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Rubisco activase (RCA), a key photosynthetic protein, catalyses the activation of
Rubisco and thus plays an important role in photosynthesis. Although the RCA gene
has been characterized in a variety of species, the molecular mechanism regulating
its transcription remains unclear. Our previous studies on RCA gene expression in
soybean suggested that expression of this gene is regulated by trans-acting factors.
In the present study, we verified activity of the GmRCAα promoter in both soybean
and Arabidopsis and used a yeast one-hybrid (Y1H) system for screening a leaf cDNA
expression library to identify transcription factors (TFs) interacting with the GmRCAα

promoter. Four basic leucine zipper (bZIP) TFs, GmbZIP04g, GmbZIP07g, GmbZIP1,
and GmbZIP71, were isolated, and GmbZIP04g and GmbZIP07g were confirmed as
able to bind to a 21-nt G-box-containing sequence. Additionally, the expression patterns
of GmbZIP04g, GmbZIp07g, and GmRCAα were analyzed in response to abiotic
stresses and during a 24-h period. Our study will help to advance elucidation of the
network regulating GmRCAα transcription.

Keywords: Rubisco activase, promoter, basic leucine zipper, soybean, transcription factor

INTRODUCTION

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an abundant and important enzyme
in plants, catalyses the photosynthetic assimilation of atmospheric CO2 and photorespiratory
carbon oxidation (Spreitzer and Salvucci, 2002). In higher plants, Rubisco is a hexadecameric
complex composed of eight large (RbcL) and eight small subunits (RbcS), and its activity in vivo
is known to be regulated by different mechanisms (Stec, 2012). Previous studies have shown
that the activation and maintenance of Rubisco catalytic activity require the continued action
of Rubisco activase (RCA), an ATPase associated with a variety of cellular activities (AAA+)
protein (Andrews et al., 1995; Portis, 2003). RCA is a nuclear-encoded chloroplast protein that
functions as a molecular chaperone and activates Rubisco by removing various inhibitory sugar

Abbreviations: 4-MU, 4-methylumbelliferone; ABA, abscisic acid; AbA, aureobasidin A; GFP, green fluorescent protein;
GUS, β-glucuronidase; RT-PCR, real-time PCR.
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phosphates in an ATP-dependent reaction (Portis, 1990;
Dejimenez et al., 1995). In addition, the expression level of RCA
mRNA has been correlated with Rubisco activity, photosynthetic
rates, seed/grain yield, and chlorophyll fluorescence parameters,
suggesting its potential applicability in breeding for enhancing
soybean productivity (Yin et al., 2010, 2014; Chao et al.,
2014).

In higher plants, the RCA gene is mainly expressed in
photosynthetic tissues and is developmentally regulated by both
light and leaf age (Watillon et al., 1993; Jiang et al., 2013;
Bayramov and Guliyev, 2014; Chao et al., 2014). Levels of RCA
mRNA exhibit cyclic variations during the day/night period in
tomato (Martinocatt and Ort, 1992), apple (Watillon et al., 1993),
rice (To et al., 1999), potato (Jiang et al., 2013), soybean (Chao
et al., 2014), maize (Yin et al., 2014), and Arabidopsis (Liu et al.,
1996). Moreover, RCA expression at the mRNA and protein levels
is reported to be affected by a variety factors, including abiotic
stress such as ozone (Pelloux et al., 2001; Demirevska-Kepova
et al., 2005), drought (Pelloux et al., 2001; Bota et al., 2004; Ji et al.,
2012), UV-B light (Liu et al., 2002), heat (Demirevska-Kepova
et al., 2005; DeRidder and Salvucci, 2007; Scafaro et al., 2010),
and NaCl (Bayramov and Guliyev, 2014). It has been reported
that the RCA protein can also be regulated by Manduca sexta (a
specialist herbivore of Nicotiana attenuata) attack and that RCA
has a function in regulating JA signaling (Giri et al., 2006; Walia
et al., 2007; Mitra and Baldwin, 2008, 2014; Shan et al., 2011;
Attaran et al., 2014). RCA is also regulated in response to ABA
treatment (Fukayama et al., 2010; Zhu et al., 2010).

