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Tree rings are natural archives of climate and environmental information with a yearly

resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a

synthesis of several intrinsic and external factors, and their interaction during tree growth.

In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring

anomalies that can be used to better understand tree growth and to reconstruct past

climate conditions with intra-annual resolution. However, the ecophysiological processes

behind IADF formation, as well as their functional impact, remain unclear. Are IADFs

resulting from a prompt adjustment to fluctuations in environmental conditions to avoid

stressful conditions and/or to take advantage from favorable conditions? In this paper we

discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence

of IADFs in different species and environments; (3) the potential of new approaches

to study IADFs and identify their triggering factors. Our final aim is to underscore the

advantages offered by network analyses of data and the importance of high-resolution

measurements to gain insight into IADFs formation processes and their relations with

climatic conditions, including extreme weather events.
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IADF FORMATION AND POSITION

Intra-Annual Density Fluctuations (IADFs) are variations in
wood density that are defined by the presence of earlywood-like
cells within latewood and (or) by the presence of latewood-like
cells within earlywood (Fritts, 2001). Such anatomical structures
may hamper cross-dating and any further analyses of tree-
ring series (Cherubini et al., 2003). Thus, IADFs have long
been considered by dendrochronologists as the “Ugly Duckling”
of wood anatomical features, and species forming them have
often been discarded for climate reconstructions (Lorimer et al.,
1999) and used as indicators of particular events such as
flood-regime or air pollution (see Wimmer, 2002 for review).
During the 2000s, the “Ugly Duckling” turned into a “Beautiful
Swan,” when different studies demonstrated the potential of
these anatomical features for ecological, environmental, and
climatological interpretations (Wimmer et al., 2000; Rigling et al.,
2001; De Micco et al., 2007; Campelo et al., 2007a,b; De Luis
et al., 2007). Since then, the importance of IADFs has been
widely recognized and the number of papers dealing with them
has increased significantly (De Micco et al., 2016). It has been
underlined that IADFs may provide accurate information at the
seasonal level (Glock and Agerter, 1960; Tessier et al., 1997;
Bräuning, 1999; Campelo et al., 2007b; Battipaglia et al., 2010,
2014; De Micco et al., 2012), allowing a more detailed climate
analysis within the growing season (Wimmer et al., 2000; Novak
et al., 2013a,b, 2016).

Variations in IADF features can be used to reconstruct past
environmental conditions, and IADF relative position within the
ring can be used to estimate when a specific environmental factor
occurred (Figure S1). Campelo et al. (2007b) classified a band
of latewood-like cells at the end of earlywood in Pinus pinea
as an “IADF type E+,” corresponding to a gradual transition
from early- to latewood (Figure S1). They suggested that those
IADFs could be linked to soil water conditions during late
spring, hypothesizing that rainfall events in late spring could
delay the transition from early- to latewood. Later in the growing
season the cambium can reverse latewood production forming
again earlywood-like cells. When a band of latewood-like cells
is located within earlywood the IADF is labeled as “type E”
(Campelo et al., 2007b). This type of IADF (Figure S1) seems
to be uncommon in Mediterranean pine species (Vieira et al.,
2010; Rozas et al., 2011; Campelo et al., 2013) probably because
regular weather conditions during spring can assure continuous
growth (Olano et al., 2012), or trees are able to minimize episodic
events of water stress during the early growing season (Loustau
et al., 1996; Borghetti et al., 1998). In contrast, the formation
of IADF type E was found to be rather frequent in other
environments: for example, in Pinus nigra sampled in the Vienna
Basin, this type of IADF was triggered by a combination of wet
April, dry May, and wet June and it was related to the water-
table level (Wimmer et al., 2000). In Erica arborea and Arbutus
unedo, hardwood species growing in the Mediterranean basin,
this type of IADF was also frequent and triggered by summer
drought conditions (Battipaglia et al., 2010, 2014; De Micco
et al., under revision). In hardwood species the comparison of
series of vessel lumen size between tree rings with and without

