included
GAPDH, UBC1, MACP, ACP2, α-TUB, EF-P, 6PGDH, SAMDC,
CYP, MDH, ADPRF, β-TUB, PP2A, EIF4α, and PP2C that
were earlier reported to be stably expressed in monocots such
as rice, pearl millet, barley, foxtail millet, wheat, and maize
(Jain et al., 2006; Paolacci et al., 2009; Manoli et al., 2012;
Kumar et al., 2013; Reddy et al., 2015b; Zmienko et al.,
2015). Primers were designed using the Primer3 software
(Untergasser et al., 2012) with the following parameters: 59–
62◦C annealing temperature, 20–22 bp primer length, 45–
55% GC contents, and 90–150 bp amplicon length (Table 1).
Pooled and diluted cDNA samples were used for qPCR and
2% agarose gel electrophoresis was used to check primer pair
specificity prior to sequencing. The sequences amplified by each
primer combination were compared with GenBank sequences
using the BLASTN and BLASTX algorithms to verify amplicon
specificity.

Quantitative Real-Time RT-PCR (qPCR)
The qPCR reactions were performed using a Realplex Real-
Time PCR system (Eppendorf, Germany) and SYBR Green
mix (Bioline) in 96 well optical reaction plates (Axygen, USA)
sealed with ultra-clear sealing film (Platemax). The reactions
were performed in a 10µl total volume containing 5µl of
2x SensiMix SYBR No ROX mix (Bioline), 400 nM of each
primer, 1.0µl of diluted cDNA and nuclease-free water. The
reaction conditions were 95◦C for 2 min, followed by 40
cycles of 15 s at 95◦C and 30 s at 62◦C with fluorescent
signal recording. After amplification, melt curves were generated
for each reaction to ensure specific amplification. All qPCR
reactions, including the non-template control, were performed
in biological and technical triplicates. The mean values
obtained from the nine values (triplicates of each biological
triplicate) were used to calculate the final quantification cycle
values (Cq).

Data Analysis
The quantitative cycle (Cq) values were recorded using the
RT-PCR system default settings in which the baseline was
automatically corrected and threshold values were estimated
using the noise band mode. Statistical analysis (mean and
CV) of the Cq values was performed using a Microsoft Excel
2010 spreadsheet. PCR efficiencies (E) for candidate genes were
evaluated using the dilution series method and pooled cDNA
samples. The 12-fold diluted pooled cDNA sample was used for
2-fold serial dilutions. Five serially diluted cDNA samples were
used as templates for the construction of standard curves for each
primer pair using the above PCR composition and conditions.
Standard curves were generated using linear regression based
on the quantitative cycle (Cq) values for the dilution series.
The correlation coefficients (R2) and slope values were obtained
from the standard curves, and the PCR amplification efficiencies
(E) were calculated according to the following equation: E =

(10−1/slope-1).

Statistical Tools for Normalization
The genEX Professional software geNorm and NormFinder
algorithms (MultiD Analyses AB, Sweden) were used to
identify and analyze the stably expressed gene (s) in diverse
experimental samples. The raw Cq values for each gene
were corrected according to their PCR efficiencies and then
converted into relative quantities. The mean values for the
biological replicates were used as the input data for the
geNorm and NormFinder analyses. The geNorm program
calculates the candidate gene expression stability (M value) using
pairwise comparisons and stepwise exclusion (Vandesompele
et al., 2002). Pairwise variation analysis was performed to
identify the optimal number of reference genes required for
normalization in each sample set using geNorm and qBase
plus software (v: 2.4; Biogazelle, Belgium) (Hellemans et al.,
2007). NormFinder also measures candidate reference gene
expression stability using stepwise exclusion by estimating
the intra- and inter-group variation. A low stability value
indicates low combined variation and high expression stability
(Andersen et al., 2004). RefFinder is a web-based tool
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(http://www.leonxie.com/referencegene.php) that integrates the
four major computational programs currently available [geNorm
(Vandesompele et al., 2002), NormFinder (Andersen et al., 2004),
BestKeeper (Pfaffl et al., 2004), and the comparative 1Ct method
(Silver et al., 2006)], and calculates the geometric mean for
comprehensive ranking.

