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Orobanche cumana (sunflower broomrape) is an obligatory and non-photosynthetic
root parasitic plant that specifically infects the sunflower. It is located in Europe and
in Asia, where it can cause vyield losses of over 80%. More aggressive races have
evolved, mainly around the Black Sea, and broomrape can rapidly spread to new areas.
Breeding for resistance seems to be the most efficient and sustainable approach to
control broomrape infestation. In our study, we used a population of 101 recombinant
inbred lines (RILs), derived from a cross between the two lines HA89 and LR1 (a line
derived from an interspecific cross with Helianthus debilis). Rhizotrons, pots and field
experiments were used to characterize all RILs for their resistance to O. cumana race
F parasitism at three post vascular connection life stages: (i) early attachment of the
parasite to the sunflower roots, (i) young tubercle and (i) shoot emergence. In addition,
RIL resistance to race G at young tubercle development stage was evaluated in pots.
The entire population was genotyped, and QTLs were mapped. Different QTLs were
identified for each race (F from Spain and G from Turkey) and for the three stages
of broomrape development. The results indicate that there are several quantitative
resistance mechanisms controlling the infection by O. cumana that can be used in
sunflower breeding.

Keywords: broomrape, sunflower, resistance, QTL mapping, Orobanche cumana, plant-plant interaction,
candidate genes, parasitic weeds

INTRODUCTION

The parasitic weed Orobanche cumana (sunflower broomrape) is an obligatory and non-
photosynthetic root parasitic plant of the sunflower (Helianthus annuus L.) and is a substantial
threat in Europe, especially in countries around the Black Sea and in Spain (Molinero-Ruiz et al.,
2013). O. cumana has a negative effect on sunflower development. The infected plants are smaller,
the sunflower head diameter is reduced and up to 80% of yield losses are observed (Alcantara et al.,
2006; Duca, 2015).

Unlike other weedy Orobanche species, for which genetic resistance in the host is of quantitative
nature (horizontal), genetic resistance to O. cumana in the sunflower is in most cases qualitative or
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vertical (Ferndndez-Martinez et al., 2015). For this reason,
O. cumana populations are commonly classified into
physiological races (Vranceanu et al,, 1980) that periodically
surpass all the available resistance sources. Eight races of
O. cumana, A through H, have been reported thus far, with races
E G, and H commonly reported in several countries (Kaya, 2014).
Different mechanisms have been described that might determine
the rapid emergence of new races of O. cumana including
recombination and increase of genetic diversity, mutation and
selection within specific gene pools, or gene flow between wild
and weedy O. cumana populations (Pineda-Martos et al., 2013,
2014).

Several methods of broomrape control are available with
more or less efficiency. Different crop management solutions can
be used: soil solarization (Mauromicale et al., 2005), biological
control (Thomas et al., 1998; Louarn et al., 2012) and the use
of herbicides such as imidazolinone combined with herbicide-
tolerant sunflower hybrids (Tan et al., 2005). However, breeding
for genetic resistance remains the most efficient method. The
first introgression of genetic resistance to broomrape on the
sunflower was conducted in the former USSR (Pustovoit, 1966).
Genetic resistance has been characterized in wild Helianthus
spp.» and introgression of the resistance gene from interspecific
crosses has been reported (Jan and Fernandez-Martinez, 2002;
Velasco et al,, 2007). Even if neither quantitative trait loci
(QTLs) nor major genes were mapped for the resistance to
O. cumana race G, Velasco et al. (2012) showed that the
resistance (from H. debilis subsp. tardiflorus) to the race G of
O. cumana was dominant and controlled by a single locus in
their population. Several major Or resistance genes controlling
the resistance to specific O. cumana races have been used in
breeding programs (Ferndndez-Martinez et al., 2008). However,
there are only two reports for the molecular genetic mapping of
resistance loci. The first one concerns the Or5 gene conferring
resistance to race E (Lu et al., 2000; Tang et al., 2003; Pérez-
Vich et al, 2004). The second report details the mapping
of QTLs for resistance to O. cumana race F (Pérez-Vich
et al., 2004). Six QTLs controlling the number of O. cumana
emergences in the field have been detected on five linkage
groups (LG). No genes have been cloned, and the molecular
mechanisms involved in the resistance mechanisms remain
unknown.

The life cycle of broomrape is composed of several steps
from seed germination to plant flowering and seed production
(Gibot-Leclerc et al, 2012; Yang et al, 2015). These steps
can be roughly classified into four stages (Figure 1). During
stage 1, the germination of the O. cumana seeds is induced
by the host. Germination is one of the most studied steps of
the broomrape life cycle. The molecules secreted by the host
root system play a major role in the induction of broomrape
germination (Ferndndez-Aparicio et al., 2009a). Two main
types of molecules exuded by sunflower roots are known
to induce O. cumana seeds germination: strigolactones and
sesquiterpene lactones (Cook et al., 1966; Joel et al, 2011;
Yoneyama et al., 2011; Raupp and Spring, 2013). Germination
is followed by stage 2, in which the fixation of the parasite
to the sunflower root, root penetration and establishment of