IADFs suggested that: (a) IADF position is related to the period
of the season when stressful conditions priming the fluctuation
occur, (b) the width of the IADF indicates the duration of
conditions triggering its formation (Campelo et al., 2007a; De
Micco et al., 2014). Most studies dealing with IADFs found that
their frequency increased close to the end of the tree ring (Rigling
et al., 2001; Rozas et al., 2011). Two types of latewood IADFs
have been classified considering the position within latewood:
the first type is characterized by earlywood-like cells within
latewood (IADF L; Figure S1) and the other located between
latewood and earlywood of the next ring and characterized by
intermediate anatomical traits (IADF L+; Figure S1) (Campelo
et al., 2007b). In both cases, they were mainly associated with
favorable conditions occurring after the summer drought, in
early autumn (L) or in late autumn (L+) (Rigling et al., 2001;
Masiokas and Villalba, 2004; Campelo et al., 2007b; Battipaglia
et al., 2010, 2014). Although, this first classification could be
criticized for the fact that IADFs E+ and L+ do not correspond
to a true fluctuation in wood density, it is important to question
the value of the position of IADFs as a proxy for past climate. By
using the relative position of IADFs within tree rings it is possible
to improve the temporal resolution of tree-ring series (De Micco
et al., 2014), especially in areas where the growing season is long,
such as in the Mediterranean region (Rozas et al., 2011; De Luis
et al., 2011a).

The identification of the environmental conditions triggering
IADF formation is based on linear correlations between climatic
variables and IADF chronologies, highlighting the importance of
water conditions during the growing season in their formation.
However, these correlations are not enough to fully understand
the process behind IADF formation, namely at the level of
cambial activity and cell differentiation processes. Are IADFs the
result of cambial reactivation? Are IADF cells already present
in the cambial zone undergoing differentiation? Are latewood
IADFs caused by changes in the cell enlargement and/or cell
wall deposition phase? These are fundamental questions that
can only be answered by monitoring xylogenesis at a weekly
time scale, and relating it to intra-ring variations of cell features.
Studies on cambial dynamics and wood production can help
us to understand the physiological mechanisms behind IADFs
formation (Camarero et al., 2010; Vieira et al., 2015). There
have been recently major developments in this field, leading
to a detailed description of the timings of cambial activity,
duration of cell production and differentiation phases and
response of cambium to environmental conditions in different
species and environments (De Luis et al., 2007; Camarero et al.,
2010; Cuny et al., 2014). These studies showed that cambial
activity in the Mediterranean region presents a high year-to-year
variability, strongly dependent on climate (Vieira et al., 2014a).
Cambial activity in the Mediterranean, as in other temperate
environments, starts in spring in response to warm temperatures
and increasing photoperiod (Vieira et al., 2014b), with periclinal
cell divisions of the vascular cambium and the production
of earlywood tracheids. It reaches a maximum around May
and then, when water becomes less abundant, cambial activity
slowly decreases, reaching a minimum in the summer months
(Camarero et al., 2010), when latewood tracheids are produced
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(Uggla et al., 2001). Water availability is fundamental for
cell division and turgor-driven cell expansion (Kutschera and
Niklas, 2013). Expansion only starts once a threshold of turgor
pressure is achieved and the pressure applied by the water-
filled vacuole against the cell wall determines the tracheid
final size (Oribe et al., 2003). The formation of the latewood
cells is expected during summer, while the earlywood-like cells
can be formed in autumn, if favorable climatic conditions
return. Several studies under Mediterranean climatic conditions
suggested that cambial activity could show a bimodal pattern
with two main peaks: one in spring and the other in autumn
(De Luis et al., 2011a,b; Battipaglia et al., 2014; Vieira et al.,
2015). Since cambial reactivation after a dry summer is not
always observed, a facultative bimodal pattern is the best way
to describe cambial activity in Mediterranean environments. The
tracheids differentiated after summer drought differ from those
previously formed in latewood, since their cell wall thickness to
lumen diameter ratio is lower than in true latewood (Carvalho
et al., 2015; Vieira et al., 2015). Thus, tracheids forming IADFs
L have larger radial cell and lumen dimensions than true
latewood tracheids. Differentiating tracheids can expand beyond
the usual radial diameter of latewood tracheids, if water is
available. Indeed, the lumen area of a tracheid depends on turgor
pressure and duration of cell enlargement (Cuny et al., 2014).
These results suggest that the formation of latewood IADFs
in the Mediterranean area are defined during the enlargement
phase, whereas it is possible that latewood IADFs formed at
higher altitudes and latitudes are caused by changes in the
cell wall deposition phase. In colder environments, tracheid
differentiation must be concluded before the onset of winter
(Rossi et al., 2008) and IADF L+ can be formed if there is not
enough time to complete the deposition phase due to a fast drop
in air temperatures. However, formation and ontogenesis of this
kind of IADFs are still under debate.