SbHSF5 and SbHSF13 Genes Expression
Sorghum heat shock transcription factors SbHSF5 and SbHSF13
were selected as target genes for validating stabilities of the

most and least stable reference genes by quantifying the gene
expression levels in various experimental samples. Sample
collections and experiments were performed as described above.
SbHSF5 and SbHSF13 gene expression levels were normalized
using the two most stable candidate reference genes, PP2A
and EIF4α, as well as the two least stable reference genes in
the all sample group, UBC1 and GAPDH, individually and in
combination. For reference gene validations, root tissues of
variety Parbani Moti, and leaf tissues of five sorghum varieties
under water stress conditions were used for estimating relative

FIGURE 1 | Specificity of primer pairs for qPCR amplification. (A) Agarose gel (2.4%) electrophoresis showing PCR products of the expected sizes for 15

candidate genes. M: 50 bp DNA marker (NEB). (B) Dissociation curves of 15 candidate reference genes under various experimental conditions, each showing a single

peak.
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FIGURE 2 | Expression levels of 15 candidate reference genes in all experimental samples displaying the Ct distribution for each candidate reference

gene in all tested samples. Whiskers represent the maximum and minimum Ct values, and the line across the box indicates the median value, while the asterisks

marks outliers. The coefficient of variance (CV) for each gene is given as a percentage. The x-axis represents the genes and the y-axis represents the Cq values.

expression levels of SbHSF5 and SbHSF13 using REST software
(Pfaffl et al., 2002).

RESULTS

Primer Specificity and PCR Efficiency
Calculations
The candidate reference genes selected for this study represent
various functional classes and gene families. Primer pairs for
15 candidate reference genes were used for qPCR amplification
of sorghum cDNA and yielded single PCR products of the
expected sizes (Figure 1A), as well as single melting curve
peaks (Figure 1B). The amplification products were sequenced,
and verification using the NCBI database BLASTN algorithm
revealed 100% matches, demonstrating the gene specificity of the
qPCR primer pairs. While the amplification efficiencies (E) of the
candidate reference genes ranged from 0.94 (PP2C) to 1.03 (β-
TUB), the regression coefficient values (R2) ranged from 0.972
(UBC1) to 0.999 (FE-P and β-TUB) (Table 1).

Sorghum Reference Gene Expression
Analysis
A total of 15 candidate reference genes were selected for qPCR
normalization. A SYBR Green-based qPCR assay was used for
transcriptional profiling of the 15 candidate reference genes
in 10 samples, including five from abiotic stress conditions
(water stress, salt, ABA, cold and heat shock) and five different
tissues (leaves, roots, panicles, mature seeds and seedlings).
Candidate reference gene transcript levels were determined using
the quantification cycle (Cq) values, and these genes varied in
their abundance (Figure 2). The mean candidate gene Cq values
ranged from 17.70 to 28.92, with most falling between 22 and 25.

GAPDH exhibited the lowest mean Cq value (17.70), indicating
that GAPDH was the most highly expressed, while PP2C, ACP2,
α-TUB, 6PGDH, MDH, ELFP, EIF4α, and PP2A were moderately
expressed (mean Cq 22.31–24.14), whereas β-TUB (mean Cq
26.69) and UBC1 (mean Cq 28.91) were expressed at low levels.
Across the tested samples, the GAPDH gene showed the least
variation in expression levels (coefficient of variation 2.59%),
while α-TUB was the most variable (13.53%). The degree of
variation in reference gene expression across the tested samples
is shown in Figure 2. These results indicated that none of the
reference gene expression levels were constant and that they
varied from one assay to another.

Reference Gene Ranking and Expression
Stability Analysis
The stability values for each reference gene or combination of
reference genes may vary from one experimental set to another.
The orders of candidate gene stability ranking for the three
sample sets were determined separately to identify themost stable
reference genes using three different statistical tools, geNorm,
NormFinder and RefFinder.