Gene expression is regulated both quantitatively and
qualitatively by specific sequences upstream of a gene’s coding
region, commonly known as the promoter, which contains
multiple cis-regulatory elements (Mitsuhara et al., 1996). Indeed,
interaction between cis-elements and transcription factors (TFs)
has a critical role in regulating transcription via the coordinated
activation or repression of the target (Ptashne, 2005; Wehner
et al., 2011). Although the RCA gene has been characterized in a
number of species, to date, its promoter has only been studied in
spinach (Orozco and Ogren, 1993), Arabidopsis (Liu et al., 1996),
potato (Qu et al., 2011), rice (Yang et al., 2012), and soybean
(Chao et al., 2014), and the molecular mechanism by which
the RCA promoter is regulated remains to be clarified. It has
been shown in rice that nuclear proteins bind specifically to the
RCA gene promoter (Yang et al., 2012). In soybean, previous
studies have shown that expression of GmRCAβ is controlled
by a combination of both cis-acting and trans-acting expression
quantitative trait loci (eQTLs) (Chao et al., 2014), with GmRCAα
gene expression being mainly regulated by trans-acting factors
(Yin et al., 2010). However, little is known about the specific
proteins interacting with the RCA promoter.

Most plants contain two closely related isoforms of RCA, an
α-isoform of 46–48 kDa and a β-isoform of 41–43 kDa, though
tobacco possesses only the β-isoform (Portis, 2003). The two
isoforms differ by the presence of a carboxy-terminal extension
containing redox-sensitive cysteine (Cys) residues in the former
(Portis, 2003). Although both are capable of activating Rubisco
(Zhang and Portis, 1999), expression of the isoforms often differs
slightly. Previous studies in rice have shown that the expression

level of mRNA encoding the α-isoform increases substantially
after 24 h of heat treatment, whereas expression of the β-isoform
declines (Scafaro et al., 2010) or is unaffected (Wang et al., 2010).
This finding suggests differential regulation of the α-isoform
gene, at least with regard to heat treatment. The soybean isoforms
of RCA, GmRCAα, and GmRCAβ , are encoded by separate genes,
and bioinformatics analysis of their promoters has revealed a heat
shock element in the former that is not present in the latter (Chao
et al., 2014). In the present study, the expression pattern of the
GmRCAα promoter was analyzed in soybean and Arabidopsis.
While investigating the network regulating GmRCAα expression,
we identified two TFs, GmbZIP04g and GmbZIP07g, that bind
to the promoter region. These results might help us better
understand the complicated regulatory network of the soybean
RCA gene, GmRCAα.

MATERIALS AND METHODS

Plant Material and Plant Growth
Conditions
Soybean cultivar Kefeng No. 1 was used in all experiments in
this study, including promoter analysis, gene cloning and gene
expression analysis. The seeds of this cultivar were provided
by Soybean Research Institute, Nanjing Agricultural University,
China, and grown under natural conditions in the field at Jiangpu
Experimental Station, Nanjing Agricultural University. At the R2
stage, the mature upper third of leaves were sampled at different
times (0:00, 6:00, 12:00, and 18:00) to determine GmbZIP04g,
GmbZIP07g, and GmRCAα gene expression levels during a single
day.

Arabidopsis thaliana (Col-0) was used as the wild type.
Sterilized seeds were incubated on MS medium at 4◦C for
3 days before being transferred to a growth chamber (25◦C/22◦C,
300 µmol photons m−2 s−1, 70% relative air humidity and
12-h/12-h light/dark).