IMPACT OF IADFs ON TREE HYDRAULICS

One important gap in IADF research is the functional role played
by these anatomical structures on tree hydraulics (Wilkinson
et al., 2015). It is known that the size of conduits (e.g., tracheids
and vessels) is related to the hydraulic conductivity, while
protection from drought-induced embolism is a function of the
ability to prevent air-seeding and this is strongly related with
the number and size of pits, thus indirectly with lumen size
(Hacke et al., 2004; Pittermann et al., 2006). Earlywood IADFs,
characterized by latewood-like cells within earlywood, potentially
represent a fraction of the earlywood with a lower hydraulic
conductivity, while the opposite occurs for IADFs located in
latewood. Small increases in tracheid lumen can dramatically
increase hydraulic conductivity because flow rate is proportional
to the fourth power of the tracheid radius (Tyree and Ewers,
1991). Thus, it is important to quantify their impact on tree
hydraulics, because currently we only have indirect observations
(Campelo et al., 2007b). It can be assumed that all cells forming
IADFs are conductive in order to quantify IADFs impact on the
total hydraulic conductivity. Afterwards, a more experimental

approach is needed to check if IADFs are functional from a
hydraulic point of view. It is also important to characterize the
cells forming the IADFs, namely their lumen diameter, length,
number, and size of pits, as these anatomical characteristics will
affect their hydraulic conductivity.

OBJECTIVE ASSESSMENT OF IADFs

Visual identification of IADFs in conifers is only possible through
the analysis of variations in tracheid features (e.g., cell and
lumen diameter, and cell-wall thickness). The accuracy of the
visual macroscopic identification of IADFs depends on many
parameters, such as the quality of wood surface polishing,
microscopemagnification and criteria used to distinguish IADFs.
Since visual identification of IADFs is based on qualitative criteria
rather than on quantitative measurements, the subjectivity of the
operator can also be one of the major sources of error. Intra-ring
variations in tracheid anatomy, and consequently IADFs, can
also be identified through quantitative measurements of tracheid
features or tracheidograms (Hetzer et al., 2014; Ziaco et al., 2014;
Carvalho et al., 2015; Campelo et al., 2016) and image analysis
of X-ray densitometry profiles (Cherubini et al., 2013; Gonzalez-
Benecke et al., 2015; Wilkinson et al., 2015). Image analysis
avoids the long and tedious procedure of visual examination
of wood samples and IADF characteristics can be computed
automatically (e.g., relative position within the tree ring and
IADF-band width). Image analysis also precludes the operator’s
subjectivity and provides the size distribution of tracheid features
(e.g., lumen diameter and cell-wall thickness). However, it is
highly recommended that IADFs recognized automatically by
algorithms to be compared with those obtained visually by an
expert of wood anatomy for an initial calibration to guarantee the
correctness of the criteria used for their identification. All general
constraints listed for the identification of IADF in softwoods
apply also to hardwoods, where IADF analysis is even more
complicated due to the occurrence of different cell types and the
spatial distribution of vessels, which are usually not arranged in
regular rows like softwood tracheids. Further studies are needed
because a number of different anatomical functional traits seem
to work for IADF identification in hardwoods, but they appear
to be species-specific (De Micco et al., 2015). Furthermore, the
fact that many features can be involved (e.g., vessel size, fiber wall
thickness, spatial arrangement of cells) opens the possibility to
define new types of IADFs.

Within this framework, sharpening the focus at the tissue
scale and analyzing various xylem histological traits seemingly
represents one of the most promising approaches. Recent
methodological advances in quantitative wood anatomy (Gärtner
and Schweingruber, 2013; Von Arx and Carrer, 2014) allow
efficient development of multi-centennial time series of xylem
anatomical traits mostly related to the type and number of
cells per ring and to cell-lumen and cell-wall dimensions. These
advances not only improve the length of the generated time-
series, but most of all the robustness of the measurements. With
the currently available computer capacity combined with specific
software, accurately tailored to analyze wood anatomical traits,
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it is possible to apply a more thorough and unbiased approach
considering all cells within each wood anatomical image. This
can outperform the previous practice of measuring xylem traits
along a few selected radial cell files as it allows information
to be collected on hundreds to several thousands of cells per
ring (Figure S2). This, together with improved perception of the
long-term ontogenetic change in xylem-cell dimension (Carrer
et al., 2015), clearly opens the door for a sound statistical
analysis not just of IADFs frequency but also on their extension,
intensity, position within the ring, or on the relative role of
different cell traits to classify different IADFs types that cannot
be unambiguously distinguished by visual inspection.