vascular connections between the parasite and the host is
achieved by means of the haustorium developed at the tip
of O. cumana radicle (Hassan et al, 2004). After vascular
connection, broomrape begins to derive phloemic flow acting as
a strong nutrient sink. During stage 3, nutrient storage organ
called tubercle develop quickly at the attachment point from
which an underground shoot will eventually develop (Aly et al.,
2009). The last stage is the above ground stage 4, which begins
with the emergence of O. cumana from the ground and ends
with flowering and seed production and dispersal. During the
broomrape life cycle, several resistance mechanisms operating
at the pre-attachment, pre-haustorial, or post-haustorial stages
of the parasite-host interaction have been reported (Fernandez-
Martinez et al., 2015). These include mechanisms acting at the
pre-attached stage such as decreased strigolactone exudation
by host roots (Jamil et al, 2011; Ferndndez-Aparicio et al,
2014), or mechanisms such as cell wall deposition, vessel
occlusion, broomrape cellular disorganization occurring during
host invasion leading to incompatible attachments or tubercle
necrosis such as that observed in the sunflower resistant line LR1
(Labrousse, 2001).

Single major resistance genes permit an efficient resistance to
diseases. However, genetic resistance based on major dominant
genes shows weak sustainability. Breeding for sustainable
resistance needs to combine QTLs and major genes (Lindhout,
2002; Palloix et al, 2009; Brun et al., 2010). Additionally,
significant gains can be made through breeding approaches
informed by increasing understanding of the physiology of the
parasitic plant association (Pérez-Vich et al., 2013). Accordingly,
the objective of this study was to determine the genetic
architecture of quantitative resistance in a RIL population
combined with a candidate gene approach based both on race
F field phenotyping and race F and G laboratory screening for
resistance mechanisms.

MATERIALS AND METHODS

Sunflower Lines and Orobanche cumana

Races

A population of 101 recombinant inbred lines (RILs) (Fg) was
obtained by single-seed descent from a cross between two
parental lines HA89 and LR1. LRI is an inbred line derived
from an interspecific cross involving the wild species Helianthus
debilis (ecotype 215 in the INRA collection) (Labrousse, 2001).
The sunflower line 2603 was used as a susceptible control
in each experiment (Labrousse, 2001). All sunflower lines are
part of the French genetic resources collection maintained by
INRA (crb.tournesol@toulouse.inra.fr). The same population
was previously described by Labrousse et al. (2004) for the
resistance to O. cumana race E. A large variability of response
was observed in the population for their capacity to induce the
germination of O. cumana seeds, to control the development
of tubercles and to induce tubercle necrosis. Using O. cumana
race E, the authors found that LRIsunflower line disables the
vascular connection leading to necrosis of 100% established
tubercles (Labrousse, 2001). HA89 was found to be more
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FIGURE 1 | Life cycle of O. cumana. Stage 1 corresponds to broomrape seed germination induced by sunflower root exudates. During stage 2, O. cumana
radicle attaches, invades and connects the vascular system of the sunflower root by means of haustorium. Once O. cumana is attached and the nutrient diversion
towards the parasite is established, O. cumana develops a tubercle (stage 3). During the stage 4, the stem emerges through the soil surface with the subsequent
onset of flowering. The red arrows show putative resistance mechanism to O. cumana at stage 2 (incompatible attachment) and at stage 3 (tubercle necrosis).
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Growth and emergence
of the flowering stem

Germination

susceptible to O. cumana race E than LRI, inducing necrosis
only in 60% of the established tubercles but allowing further
development of the remaining parasites (Labrousse et al,
2004).

The RIL population was characterized for plant height in
Toulouse (France) in an O. cumana-free experimental field. The
plants were sown in 4 m long rows of 10 plants. Plant height was
recorded by measuring the main stem height in five individual
plants (in the center of the row) at flowering stage during 2015
growing season.

Orobanche cumana seeds, race F, were collected in Marchena
(Province of Sevilla, Spain) in 2012. During field experiments in
2014 and 2015, the O. cumana population parasitized sunflower
line NR5 (carrying the Or5 gene conferring resistance to race
E) but not the P-96 line (conferring resistance to O. cumana
race F), indicating that this population corresponded to race F
(data not shown). O. cumana seeds race G were collected in
2000 in an experimental field located at Cesmekolu (Kirklareli
Province, Turkey). This O. cumana population was confirmed
as race G because it parasitized sunflower lines K-96, P-96 and
R-96 (carrying resistance to race F) (Fernandez-Martinez et al.,
2004).

Rhizotron Experiments: Evaluation of
Resistance to Race F Early
Post-vascular Development