GeNorm Analysis
GeNorm software was used to determine the expression stability
of the 15 candidate sorghum reference genes; for this analysis,
lower M values indicate greater gene expression stability. The
software recommends a cutoff M value of 1.5 to identify sets
of reference genes that are stably expressed. Figure 3 displays
the expression stability rankings for the tested candidate genes;
the lowest M value was calculated for the PP2A and EIF4α pair
(M = 0.76) and corresponded to the most stable expression in
the all sample group, whereas the M values for GAPDH and
UBC1were considerably higher than for the remaining candidate
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FIGURE 3 | geNorm expression stability and ranking of the 15 candidate reference genes in various sample sets. The cutoff M value was set at 1.5; a

lower M value indicates greater stability and the largest value indicates the least stable reference gene. The direction of the arrow indicates the most and least stable

reference genes. The most stable genes are listed on the right and the least stable genes are listed on the left.

genes (Figure 3). For the abiotic stress treatments, PP2A andCYP
were the most stable reference genes, while UBC1 and β-TUB
were the least stable (Figure 3). In the tissue group, SAMDC
and PP2A were the most stable candidate genes while CYP and
GAPDH were the least stable (Figure 3). The optimal numbers of
reference genes required for gene expression normalization for
the various sample groups were determined using geNorm. As
shown in Figure 4, the V2/3 values of all three-sample sets were
below the threshold value of 0.15 (0.144 for all pooled samples,

0.112 for the abiotic treatments, and 0.14 for the various tissue
sample sets), indicating that two reference genes were sufficient
for sorghum gene expression data normalization.

NormFinder Analysis
NormFinder rankings differed slightly from the geNorm
rankings (Figure 5). Both tools ranked PP2A and EIF4α as being
the most stable genes in all the sample sets, while GAPDH
and UBC1 were the least stable genes (Figure 5); in contrast,
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FIGURE 4 | Optimal number of reference genes required for accurate normalization in all three experimental groups using the geNorm tool. The

pairwise variation (Vn/Vn+1) was calculated by geNorm tool to determine the minimum number of reference genes for accurate normalization in each experimental

set. The cutoff value was 0.15, below which additional reference genes are not necessary for gene expression normalization. The dotted line indicates the optimal

number of reference genes.

α-TUB and PP2A emerged as the most stably expressed genes
in the abiotic stress sample set, while geNorm ranked α-TUB
eighth (Figure 5). For the tissue sample set, EIF4α and PP2A
reference genes occupied the top positions, while geNorm ranked
EIF4α third (Figure 5). GAPDH and UBC1 were also the least
stable reference genes in the abiotic stress and tissue sample sets
(Figure 5).

RefFinder Analysis
The comprehensive ranking of the candidate reference genes
for all three experimental sample sets using RefFinder was
highly consistent with the findings of geNorm and NormFinder.
RefFinder analysis revealed that PP2A and EIF4α were the
most stable in all the sample set (Table 2). Similarly, PP2A
and CYP were highly stable under abiotic stress conditions,
while EIF4α and PP2A were the two most stable genes for the
tissue sample set (Table 2). Comprehensive ranking revealed that
GAPDH was the least stable gene in the all sample and tissue
sample sets, while β-TUB was the least stable in the abiotic
sample set. UBC1 was the second most stable gene in all three-
sample sets (Table 2). Comprehensive ranking for the individual
abiotic stress treatments revealed a pattern similar to that of
the abiotic stress sample set in which PP2A was second for

heat, salt and water stresses. Similarly, EF-P remained in the
third position for the ABA and clod stresses (Supplementary
Table 1).