Hormone and Abiotic Treatments
Soybean seeds were germinated in plugs containing a mixture of
peat and vermiculite (3:1, v/v), and once the cotyledons were fully
expanded, the soybean seedlings were selected and pre-cultured
in one-half-strength Hoagland’s nutrient solution for 3 days.
The uniformly grown seedlings were washed and transferred to
different abiotic conditions. PEG treatment was carried out by
transferring seedlings to water supplemented with 15% PEG, and
leaves were sampled after 0.5 and 2 h. For ABA and high-salt
treatments, seedlings were transferred to water supplemented
with 250 mM NaCl and 100 µM ABA solutions, respectively.
Control seedlings were submerged in water, and leaves were
sampled at 0, 0.5, 2, 3, and 6 h. All samples were frozen in
liquid nitrogen and stored at −80◦C until further use for RNA
extraction.

RNA Preparation and RT-PCR
Total RNA was isolated from soybean leaf with an RNA Plant
Extraction Kit (Tiangen, China), and approximately 2 µg of
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purified total RNA was reverse transcribed using AMV reverse
transcriptase (Takara) according to the supplier’s instructions.
RT-PCR was performed as described previously (Yin et al.,
2010). The primers used for RT-PCR are listed in Supplementary
Table S1. The soybean endogenous reference gene tubulin
(GenBank: AY907703.1) was used as a control, and three
technical replicates were performed.

Y1H Assay
A soybean cDNA library was constructed from RNAs of the
mature upper-third leaves at the full-seed stage (R6 stage) using
CloneMiner II cDNA Library Construction Kit (Invitrogen). The
cDNA library was then cloned into pGADT7-Rec2-DEST to
generate the library for Y1H screening.

DNA fragments of the GmRCAα promoter and the pG-
box and pmG-box were cloned into the pAbAi vector, then
linearized by BstBI digestion, and transformed into Y1HGold
to generate reporter strains. The pGmRCAα strain was then
transformed with the library. For the Y1H assay, positive colonies
were selected on yeast Leu dropout medium supplemented with
250 ng/mL AbA (Clontech). To reconfirm the Y1H screening
results, the full-length coding sequence of putative candidates
(GmbZIP04g and GmbZIP07g) was cloned into pGADT7, and
Y1H assays were performed according to the manufacturer’s
instructions.

Plasmid Construction and Plant
Transformation
To generate constructs to examine the expression patterns of
GmRCAα, PCR was performed using KOD polymerase (Toyobo,
Japan) and the primers listed in Supplementary Table S1,
the amplifications were then digested with BamHI/PstI. As
a reporter, the fragments were fused with the GUS gene in
the binary vector pCAMBIA1381z (Cambia, Australia); four
constructs, GmRCAαpro(–2205)::GUS, GmRCAαpro(–889)::GUS,
GmRCAαpro(–157)::GUS and pCAMBIA1381z were transformed
into Agrobacterium tumefaciens strain EHA105 using the freeze-
thaw method and then transformed into Arabidopsis using the
floral dip method (Clough and Bent, 1998). T1 seeds were
collected and selected on MS medium containing 25 mg/mL
hygromycin (hyg) and then tested by amplification of a 457-bp
fragment using primer pairs targeting the promoter and GUS
sequences. T3 and T4 homozygous lines were used for further
study. The GmRCAαpro(–2205)::GUS construct was transformed
into soybean cotyledonary nodes, and the transformation was
performed following a previously described method (Zhang et al.,
1999).

Promoter Transactivation Assays Using
Arabidopsis Mesophyll Protoplasts
To generate firefly luciferase reporter construct, a 2205-bp
sequence upstream of GmRCAα was PCR amplified using the
primers listed in Supplementary Table S1, digested with BamHI
and NcoI, and then cloned into pRD29A-LUC (EF090409) to
replace the RD29A promoter in the vector. To prepare effector
TFs, the entire coding region of GmbZIP04g and GmbZIP07g,

without the stop codon TAG, were amplified by PCR. Both
of the fragments were digested with BamHI and ligated to
the same digested HBT95::sGFP(S65T)-NOS vector. The pPTRL
(Renilla reniformis Luciferase driven by 35S promoter) was used
as internal control (Fang et al., 2015).