Orobanche cumana seeds were surface-sterilized with 2.6%
NaClO for 5 min and were rinsed thoroughly with sterile water.
Race F of O. cumana seeds were spread on moistened sterile glass
fiber filter paper (GF/A, Whatman) and incubated for 7 days
in the dark at 22°C to allow O. cumana seed conditioning, a
process used in broomrape experiments to break seed dormancy
and promote seed sensitivity to molecules inducing germination
secreted by host roots (Lechat et al., 2012). The sunflower seeds
were first germinated in moistened filter paper for 3 days and
then transferred to sand for four additional days. Subsequently,
the rhizotron system was used to enable the interaction between
7-days conditioned O. cumana seeds and the roots of 7-days
old sunflower plants. Briefly, a rhizotron is made of two PVC
glasses (12 cm X 12 cm) confining the sunflower roots and
the broomrape seeds on a glass fiber filter. Sterilized blocks
of rockwool (Grodan, ROCKWOOL) of 1cm of thickness kept
the glass fiber filter wet where the root system was deposited.
Rhizotrons were placed in a growth chamber under a 16 h
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photoperiod and a constant temperature of 22°C during day and
night periods. Plants were watered daily with half strength Long
Ashton Nutrient Solution (LANS, Hewitt, 1966). A balanced
incomplete-block design was performed to study the attachment
stage. Seventeen blocks of 30 different RILs, permitting the
phenotyping of each RIL five times, and the two parental lines
HAS89 and LR1 were designed using the R package DBI. After
2 weeks of growth, the numbers of compatible attachments
(CA) and incompatible attachments (IA) were counted under a
stereomicroscope (S6D, Leica). Attachments (stage 2 in Figure 1)
were considered as compatible when the radicle of O. cumana
was observed penetrating the host root, characterized by a slight
swelling of the O. cumana radicle. Attachments were considered
as incompatible when the radicle of O. cumana had initiated host
root penetration but were stopped by host defenses mechanisms.
The O. cumana radicle was not connected to the vascular system
of the host leading to the death of the parasite. In addition,
darkening of host cells at the penetration point was observed. The
rate of IA was calculated as the percentage of IA out the total of
attached O. cumana radicles (IA and CA).

Pot Experiments: Evaluation of
Resistance to Race F and G at Young

Tubercle Development

The evaluation of each RIL for resistance to O. cumana races
F and G (stage 3 in Figure 1) was performed according to
Louarn et al. (2012). Sunflower seeds were first germinated in
moistened filter paper for 3 days. The substrate (charred clay
for race F and a mixture of sand and vermiculite for race G)
was inoculated with 60 mg of O. cumana seeds per liter of
substrate and was moistened with water allowing the Orobanche
seeds to undergo conditioning during 7 days. Then, 3 days pre-
germinated sunflower seeds were sown in the pot (volume of
70 ml) and kept in a growth chamber under a 16 h photoperiod
and a constant temperature of 22°C during day and night periods.
Plants were watered daily with LANS (~10 ml/plant). After
5 weeks of growth, the level of infection by O. cumana was
determined for each RIL by counting the number of healthy
and necrotic tubercles on 5 (race F) or 9 (race G) sunflower
plants from 5 or 3 independent experiments, respectively. The
rate of necrotic tubercle was calculated as the percentage of
necrotic tubercle out of the total number of tubercles (healthy and
necrotic). The susceptible line 2603 and the race F resistant line
P-96 were used as controls.

Field Evaluation of O. cumana Race F

Emergence

The RILs were evaluated together with the parental lines for
O. cumana race F resistance under artificial inoculation in field
conditions in the spring and summer of 2014 and 2015 (stage 4
in Figure 1). Sunflower seeds were germinated during 2 days in
moistened filter paper and subsequently transferred to small pots
(7 em x 7 cm x 7 cm) containing a mixture of sand and peat (1:1,
v:v). Previously, soil (~180 g) was carefully mixed with 50 mg of
O. cumana seeds to obtain a homogeneously infested substrate.
The plants were watered by hand as needed and kept in a

growth chamber for 15-20 days (time necessary for transplanting
all plants to the field) at 25°C/20°C (day/night) with a 14 h
photoperiod for incubation. They were then transplanted to a
field plot at the experimental farm of the Institute for Sustainable
Agriculture (CSIC, Cérdoba, Southern Spain) in which only race
F experiments have been conducted since 1999. The assays were
transplanted between the 31st of March and the 2nd of April 2014
and between the 25th of March and the 27th of March 2015. The
evaluation consisted of three replicates of 15 plants by row for
each experiment. The plants were set 33 cm apart in 5 m row with
1 m separation between rows. The race F susceptible lines 2603
and NR5, and the resistant line P-96 were used as controls. The
number of emerged broomrapes per sunflower plant was counted
at the time of sunflower maturity.

Genotyping

Genomic DNA for the 101 RILs and the two parental lines was
extracted using the Kit DNeasy Plant Mini Kit (Qiagen®). The
DNA concentration was adjusted to 10 ng.jl~! in water.

The hybridization experiments were performed by the
Gentyane platform (Plateforme Gentyane, UMR INRA/UBP
1095 Génétique Diversité et Ecophysiologie des Céréales, 5
chemin de Beaulieu - 63039 Clermont-Ferrand, France) on
a GeneTitan® (Affymetrix) according to the manufacturer’s
instructions. The AXIOM array was built using a set of 586 985
SNPs in the frame of the SUNRISE project'. Genotypic data were
obtained with the software Axiom Analysis Suite’.

The genotypic data were filtered, and SNPs were selected
according to the following criteria: (a) the three replicates of
the two parental lines were homozygous and consistent, (b)
HA89 and LR1 were polymorphic, (c) the allelic frequency in
the population was between 40 and 60%, (d) the missing data
in the 101 RILs did not exceed 5%, and (e) the number of the
heterozygous data in the whole population did not exceed 5%.
We obtained a set of 21 201 SNPs for the genetic mapping. The
genetic map was obtained using CarthaGene software (de Givry
et al., 2005). After merging the markers (“mrkmerges” function),
the LGs were obtained with the “group 0.2 3” function. The
genetic distance between markers was calculated using the “lkh
1 —1” function and the genetic maps were obtained with the
“bestprintd” function. The resulting genetic map, containing 951
markers obtained from 21 201 heterozygous SNPs, is shown in
Supplementary Figure S1. The sequences of the markers mapped
are included in Supplementary File S1.