Validation of the Best and Least Ranked
Sorghum Reference Genes
To validate the selected candidate reference genes, the expression
patterns of SbHSF5 and SbHSF13 were assayed in root tissues,
water-stressed samples and different varieties (Figures 6A–C).
In sorghum, SbHSF5 and SbHSF13 genes have been shown
to express in different tissues and induced by abiotic stress
treatments (Nagaraju et al., 2015). In this study, the two most
stable reference genes from all the sample set, PP2A and
EIF4α, were used for normalization: in roots under normal
growth conditions, SbHSF5 and SbHSF13 expression were not
significantly different. In contrast, the SbHSF5 and SbHSF13
expression patterns were very different when GAPDH and
UBC1, the least stable genes from all the sample set, were
used for normalization. Normalization with UBC1 indicated a
2- to 3-fold increase in expression, while normalization with
GAPDH and GAPDH+UBC1 indicated downregulation of both
genes in root tissues under normal conditions (Figure 6A). To
further validate the selected reference genes, the transcript levels
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FIGURE 5 | NormFinder expression stability values and candidate reference gene ranking in Sorghum bicolor samples. Lower values indicate greater

stability and larger values indicate the least stable reference genes. The direction of the arrow indicates the most and least stable reference genes. The most stable

genes are listed on the right and the least stable are listed on the left.

were quantified in five sorghum varieties under water stress
conditions (Figure 6C). For water stress samples, SbHSF5 and
SbHSF13 expression levels increased1 to 12-fold under water
stress conditions when normalized with the two most stable
reference genes from all the sample set (PP2A and EIF4α;
Figures 6B,C). As expected, normalization with the least stable
genes (GAPDH and UBC1), either alone or in combination with
UBC1 resulted in discrepancies for expression of both SbHSF5
and SbHSF13 gene expression (Figures 6B,C).

DISCUSSION

Accurate gene expression primarily relies on the stable expression
of reference genes under diverse experimental conditions;
however, thus far, no single reference gene has been shown
to be stably expressed across experimental conditions (Olsvik
et al., 2008; Cruz et al., 2009). The stability value of the
most stable reference gene or the best combination of genes
may vary from one experimental setup to another, meaning
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H that the reference genes used for normalization should be

validated under certain experimental conditions by statistically
and experimentally. In the present study, 15 candidate reference
genes were evaluated for expression stability among diverse
experimental samples including various tissues and abiotic stress
conditions. Expression analysis revealed that all 15 candidate
reference genes varied significantly across the 10 tested samples;
therefore, reference genes for optimal normalization were chosen
from a set of candidate genes for each experiment either alone
or in combination. To determine the comprehensive ranking of
candidate reference genes in a sample set, we also used RefFinder,
which considers the results of the four algorithms (geNorm,
NormFinder, BestKeeper and the 1Cq method) together. Based
on their stability rankings, various candidate genes have been
proposed for their suitability as reference genes depending on
the experimental conditions, implying that the reference genes
used for abiotic stress studies in sorghum might not be suitable
for gene expression analysis across genotypes and species.

In all the sample set, all three algorithms identified two
reference genes, PP2A and EIF4α, as the two most stable genes.
The pairwise variation calculated by geNorm also indicated that
the use of two genes would be sufficient for normalization
(Figure 4). Based on these results, it is inferred that PP2A and
EIF4α would be appropriate for qPCR data normalization for
the sorghum all sample set. For the abiotic stress treatment
sample set, the pairwise variation indicated that the top ranking
two genes (PP2A and CYP) could be used for normalization
(Figure 4). Similarly, PP2A and EIF4α would be sufficient for the
normalization of the tissue sample set data (Figure 4). PP2A was
identified as one of the two most stable genes in all three studied
sample sets (Table 2). This result is in agreement with previous
studies of maturing B. napus embryos (Chen et al., 2010),
multiple stress conditions (Wang et al., 2014), development
and under various environmental conditions in A. thaliana
(Czechowski et al., 2005) and Caragana intermedia (Zhu et al.,
2013), as well as for virus-infected Nicotiana benthamiana (Liu
et al., 2012) and Z. mays (Zhang et al., 2013). Furthermore, PP2A
was the most stably expressed gene among various Striga life
stages (Fernández-Aparicio et al., 2013). EIF4α was second most
stably expressed gene in the all sample and tissue sample sets
(Table 2). Similar results were observed in Carica papaya, where
EIF4α expression was stable under most of the experimental
conditions tested (Zhu et al., 2012). EIF4α was also reported as
being a stably expressed gene in sexual and apomictic Brachiaria
brizantha (Silveira et al., 2009), and in sexual and apomictic
accessions of Cenchrus ciliaris (Simon et al., 2013). In the present
study, CYP was the third most stable gene; it was stably expressed
under abiotic stress treatments and in the tissue sample set
(Table 2). The results obtained in the present study are in
agreement with our previous studies in peanuts, where CYP was
themost stably expressed gene during vegetative stages and under
abiotic stress conditions (Reddy et al., 2013) and was also stably
expressed in various tissues of G. max (Jian et al., 2008), Vicia
faba (Gutierrez et al., 2011) and salt-stressed S. tuberosusm (Nicot
et al., 2005). The CYP gene was moderately stable in developing
and germinating G. max seeds (Li et al., 2012) and in bananas
under various experimental conditions (Chen et al., 2011). In
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FIGURE 6 | Relative expression of SbHSF5 and SbHSF13 genes in root tissues (A) leaves during water stress treatment (B) selected varieties (C) using