Arabidopsis protoplasts were isolated and transformed
according to the method described by Wang et al. (2015). The
effector, reporter and internal control were co-transformed into
Arabidopsis protoplasts with 10, 5, and 0.5 µg, respectively.
The protoplasts were incubated under weak light for 12–16 h
before harvesting. Dual luciferase assay was performed with a
Dual-luciferase assay system kit (Promega) according to the
manufacturer’s instructions. Briefly, the transformed protoplasts
were centrifuged at 12000 × g for 15 s at room temperature, and
the supernatant was removed. Then add 100 µl of the Passive
Lysis Buffer with further homogenization. Twenty microliters
of the lysate was mixed with 100 µl of LAR II, and the firefly
luciferase (LUC) activity was measured using a GloMax 20/20
luminometer (Promega). Then 100 µl of Stop & Glo Reagent
was added to the reaction, and the Renilla luciferase (REN)
activity was measured. Four repeats were performed. Differences
were analyzed by one-way ANOVA, with post hoc analysis using
SPSS16.0. ∗∗ denotes significant difference at P = 0.01.

Subcellular Localization
The same effector TF constructs were used to investigate
GmbZIP04g and GmbZIP07g localization. Arabidopsis
protoplasts were isolated and transformed as promoter
transactivation assays. The protoplasts were incubated under
weak light for 12 to 16 h and observed with an LSM 780 Exciter
confocal laser scanning microscope (Zeiss). The excitation
wavelength used for GFP was 488 nm.

Histochemical GUS Staining and Activity
Assay
Transgenic Arabidopsis expressing GUS expression constructs
were collected at several growth stages and subjected to
GUS staining. GUS staining in both transgenic Arabidopsis
and soybean cotyledonary nodes was performed as described
previously, with some modification (Chao et al., 2014). Plant
samples were soaked at 37◦C for 12 h in the GUS assay
solution which included 0.5 mg/ml 5-bromo-4-chloro-3-indolyl
glucuronide, 0.1% Triton X-100, 1 mM K3[Fe(CN)6], 1 mM
K4[Fe(CN)6], 10 mM EDTA and 50 mM sodium phosphate
buffer (pH 7.0) in darkness. The staining solution was then
replaced by 75% ethanol to remove chlorophyll. Ethanol washing
was repeated 3–5 times for 6 h. Then GUS staining was observed
with an Olympus SZX12 stereomicroscope and photographed
with a digital camera (CoolSNAP, RS photometrics). For
transgenic Arabidopsis plants, quantitative analysis of GUS
activity was detected according to the method of Jefferson et al.
(1987).

Transactivation Activity Assay in Yeast
The transactivation activity assay was performed using the
Matchmaker Gold Yeast Two-Hybrid System (Clontech, USA).
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To construct BD-GmbZIP04g and BD-GmbZIP07g, the full-
length coding sequence of GmbZIP04g and GmbZIP07g was
amplified by PCR and then fused into pGBKT7 vector, using
the same primer pairs with that of pGADT7 constructs
(Supplementary Table S1). Combinations of BD-GmbZIP04g and
AD, BD-GmbZIP07g and AD, positive and negative control
vectors were transformed into yeast strain AH109, respectively.
The transformed yeasts were grown on SD/-Trp/-Leu/X-α-gal
(DDO/X) and SD/-Trp/-Leu/-His/-Ade/X-α-gal (QDO/X) agar
plates. After 3 days growth in dark, the plates were photographed.

RESULTS

GUS Expression Driven by the GmRCAα
Promoter in Soybean Cotyledonary
Nodes
To determine whether the promoter sequence of the GmRCAα
gene is able to activate GUS expression, we carried out a
transient assay by cloning a 2205-bp promoter fragment of
GmRCAα, referred to as GmRCAαpro(–2205)::GUS, upstream of
the GUS reporter gene. Subsequent staining results indicated that
GmRCAαpro(–2205)::GUS can drive GUS expression in soybean
cotyledonary nodes (Figure 1).