QTL Mapping

Quantitative trait loci detection was performed with MCQTL
(Jourjon et al., 2005) with a threshold corresponding to a Type
I error rate of 1% at the genome-wide level, as determined
after 3 000 replications of the resampling process for each trait.
Biomercator (version 4.2) was used for the visualization of the
different QTLs (Arcade et al., 2004).

Uhttp://www.sunrise- project.fr/en/
Zhttp://www.affymetrix.com
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Statistical Analysis

The relationship between the rate of IA, the rate of necrotic
tubercles, the number of healthy tubercles and the number of
broomrape shoot emergences in field in 2014 and 2015 were
studied by a PCA analysis. PCA was performed with the package
FactoMineR using R software (version 3.1.2) under the Remdr
environment (version 2.1-7). The Pearson correlation test was
performed to determine the R coefficient between the different
traits.

In Silico Mapping of Candidate Genes

The candidate gene sequences were obtained from Letousey
et al. (2007), Radwan et al. (2008), and Li and Timko (2009).
These sequences were used to search for the putative orthologous
cDNAs in a sunflower transcriptomic database by BLAST®.
The sunflower sequences were then used for in silico mapping
by BLAST alignment to a genetic map obtained from the
international consortium of sunflower genome sequencing and
composed of 454 contigs'. The BLAST results were selected
according to the following criteria: (i) identity between the query
and the subject sequences greater than 95% and (ii) length of
the alignment greater than 400 nt. The colinearity between the
two genetic maps was determined by a BLAST alignment of
the AXIOM markers linked to the QTLs on the 454 contig
database.

RESULTS

Phenotypic Evaluation of the RIL

Population
Evaluation of the Resistance to Race F at the Stage 2
and 3 of Broomrape Development
The first physical interaction between sunflower and broomrape
occurs underground after seed germination when O. cumana
fixes to the root system of the host (stage 2, Figure 1). This stage
was evaluated in rhizotrons, and two different phenotypes were
observed. When a sunflower line was susceptible to O. cumana
race F at this stage, a CA allowed the parasite to attach and
connect with the vascular system of the host root (Figure 2A).
When a sunflower line was resistant, IA was observed. The IA
was characterized by a browning of the interaction zone between
the parasite and the sunflower root (Figure 2B). The two parental
lines showed a significant difference for rate of IA at stage 2
(Figure 2C). Indeed, minimal IA was observed in the parental
line HA89 (3.51%) compared to LR1, which produced a high
rate of IA (46.51%). In the segregating population, RILs showed
a continuous quantitative resistance profile from susceptible
(TA < 10%) to resistant (IA > 50%). Thus, 14 lines showed a
high rate of IA (IA > 50%), and a low rate of IA (IA < 10%) was
observed for 19 lines (Figure 2C).

Following successful attachment and vascular connection
during stage 2, O. cumana develops a storage organ called

3https://www.heliagene.org/HaT13l/
“http://www.sunflowergenome.org/

tubercle (stage 3, Figure 1). The RIL population was phenotyped
in pots for stage 3 development of O. cumana race F, by
counting the number of healthy and necrotic tubercles attached
to each sunflower line (Figures 3A,B). The necrosis of the
tubercles was characterized by browning and death of the parasite
(Figure 3A). In contrast, the healthy tubercles remained yellow
and became larger, allowing the next stages of development
of O. cumana (Figure 3B). Although the size of the tubercles
was not systematically measured, the healthy tubercles observed
after 5 weeks were approximately 1 cm in diameter, the bigger
tubercles showing a differentiated bud (Figure 3A).

The number of healthy tubercles observed in the two parental
lines HA89 and LR1 was similarly low: 3.4 and 2.4 tubercles/plant
on average, respectively. Despite the low number of O. cumana
tubercles observed in the two parental lines, the segregating
population allowed a wider range of tubercle development (from
0 to 18 tubercles/plant, Figure 3C). Some lines exhibited a high
resistance level, with less than 1 healthy tubercle in average,
similar to the level of resistance in the resistant line P-96. Highly
susceptible RILs were also found with a susceptible reaction
similar or higher to sunflower line 2603 (12.85 tubercles/plant on
average) (Figure 3C).

Besides the absolute number of healthy O. cumana tubercles
per plant, the rate of necrotic tubercles out of the total tubercles
developed was also calculated as a possible discriminating
mechanism of resistance (Figure 3D). Negligible values of
necrosis of tubercle were observed in O. cumana attached to
either parental lines HA89 and LR1 or in the susceptible control
line 2603. As mentioned above, O. cumana was unable to develop
beyond stage 2 in the resistant control P-96 and in consequence
no tubercles of any kind (healthy or necrotic) were observed.
Most of the RILs induced negligible or low level of necrotic
tubercles (<30%), except for 3 RILs that exhibited an average of
necrosis higher than 50% (Figure 3D).