different reference genes selected by the RefFinder tool. SbHSF5 and SbHSF13 expression levels were normalized in a single and combined manner with either

a stable or unstable reference genes. All samples were analyzed in triplicate, in three independent experiments.

contrast, our recent study in Cicer arietinum indicated that CYP
was the least stably expressed gene under various experimental
conditions (Reddy et al., 2016), consistent with a previous study
of grapevine berry development (Reid et al., 2006). In conclusion,
PP2A, EIF4α, and CYP are recommended as suitable reference
genes for the qPCR-based normalization of gene expression in
sorghum under abiotic stress and in various tissues.

To further validate the candidate reference genes selected
from the RefFinder comprehensive ranking, the expression levels
of two sorghum heat shock transcription factors, SbHSF5 and
SbHSF13, were assessed. Plant heat shock transcription factors
play major roles in higher plants under various abiotic stresses.

In sorghum, SbHSF5 and SbHSF13 are expressed under abiotic
stress conditions: SbHSF5 is moderately expressed under cold
stress and upregulated under drought stress, and SbHSF13 is
moderately expressed under cold and heat stress and upregulated
under drought and high salinity stress (Nagaraju et al., 2015). In
the present study, SbHSF5 and SbHSF13 expression levels were
upregulated under water stress conditions and no significant
changes were observed in root tissue gene expression levels when
normalized to the most stable reference genes, PP2A and EIF4α
(Figures 6A,B). While, SbHSF5 and SbHSF13 genes significantly
upregulated under water stress conditions in leaf tissues of all
five sorghum genotypes with relatively higher expression when
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normalized with the sable reference genes (PP2A and EIF4α),
the normalization was obscured when least stable reference
gene (s) (UBC1 and GAPDH) were used (Figures 6B,C). The
upregulation of SbHSF5 and SbHSF13 under this study is in
agreement with another recent study in sorghum (Nagaraju et al.,
2015) confirming the stability validation of the selected candidate
reference genes and demonstrated the disadvantages of using
unstable reference genes for normalization.

CONCLUSION

This study reports on the selection and validation of stable
reference genes for qPCR-based gene expression studies in
sorghum in response to various abiotic stresses and in different
tissues. Three major statistical tools, geNorm, NormFinder and
RefFinder, were used to analyze the suitability of reference genes.
Some slight differences were observed between the statistical
tools with regards to the selected stable reference genes. Overall,
PP2A and EIF4α are the most stable candidate reference genes,
and UBC1 and GAPDH were found to be least stable. The use
of two reference genes would be optimal for the normalization
of sorghum gene expression levels in various tissues and abiotic
stress conditions. The most and least stable reference genes
were further validated for their suitability as reference genes
by normalizing SbHSF5 and SbHSF13 expression levels under
various experimental conditions across five genotypes. This
work will benefit future studies of gene expression in related

experiments using different tissues and abiotic stress conditions
in S. bicolor and related crops.
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