Expression Patterns and Deletion
Analysis of the GmRCAα Promoter in
Arabidopsis
To analyze the function of the GmRCAα promoter, two
deletion mutants were fused with the GUS reporter gene
[named GmRCAαpro(–889)::GUS and GmRCAαpro(–157)::GUS]
(Figure 2A) and transformed into Arabidopsis, as was
GmRCAαpro(–2205)::GUS.

β-Glucuronidase staining revealed a detailed temporal and
spatial expression pattern for GmRCAαpro(–2205) ::GUS. In
young seedlings, staining was observed mainly in green tissues,
including cotyledons, true leaves and hypocotyls, but not in roots
(Figure 2B), whereas in mature plants, GUS activity was found in
leaves, particularly in vascular tissues, stems, green siliques and
flower sepals (Figure 3).

β-Glucuronidase staining of 7-day-old green seedlings
grown under a 12-h/12-h light/dark photoperiod showed
that GmRCAαpro(–2205)::GUS, GmRCAαpro(–889)::GUS and
GmRCAαpro(–157)::GUS were all able to drive GUS expression
(Figure 2B), with expression driven by GmRCAαpro(–2205)::GUS
being stronger than that by GmRCAαpro(–889)::GUS and
staining for GmRCAαpro(–889)::GUS being stronger than that
for GmRCAαpro(–157)::GUS (Figure 2C). Etiolated dark-grown
seedlings showed similar staining. These results indicated that
positive regulatory elements may be located in the regions
extending from−2205 to−889 and from−889 to−157.

Identification of bZIP TFs Interacting
with the GmRCAα Promoter
To identify putative TFs regulating GmRCAα expression, a Y1H
assay was carried out to identify proteins interacting with the

GmRCAα promoter. A 2205-bp fragment upstream the ATG start
codon of GmRCAα was initially used as bait, but 500 ng/mL
AbA did not suppress basal expression in the reporter strain.
Then, a 1459-bp GmRCAα promoter was isolated and applied
for screening a soybean cDNA library. Among the positive clones
(Supplementary Table S2), four TFs belonging to the basic leucine
zipper (bZIP) family appeared 17 times during screening and
were thus analyzed further. The corresponding gene names are
Glyma04g04170, Glyma06g04353 (GmbZIP71) (Liao et al., 2008),
Glyma07g33600, and Glyma02g14880 (GmbZIP1) (Gao et al.,
2011), which we refer to herein as GmbZIP04g, GmbZIP71,
GmbZIP07g, and GmbZIP1.

Multiple alignments for GmbZIP04g, GmbZIP71,
GmbZIP07g, GmbZIP1, and four other ABF proteins of
Arabidopsis thaliana revealed high sequence identity. As shown
in Figure 4A, these four proteins possess a conserved bZIP
domain at the C-terminus, a putative nuclear localization signal
(NLS) and four additional conserved domains, three at the
N-terminal half (C1, C2, and C3) and one at the C-terminal end
(C4) (Fujita et al., 2005; Huang et al., 2010; Gao et al., 2011). Based
on the characteristics of the conserved domains, we assigned
these four bZIP proteins of soybean to the ABF subgroup of the
bZIP family. A phylogenetic tree constructed using amino acid
sequences of GmABFs (GmbZIP04g, GmbZIP71, GmbZIP07g,
and GmbZIP1) and bZIP groupA proteins from Arabidopsis
thaliana (Jakoby et al., 2002) presented that GmABFs are most
closely related to AtABF1-4 proteins (Figure 4B), with GmbZIP1
having high similarity to GmbZIP07g (86.00%) and GmbZIP71
sharing 87.76% similarity with GmbZIP04g.