Evaluation of the Resistance to Race G at Stage 3 of
Broomrape Development

Race G of O. cumana is found only in countries around
the Black Sea. The population was not evaluated in field, for
precautionary quarantine reasons; therefore the resistance level
at stage 3 of tubercle development was measured in a confined
growth chamber. For race G, the number of healthy tubercles
developing on the susceptible line 2603 was 10.88 tubercles per
plant on average and was 7.22 and 8.44 healthy tubercles/plant
on average, for HA89 and LR1 respectively. However, the number
of O. cumana tubercles on the roots of parental lines in race
G was more than twice that in race F. The level of infestation
was also higher in the RILs population when challenged to race
G. Despite no fully resistant RIL (no tubercle development) was
observed, a wider range of responses was observed in the RIL
population when compared with the parental lines (from 1.14
to 16.55 tubercles/plant, Supplementary Figure S2A). Necrosis of
tubercle was not observed except in 8 RILs with an average of
tubercle necrosis higher than 20%. (Supplementary Figure S2B).
Interestingly, two of these RILs also induced significant necrosis
in tubercles when challenged with O. cumana race F. There was
no correlation for number of healthy tubercles in the sunflower
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FIGURE 2 | Description of the resistance mechanism inhibiting O. cumana development at stage 2 in the RIL population HA89xLR1. The photos show
(A) compatible attachment and (B) incompatible attachment between O. cumana and sunflower roots. The arrows indicate the attachment area between the radicle
of O. cumana race F and the sunflower roots. (C) Distribution of the rate of IA counted 2 weeks after infection by O. cumana race F. The data are calculated from at
least 3 replicates for each sunflower line. Replicates with less than 5 attachments (IA + CA) were discarded. The two parental lines HA89 and LR1 showed 3.5 and

46.5% of IA, respectively.
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population between the screenings made with race F and race G
(Supplementary Figure S2C).

Resistance to Race F in the Field

Phenotyping of the RIL population in the field was performed
in 2014 and 2015. In both years, the two parental lines showed
a similar resistance profile to O. cumana race F (Figure 4).
A large number of resistant lines were observed in both years
(12 and 10 RILs showing less than 1 broomrape emergence
per sunflower plant in 2014 and 2015 respectively). In 2015
(Figure 4B), the overall intensity of the attack was higher than
in 2014 (Figure 4A), with a consistent two times (1.94) increase
O. cumana emergence average per sunflower plant across the
entire RIL population allowing to establish a high correlation
between experimental years (Figure 4C).

Plant size can be related with intensity of Orobanche
emergence in the field masking genetic resistance. Vigorous
hosts can increase the chances of parasitic encounter through
bigger root systems or, once Orobanche is attached, they can
provide better nutritive supply, therefore increasing the rate of

parasitic emergence. In order to discover possible associations
between sunflower vigor and the levels of O. cumana emergence
observed in Cordoba, the plant height of the RIL population
was characterized in O. cumana-free field conditions and its
variability (Supplementary Figure S3) was mapped to one
QTL on LG 5 (Supplementary Figure S5). The variability
observed for sunflower plant height was not significantly
related with the level of O. cumana emergence in sunflower
(Supplementary Figure S4).

Correlation between the Resistance Mechanisms at
Stage 2, 3, and 4 of Broomrape Development

PCA analysis was performed to determine the relationship
between the different traits measured for race F of O. cumana
(Figure 5). The first axis of the PCA explained more than
50% of the variability, distinguishing between healthy tubercle
development in pots and shoot emergence in field on the basis
of the rate of IA and the necrosis rate. This PCA analysis
also highlights the correlation between the field observations
in 2014 and 2015, as shown in Figure 4C, as well as the
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lines. Value represents the number of RILs for each range of the number of healthy tubercle or rate of necrotic tubercle per sunflower plant. Five independent

experiments were performed with one single plant per RIL in each experiment.

correlation between susceptibility in the field and the number of
healthy tubercles. Interestingly, the rate of IA and the necrosis
of the tubercles were negatively correlated to the number of
healthy broomrape tubercles and the number of O. cumana
field emergences. When resistance data to race G was added, no
correlation was observed in the RIL population for number of
healthy tubercles (data not shown). This result is consistent with
the data from Supplementary Figure S1C.

Finally, the different RILs were distributed according to the
different axes of the PCA (Figure 6). The parental lines HA89 and
LR1 and the control lines P-96 and 2603 were added to the figure
as supplementary individuals. The population was divided into
three distinct groups. The two smaller groups were composed of
7 and 8 RILs and were grouped with the resistant line P-96 and
the susceptible line 2603, respectively. The majority of the RILs
(86) were grouped together with the two parental lines HA89 and
LR1, exhibiting a partial resistance profile to race F of O. cumana.

QTL Mapping

The 101 RILs were genotyped using a high-throughput
genotyping tool. The genotypic data were used to obtain a
genetic map of 1795.8 cM for the 17 LGs of the sunflower
genome. Twenty one thousand two hundred and one markers
were mapped and located on 951 different genetic bins, with

a mean distance between bins of 1.9 cM. Combined with the
phenotypic data, the genotypic data were used for mapping the
QTLs. A total of 17 QTLs were found to control resistance to
O. cumana race F and G (Figure 7). These QTLs were localized on
9 LGs. None of the QTLs controlling the different resistant traits
for race F were mapped in the same region, and only one QTL
controlling the resistance to race F and G colocalized on LG 9.