STABLE ISOTOPES APPROACH

Quantitative wood anatomy has recently been coupled with stable
isotope (δ13C and δ

18O) measurements (De Micco et al., 2007;
Vaganov et al., 2009; Battipaglia et al., 2010, 2014) to characterize
IADFs, offering new perspectives in the interpretation of IADFs
in relation to physiological and ecological processes. What
is still unsolved is if the stable isotope signals can help
us to identify the different types of IADFs within a ring.
Battipaglia et al. (2010, 2014) demonstrated with in continuum
stable isotope measurements in hardwood species that IADFs
have a unique isotopic signature linked to their position, and
are completely different from the correspondent well-known
earlywood-latewood isotopic range values (Helle and Schleser,
2004; Vaganov et al., 2009). Here, we performed a preliminary
study analyzing IADFs of different species at different sites (P.
pinea from Italy, Pinus halepensis from Spain and Slovenia;
Pinus pinaster from Portugal, Larix decidua from Poland, and L.
decidua x kaempferi from Austria), in order to verify a possible
common isotopic signal at intra-annual scale for each type of
IADF. IADF L was found in all sites and species, whereas IADF
L+ and E+ were only present in 66% of the sites and type E only
in 50%. The carbon and oxygen isotopic signals of the different
kinds of fluctuations were consistent between sites and species
with differences between IADFs type E, E+, and L and none
between L and L+, supporting the hypothesis that the L+ can be
considered as a transitional wood and not as a true fluctuation
(Table S1, Figures S3, S4). Although a more complete analysis
is required in order to completely understand the link between
isotope signals, position, and climatic parameters triggering
IADF formation, stable isotopes seem to be a powerful tool not
only to increase physiological information on plant responses to
climate, but also for the objective identification of each IADF
type.

IADF OCCURRENCE AND NETWORK
APPROACH

IADFs have been reported in several species (hardwoods and
softwoods), and regions across a wide gradient of temperature
and rainfall availability, from tropical to subarctic, to semi-arid
and arid environments (De Micco et al., 2016). The majority of
studies have been conducted in Mediterranean ecosystems where

the highest frequency of IADFs has been reported, particularly
in conifers such as Pinus spp., and where several efforts have
been made to analyze the characteristics and ecological meaning
of IADFs (Bräuning, 1999; Wimmer et al., 2000; Rigling et al.,
2002; De Micco et al., 2007; Campelo et al., 2007b, 2013, 2015;
De Luis et al., 2007, 2011a,b; Vieira et al., 2009, 2010; Camarero
et al., 2010; Rozas et al., 2011; Nabais et al., 2014; Novak et al.,
2013a,b). Under boreal or temperate climate, IADFs have been
observed in 9% of the tree rings at maximum (Wimmer et al.,
2000; Rigling et al., 2001; Copenheaver et al., 2006), while under
Mediterranean climate, they have been observed in up to 15–32%
of rings (Campelo et al., 2007b; Bogino and Bravo, 2009; Vieira
et al., 2009; Novak et al., 2013a).

The role of sex and genetics on the occurrence of IADFs
has only recently been investigated. Olano et al. (2015),
studying IADF frequency in Juniperus thurifera growing in
two sites with contrasting hydrological conditions in Spain,
reported that female trees present the highest frequency of
IADFs reflecting their opportunistic water use strategy. Tree-
breeding studies have shown the influence of provenance on
tree growth and wood properties (Rozenberg et al., 2002;
Hannrup et al., 2004; Klisz et al., under revision). For example,
Rozenberg et al. (2002) found that different wood density
parameters, including density fluctuations in earlywood and
their position within the tree ring showed high heritability.
However, the effect of provenances on IADF formation has
not been investigated in detail yet, but we can expect that
IADF frequency should differ in provenances with different
growth rates. As experimental approach, we investigated the
influence of provenance on IADF formation by comparing
two contrasting provenances (in terms of tree growth) from a
long-term trial (1970–2011) of Abies alba (George et al., 2015)
grown in eastern Austria. The mean tree-ring width of the
fast-growing provenance (Slovakia, P19; 3.3mm) was twice as
wide than the slow-growing provenance (Italy, P45; 1.5mm).
As expected the highest IADF frequency was observed in the
fast-growing provenance (Figure 1), highlighting the necessity
for further investigation of the genetic influence on IADF
occurrence.