Based on the phylogenetic relationship, we verified whether
two of these bZIP TFs, GmbZIP04g, and GmbZIP07g, are
able to bind the GmRCAα promoter using the full-length
ORF in a second Y1H assay (Figure 5A). Y1H assays were
also conducted to identify which TF region is responsible
for binding to the GmRCAα promoter. Given the sequence
similarity (44.42%) between GmbZIP04g and GmbZIP07g and
their highly conserved domains, GmbZIP07g was selected for
further analyses. Two fragments of GmbZIP07g were generated
based on the bZIP domain of bZIP family proteins; the
corresponding constructs were named GmbZIP07-N(1-345AA)
and GmbZIP07-C(346-430AA). Deletion of the C-terminal 84
amino acids of GmbZIP07g resulted in a lack of binding to the
GmRCAα promoter (Figure 5A). Thus, GmbZIP07g possesses
binding activity, and this activity resides within the C-terminal
region.

GmbZIP04g and GmbZIP07g Interact
with a Specific Sequence in the
GmRCAα Promoter
Numerous bZIP proteins have been reported as interacting
with the ABRE or G-box (CACGTG) (Huang et al., 2010;
Dai et al., 2013). According to a bioinformatics analysis of
the GmRCAα promoter, only one conserved ABRE/G-box
(CACGTG) is present in the 1459-bp fragment. Therefore, we
examined whether GmbZIP04g and GmbZIP07g bind to a 21-nt
G-box/ABRE-containing sequence.
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FIGURE 1 | Histochemical staining of soybean cotyledonary nodes driven by the promoter sequence of GmRCAα. (A) Negative control pCAMBIA1381z;
(B) positive control pCAMBIA1301; (C) GmRCAαpro(–2205)::GUS.

FIGURE 2 | GUS activity in transgenic Arabidopsis. (A) The diagram shows GmRCAα promoter 5′ terminal deletion mutant constructs fused with the reporter
gene GUS. (B) Histochemical staining of transgenic Arabidopsis. (a–d) Green seedlings grown under a 12-h/12-h light/dark photoperiod; (e–h) etiolated seedlings
grown in the dark. a and e, b and f, c and g, and d and h represent transgenic seedlings expressing GmRCAαpro(–2205)::GUS, GmRCAαpro(–889)::GUS,
GmRCAαpro(–157)::GUS and pCAMBIA1381z, respectively. (C) GUS activity assay of the green and etiolated seedlings indicated in (B). Error bars represent SE
(n = 3). 4-MU, 4-methylumbelliferone.
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FIGURE 3 | GUS staining for GmRCAαpro(–2205)::GUS activity in transgenic Arabidopsis. (A) A mature leaf from a 2-week-old seedling; (B) flowers;
(C) mature silique; (D) stem.

Both this G-box containing sequence (pG-box, AGTTGC
CACGTGGCAGCCAAG, G-box core sequence was underlined)
and a mutated G-box sequence (pmG-box, AGTTGC
AACGACGCAGCCAAG, mutant sequence of the G-box is
underlined) were prepared as reporter strains, and DNA-binding
activity was determined using a Y1H assay. Figures 5B,C
shows that the clones harboring GmbZIP04g, GmbZIP07g,
and GmbZIP07-C grew well on SD/-Leu/AbA250 medium with
the pG-box reporter strain, whereas GmbZIP07-N and the
negative control (empty pGADT7 AD vector) did not grow.
Thus, GmbZIP04g and GmbZIP07g specifically bound the
G-box/ABRE-containing sequence through the C-terminus of
GmbZIP07g. Furthermore, no clones grew with the pmG-box
reporter strain, indicating that the CACGTG motif is essential
for DNA binding.

GmbZIP04g and GmbZIP07g Are
Localized in the Nucleus and Exhibit
Transactivation Activity in Yeast
GmbZIP04g and GmbZIP07g are TFs, and both have a nuclear
localization signal near the C terminus, suggesting that they
may be localized to the nucleus. To determine the intracellular
localization of GmbZIP04g and GmbZIP07g, we transiently
transformed GmbZIP04g-sGFP and GmbZIP07g-sGFP into
Arabidopsis protoplasts and found GmbZIP04g and GmbZIP07g
in the nucleus (Figure 6).