From the 13 QTLs, we identified two QTLs with a strong effect.
The first, on LG16, controlled the healthy tubercles of race G of
O. cumana. The second controlled the number of emergences
in the field and was mapped on LG13. This QTL was identified
in both years 2014 and 2015 and was the only one controlling
resistance in the field.

The coordinate of the first axis of the PCA was used to perform
QTL analysis. Four different QTLs were identified. Two of these
QTLs localized with QTLs on LG04 and LG11, controlling the
number of healthy tubercles for O. cumana race F and the rate of
necrotic tubercles for O. cumana race G, respectively. The other
QTLs were also found on LG04 (Figure 7).

Analysis of the additive effect showed that the genetic
resistance to race F of O. cumana at 2 QTLs is coming from LR1
and at 4 QTLs from HA89. The QTLs controlling the number of
emergences, E-2014-F-13.1 and E-2015-F-13.1, explain between
14 and 31% of the variability and the resistant alleles are carried
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FIGURE 4 | Characterization of the resistance level in field at the stage 4 on the RILs population HA89xLR1. Distribution of the number of O. cumana
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(C) Relationship between the number of O. cumana emerged shoots in 2014 and 2015.

by the parental line HA89 (Figure 7B). IA is induced by a locus
from the parental line LR1 (Figure 7B). For the control of race G,
the two most important QTLs identified HT-G-16.1 and HT-G-
16.2, were found on the same LG and are very close to each other.
These two QTLs have 2 distinct parental origins, HT-G-16.1 is
from LR1 and HT-G-16.2 is from HA89 (Figure 7B).

Candidate Gene Mapping

We attempted a candidate gene approach, based on previous
functional results on the plant-parasite interaction. Nucleotide-
binding site leucine-rich repeat (NBS-LRR) proteins play an
important role in plant resistance to pathogens (McHale et al,,
2006). Radwan et al. (2008) have identified several NBS-LRR
homologs in the sunflower. Based on genetic map positions, only
one QTL, “IA-F-15.1” on the LG15, colocalized with one NBS-
LRR gene identified by Radwan et al. (2008). This NBS-LRR gene
was coded by EF559379.1 cDNA.

Li and Timko (2009) were the first to identify gene-for-
gene resistance to parasitic plants, and they have identified
RSG3-301 and its predicted coiled-coil-nucleotide-binding-site-
leucine-rich repeat (CC-NBS-LRR). BlastX analysis of this
protein was performed on the sunflower genome to identify its
homolog, and the 20 best hits were mapped on the sunflower

genome. Interestingly, only three of these homologs colocalized
with QTLs identified to control the resistance to O. cumana.
These homologs colocalized with QTLs controlling broomrape
field emergence (on the LG13, HaT131034464), controlling
the capacity to induce IA (on the LG15, HaT131008311)
and controlling the induction of necrotic tubercle on LG17
(HaT131008327).

Letousey et al. (2007) have identified HaGSLI to be induced
during incompatible interactions between O. cumana and the
sunflower root of LR1. HaGSL1 was mapped on the LG09 of the
sunflower genome, but it was not localized under the QTLs found
on this LG.

DISCUSSION
QTL Mapping

In this study, few phenotypic differences were observed between
the two parental lines HA89 and LRI for races F and G,
as previously observed by Labrousse et al. (2004) for race E.
Interestingly, the IA rate observed for O. cumana race F, was
significantly different between HA89 (3.51%) and LR1 (46.51%).
This difference was not observed at stage 3 of O. cumana
development. It would be interesting to evaluate the two parental
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lines in a kinetic of O. cumana development between 2 to
5 weeks in order to determine the importance of this resistance
mechanism. The RILs population was not suitable to map
major genes because the two parental lines do not exhibit a
clear discriminating resistance profiles at stage 3 and at stage
4 of O. cumana development. The parental lines could also
be monomorphic for loci controlling some traits that will not
allow the detection of these QTLs in our study. However, some
recombinant lines obtained from the cross between HA89 and
LR1 exhibited a higher level of resistance or susceptibility than
the two parental lines, which indicates complex multigenic
control of the resistance that can be increased by particular
allele combinations for several loci. Velasco et al. (2012) showed
that the resistance carried by H. debilis subsp tardiflorus was
monogenic; indicating that the use of some H. debilis accessions
in breeding programs could be an additional way to improve
resistance to O. cumana.

The expression of resistance is complex because it arises from a
combination of several resistance mechanisms acting at different
steps of broomrape development. We mapped QTLs controlling
some of these steps. Even though some traits were correlated
(Figure 5), we never observed QTLs that colocalized in the
same genetic region (Figure 7). We identified only one QTL
explaining more than 30% of the phenotypic variability in the
entire population. Almost all QTLs explained between 9 and 30%
of the phenotypic variation of the traits. This result suggests that
many minor quantitative loci are involved in the expression of
the traits and cannot be detected in our genetic design. The first
report identifying QTLs for broomrape resistance in sunflower
was provided by Pérez-Vich et al. (2004), who mapped 7 QTLs

controlling the resistance to O. cumana race F and found that
each of them had a contribution (R?) varying from 11 to 38%,
similarly to those observed in this study. However, the early stages
of the interaction (Figure 1) were not taken into account in this
previous study. We identified a stable and strong QTL on LG13
for resistance in the field, and our results suggest that the final
expression of the resistance in the field is not correlated with
one specific mechanism but is due to a combination of resistance
mechanisms acting at the early stages of broomrape development.