The consistency of the climatic signal among different pine
species and areas suggested that a large-scale network of IADFs
in the Mediterranean region could help to study intra-annual
climate variability (Zalloni et al., 2016). In the framework of the
FPS COST Action FP1106 STReESS (Studying Tree Responses
to Extreme Events: a SynthesiS), a catalog and database of
IADF occurrence and anatomical and isotopic features have
been developed, consisting of data collected on different species
across a large geographical range. This unique and novel catalog
includes IADF identification and measurements in 10 countries,
14 species, and 108 tree populations with a total of 2199 trees
(3670 cores) and 234,262 tree rings. In this perspective we
present a first exploratory analysis on IADFs showing a wide
range of variability in IADF frequency (Figure 2, Table S2), with
sites where IADFs are nearly absent (minimum frequency of
0.9% in high-elevation P. nigra on Corsica) and others where
IADFs are present in nearly all tree rings (maximum of 93%
in P. pinaster in Galicia, Spain). The network approach offers
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FIGURE 1 | Heatmap showing IADFs for two different provenances of Abies alba: a fast-growing (P19, n = 17) and a slow-growing provenance (P45,

n = 24). The slow-growing provenance showed less IADFs (26%) than the fast-growing provenance (70%). Solid lines indicate the tree-ring width and dashed lines

the mean tree-ring width; the mean tree-ring width in the fast-growing provenance (3.3mm) was twice as wide than in the slow-growing provenance (1.5mm).

FIGURE 2 | IADF frequency as observed in the 108 populations included in the catalog created during COST FP1106 “STReESS.” ABSP, Abies species;

ARUN, Arbutus unedo L.; ERAR, Erica arborea L.; LADE, Larix decidua Mill.; LAHY, Larix decidua x kaempferi; LASY, Larix sibirica Ledeb; PIAB, Picea abies (L.) Karst;

PIHA, Pinus halepensis Mill.; PINI, Pinus nigra Arn.; PIPI, Pinus pinaster Aiton; PIPN, Pinus pinea L.; PISY, Pinus sylvestris L.; QUIL, Quercus ilex L.; QURO, Quercus

robur L.

important advantages since it overcomes limitations due to tree-
age and tree-size effects (Vieira et al., 2009; Novak et al., 2013a;
Campelo et al., 2015) and to local replication (Zalloni et al., 2016).
It also provides a unique possibility to interpret the relationship
between IADF frequency and themain climate factors promoting
their formation at a regional scale as described by Zalloni et al.
(2016) for P. halepensis, P. pinea, and P. pinaster across their
distribution range.

CONCLUSIONS

To maximize the extraction of environmental information from
IADFs, more researches on IADF formation and data about
IADF frequency are needed. There is also a need to classify IADFs
more precisely, and to quantify their wood anatomical features.

In this context, a network approach could help to identify not
only the main climatic drivers of IADF formation, but also to
clarify the functional role of IADFs across different environments
and species. The catalog presented here will be further explored
and new data will be welcome from different environments and
species aiming to create a unique network between scientists
working with IADFs. This would help us to answer the large
number of open questions and to fill the current gaps on IADFs
research.

Further, we believe that one urgent issue still under debate is
the identification of IADFs using wood quantitative approaches.
Until now, each operator has used his own ability (that depends
on experience) to recognize IADFs and to assign them to
earlywood or latewood. In many tree species, the correct
identification of IADFs is more difficult because the transition
between earlywood and latewood is not straightforward and
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unequivocal. Given the subjective nature of IADF identification,
the operator must be well trained and experienced. However,
an intrinsic error due to the operator’s subjectivity will always
remain during the process of IADF identification. To overcome
this drawback, machine learning based approaches should be
specifically developed to recognize IADFs.
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