To evaluate whether GmbZIP04g and GmbZIP07g are able to
activate transcription, full-length GmbZIP04g and GmbZIP07g

were fused to the GAL4 DNA-binding domain (GAL4-BD)
in the pGBKT7 vector. The constructs were co-transformed
into yeast strain AH109 with pGADT7, then screened on
DDO/X and QDO/X media. By X-α-Gal assay, the GmbZIP04g
and GmbZIP07g yeast clones were weak blue in colour
(Figure 7), indicating that GmbZIP04g and GmbZIP07g possess
transactivation activity in yeast.

Expression Patterns of GmbZIP04g,
GmbZIP07g, and GmRCAα
Tissue analysis of GmbZIP04g and GmbZIP07g revealed
expression in root, stem, flower, leaf, and seed (Figures 8A,B);
as GmRCAα was mainly expressed in leaf (Figure 8C), we chose
this tissue for further study. The expression of GmbZIP04g,
GmbZIP07g, and GmRCAα was analyzed in plants subjected
to PEG, ABA, and NaCl stresses. As shown in Figures 9A–C,
GmRCAα exhibited a slight change at 3 h and was almost the
same as the control at 6 h under all these treatments. After PEG
treatment, the expression of GmbZIP04g was higher than that
in the control, and GmbZIP07g showed a lower expression at
0.5 h followed a higher level at 2 h compared to the control.
The transcript level of GmbZIP04g was lower than that in the
control at 3 h but was significantly higher at 6 h when subjected
to ABA treatment. With ABA and NaCl treatments, continuous
accumulation ofGmbZIP07g transcript was observed at 3 and 6 h,
and a similar pattern for GmbZIP04g was observed in response to
NaCl treatment. The upper-third leaves of soybean were sampled
at 6-h intervals for 24 h, and RT-PCR assays were then performed.
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FIGURE 4 | Continued
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FIGURE 4 | Continued

Amino acid sequence alignment and phylogenetic analysis of GmABFs. (A) Sequence alignment of GmABFs and AtABFs. The alignment was generated
using CLUSTALX (version 1.83) and viewed using the GeneDOC program (version 2.6.0.2). The basic region and the three heptad leucine repeats, three important
bZIP signatures, are shown as purple line and arrows, respectively. C1, C2, C3, and C4 are conserved regions containing serine ( ) and threonine (H) residues. The
NLS, the putative nuclear localization signal, is indicated by a black diamond. The red square indicates the boundary between the N- and C-terminal of GmbZIP07g.
∗ indicates that this position is an odd multiple of 10. (B) Phylogenetic tree of GmABFs and Arabidopsis thaliana bZIP group A proteins using MEGA6.06. The protein
sequences were obtained from Phytozome (http://www.phytozome.net/) and The Arabidopsis Information Resource (http://www.arabidopsis.org/).

FIGURE 5 | Identification of proteins interacting with pGmRCAα, pG-box, and pmG-box reporter strains by a Y1H assay. The promoter of GmRCAα,
G-box sequence, and mutated G-box were cloned upstream of the AbA resistance (AbAr) gene and integrated into Y1HGold to generate reporter strains. The
reporter strains were transformed with the effector transcription factors (TFs) indicated on the left, and growth was recorded for 3 days at 30◦C in the absence or
presence of 250 ng/mL AbA. (A) pGmRCAα reporter strain. (B) pG-box reporter strain. (C) pmG-box reporter strain.

The results showed that the transcripts of GmbZIP04g and
GmbZIP07g increased from 0:00 to 12:00, reaching a peak at noon
and then decreasing, whereas the maximal level of GmRCAα
was detected at 6:00 (Figures 10A–C). Our results suggest that
GmbZIP04g, GmbZIP07g, and GmRCAα may be regulated in
response to abiotic stresses and light.