Race-Specific Quantitative Resistance

The number of healthy tubercles at stage 3 was the trait best
correlated with the number of emergences in the field for race F of
O. cumana (Figure 5). The resistance to race G of O. cumana was
only measured in controlled conditions at stage 3. Compared to
race E, twice more tubercles were observed in the RIL population
using O. cumana race G. These experiments were performed
in same controlled conditions (nutrition, light, temperature and
hygrometry). Then, the differences found between the 2 races
cannot be explained by environmental effects but were due to
the higher virulence of race G. No correlation was observed
between the number of broomrape tubercles found for race F
and G in the RIL population (Supplementary Figure S2C). As
expected, the QTL analysis showed that only two QTLs for
the resistance of both races colocalized on LG09 (Figure 7).
The race-specific resistance to broomrape has previously been
reported for quantitative loci (Pérez-Vich et al., 2004) and for
resistance control by major genes (Vranceanu et al., 1980). The
genetic control of the race-specific resistance in the pathosystem
H. annuus/O. cumana is similar to the one found for downy
mildew in the H. annuus/P. halstedii pathosystem (Vear et al.,
2007). It would be interesting to further explore the genetic
control of the race-specific resistance by dynamic phenotyping of
the interaction from the germination of the broomrape seeds to
the final steps of parasite development. Such experiments could
identify the important steps involved in the interaction for the
different races.

New Phenotyping Tools Need to be

Developed

In our study, the induction of ilAs during the early stages
of development played an important role in the resistance
mechanisms. However, the attachment is a small and difficult
structure to observe. New phenotyping tools are necessary
for a better characterization of the interaction between the
sunflower roots and O. cumana. Furthermore, increasing
the depth (qualitative) and the throughput (quantitative) of
phenotyping would enrich the quality of the genetic analysis.
Such phenotyping methods have successfully been used to
describe the development of the roots. These rapid and efficient
tools have been one of the major challenges of the decade. Several
recent reports have helped to improve the characterization of
the root architecture (Iyer-Pascuzzi et al., 2010; Clark et al,
2013; Slovak et al.,, 2014). Despite the difficulty in observing
the attachment, the IA shows a browning at the point of
attachment between the host and the parasite. These browning
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FIGURE 6 | Phenotypic diversity within the complete RIL population for O. cumana race F. Three groups were found according to the first dimension of the
PCA. They correspond to resistant lines (A), susceptible lines (C) and partially resistant lines (B). The four control lines HA89, LR1, P-96 and 2603 have been added
as additional samples to be shown on the figure but they have not been taken into account in the PCA analysis.

contrasts with the sunflower root could be used to detect IA
in high definition pictures. Furthermore, the development of
high throughput phenotyping tools will allow for the kinetic
analysis of the infection, which could detect new resistance
mechanisms.

Effect of the Environment and Sunflower

Plant Height on Resistance

The same field in Cordoba (Spain) was used to perform two
experiments in 2014 and 2015. We observed a correlation
between data obtained for the whole population during both
years (Figure 4C; Supplementary Figure S4). However, the
number of O. cumana emergences in 2015 was approximately
twice in average the number of emergences in 2014. Temperature
has been shown to have an effect on O. cumana development.
Sukno et al. (2001) and Eizenberg (2003) have found that a
moderate increase of the temperature had a positive effect on
the intensity of sunflower infection by broomrape. The increase
of the infection level between both years could be due to the
increased temperature in Cordoba in 2015 compared to 2014.
We obtained the climatic data for both years® between March
and June. In March 2015, an increase of the mean temperature
of 1°C was observed compared to 2014. After transplanting,
the higher maximal temperature observed during the first week
in 2015 (24.5°C) than in 2014 (17.9°C) could improve the

>http://power.larc.nasa.gov

attachment of the parasite to the host root and could explain
the differences in the number of emergences between both
years. In April, the mean temperature was similar, but the
mean temperatures in May and June 2015 were approximately
2°C higher than in 2014. The effect of the temperature on
the level of infestation did not affect the genetic control of
the resistance. A stable QTL was mapped on LG13 with data
from 2014 and 2015 (Figure 7). Besides temperature, other
environmental factors could influence O. cumana development
across seasons. For the field experiments, we used an artificial
inoculation in controlled conditions during the first 20 days of
the sunflower life. New studies should be conducted to take into
account the soil management, rain, nutritive input, weeds and soil
microflora composition, to provide a complete understanding of
the dynamics of the parasitic interaction and to identify the key
environmental factors affecting the development of O. cumana
and thus indirectly the level of resistance in the sunflower.

It has been observed that the host plant vigor was correlated
with Orobanche shoot emergences in several pathosystems
(Fernandez-Aparicio et al., 2009b, 2012a; Fondevilla et al., 2010).
The same RIL population was evaluated in 2015 in Toulouse
(France) for plant height (as estimate of sunflower vigor). Plant
height in the RIL population showed a normal distribution
(Supplementary Figure S3). No correlation between plant height
and the number of broomrape shoot emergences in field season
2014 and 2015 was observed (Supplementary Figure S4). We
mapped a QTL controlling plant height to LGO05, where no
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resistance QTLs was mapped (Supplementary Figure S5). These
clues indicate that the resistance to O. cumana race F and plant

height are not linked in our RIL population HA89xLR1.

Candidate Genes Located in the QTL

Regions
For breeding programs, the stable QTL found on LG13, which
controls the number of emergences in the field is the one that

could be most rapidly used. Pérez-Vich et al. (2004) have mapped
a QTL controlling resistance to race F in the same genetic region

using a different mapping population (P-21 x P-96). In our
conditions, this QTL explains 15-30% of the overall phenotypic
variability, which is similar to the effect of the QTL reported
by Pérez-Vich et al. (2004). Furthermore, we identified a cDNA
(HaT131034464), showing homology with a gene coding for a CC-

NBS-LRR protein described by Li and Timko (2009) that were
located in the interval support of this QTL. NBS-LRR proteins

Frontiers in Plant Science | www.frontiersin.org

11

May 2016 | Volume 7 | Article 590


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Louarn et al.

Quantitative Resistance to Sunflower Broomrape

play important roles in gene-for-gene resistance (McHale et al.,
2006).

Two NBS-LRR genes (GenBank accession number
EF559379.1 and HaT131008311) were identified in the interval
support of a QTL mapped to LG15. One of these genes encodes
for a NBS-LRR protein (HaT131008311) showing homology to
RSG3-301 that controls the incompatible interaction between
Striga gesnerioides and cowpea (Vigna unguiculata) (Li and
Timko, 2009). These authors found that RSG3-301 induces an
early resistance mechanism and acts on the attachment zone
between the roots of Vigna unguiculata and S. gesnerioides. In
our study, a similar phenotype (IA) was observed and evaluated
for all RILs of the population (Figure 2), and one QTL was found
to control this resistance mechanism on LG15. The attachment
of the broomrape radicle to the sunflower root is an essential
step for the parasite to establish the interaction to redirect
sunflower assimilates for its growth. However, we show that the
sunflower has a resistance mechanism to block this interaction.
In some lines, there is a rapidly incompatible interaction
mechanism. This response is characterized by browning at the
point of attachment between the host and the parasite. A similar
incompatible phenotype of the Orobanche penetration process
has been described in several crop species including Vicia spp.
response to O. aegyptiaca (Goldwasser et al., 2000), and the
response of rice (Gurney et al., 2006) or Sorghum (Mohamed
et al,, 2003) to Striga spp. Further cytological or biochemical
experiments would be needed to investigate the nature of the
incompatible phenotype observed in sunflower resistant RILs.
Several defense mechanisms could underlay the incompatible
phenotype including hypersensitive response (Morel and Dangl,
1997), a rapid and strong resistance reaction usually mediated by
specific recognition of pathogen-derived effectors by the cognate
resistance protein in the host during a gene-for-gene interaction.
To date, the Orobanche-encoded molecular cues that determine
the resistant phenotype in the host are unknown. Identification
of candidate genes by gene expression comparison between
compatible and incompatible interactions could provide a better
understanding of the interaction mechanism.

With a full sequence of the sunflower genome, we could
identify other candidate genes. For all of the candidate genes that
we have identified, more experiments are needed, and it would be
interesting to test their functional roles in resistance by reverse
genetics using EMS mutants (Sabetta et al., 2011; Kumar et al,,
2013) or to measure their expression level in different genotypes
or during the different steps of the interaction.

CONCLUSION

For the first time, the early stages of the O. cumana/H. annuus
pathosystem were used to map QTLs. No pleiotropic QTLs were
found and, these QTLs controlled specific developmental stages.
To complete the overall panel of possible resistance mechanisms,
it is important to characterize the induction of O. cumana seed
germination by sunflower root exudates and the induction of the
haustorium at the genetic level. It was found that the low capacity
to induce broomrape seed germination by the host was a good

way to control broomrape in field (Jamil et al., 2011; Fernandez-
Aparicio et al., 2012b). However, Labrousse et al. (2004) have not
found a correlation between the capacity to induce broomrape
seed germination and the level of infection in the sunflower.

The emergence of new virulent races has frequently been
observed, and new race-specific resistance loci need to be
identified. Even though the introgression of major resistance
genes is an easy and quick solution for breeding, more sustainable
resistance has to be developed. In other pathosystems, the
additive effect of minor QTLs has improved resistance to
broomrape (Fondevilla et al, 2010; Gutiérrez et al., 2013).
Breeding methods that integrate QTLs are a good way to improve
the sustainability of sunflower resistance to broomrape. Our
results show that several quantitative resistance loci can be used.
However, the diversity of broomrape populations needs to be
detailed, and the emergence of new races and new geographical
infected areas must be monitored.

No resistance genes have yet been cloned, and the molecular
mechanism underlying the resistance to O. cumana is poorly
described. One of the main future goals will be to better

understand the interaction between the sunflower and
O. cumana.
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