DISCUSSION

The genes encoding two RCA isoforms, GmRCAα and GmRCAβ ,
have been previously characterized (Yin et al., 2010). In addition,
the levels of GmRCAα and GmRCAβ gene expression have
been positively correlated with Rubisco initial activity, PN,
chlorophyll fluorescence parameters and seed yield, indicating
that RCA genes may play important roles in regulating soybean
photosynthetic capacity and enhancing soybean productivity
(Yin et al., 2010; Chao et al., 2014). Here, we report the
expression patterns of GmRCAα by examining the activity of
its promoter. The GmRCAα promoter was able to drive GUS
expression in soybean cotyledonary nodes (Figure 1), and GUS
staining in Arabidopsis revealed expression mainly in green
tissues (Figure 2), which is similar to that of Arabidopsis and rice
RCA genes (Liu et al., 1996; Yang et al., 2012). We also found
that a 157-bp fragment upstream of the ATG to be sufficient

for tissue-specific expression in transgenic Arabidopsis. Minimal
promoters conferring RCA gene expression in Arabidopsis, rice,
and spinach were previously identified within 317 bp, 297 bp,
and 294 bp upstream of the transcription initiation site (Orozco
and Ogren, 1993; Liu et al., 1996; Yang et al., 2012). These
results suggest that basal and/or important elements are located
proximal to the 5′-untranslated region in both dicots and
monocots.

Although numerous studies have shown that RCA gene
and/or protein expression is affected by various factors, such
as biotic (Mitra and Baldwin, 2014) and abiotic (Ji et al.,
2012; Chen et al., 2015) stresses, there are no reports to date
on the direct transcriptional regulation of RCA. Regulatory
TFs activate or repress transcription of their target genes
by binding to cis-elements, which are frequently located
in a gene’s promoter. In this study, Y1H screening was
performed to investigate the upstream regulators of GmRCAα.
We isolated and identified four bZIP proteins, GmbZIP1,
GmbZIP04g, GmbZIP71, and GmbZIP07g, as interacting with
the promoter sequence of GmRCAα (Figure 5). To the best of
our knowledge, this is the first report of interaction between
the RCA promoter and a TF. Furthermore, we found that
it is the C-terminal conserved bZIP domain of GmbZIP07g,
but not the N-terminus, that interacts with the GmRCAα
promoter (Figure 5). This result suggests that the C-terminal of
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FIGURE 6 | Nuclear localization of GmbZIP04g and GmbZIP07g in Arabidopsis leaf protoplasts. Confocal laser scanning microscope images of leaf
protoplasts transiently expressing (A) HBT95::sGFP(S65T)-NOS, (B) GmbZIP04g-sGFP, and (C) GmbZIP07g-sGFP. Column 1, GPF signal (green); column 2,
chlorophyll autofluorescence (red); column 3, merged GFP and chlorophyll signals. Scale bars represent 20 µm.

GmbZIP07g may play a crucial role in downstream promoter
elements binding.

Expression QTL analysis can provide tremendous insight
into the biology of gene regulation, indeed, measurements
of gene expression of a population helps us to learn which
types of SNPs are most likely to affect gene regulation (Gilad
et al., 2008). Biological processes are complex networks of
physical interactions between various molecules, and one type
of interaction occurs between TFs and their target DNA sites,
generally cis-elements in the promoter of a gene, to up-regulate
or down-regulate expression. The Y1H assay used in this study
is one method for detecting protein–DNA interaction (Reece-
Hoyes and Marian Walhout, 2012). However, GmbZIP04g,
GmbZIP07g, GmbZIP1, and GmbZIP71 were not detected by
eQTLs in our previous study (Yin et al., 2010; Chao et al., 2014);
possible explanations for this might be the lower marker density
(Zhao et al., 2011), a statistical reason that many distal eQTLs
are missed (Gilad et al., 2008), and non-genetic factors such as
environmental variation.

Plant bZIP family members regulate various processes,
such as pathogen defense, light and abiotic stress signaling,
hormone signaling, energy metabolism, and development,
including flowering and seedling maturation (Jakoby et al., 2002;
Llorca et al., 2014). Among light-regulated bZIP proteins in
Arabidopsis (Jakoby et al., 2002) and rice (Nijhawan et al.,
2008), AtHY5 has been well documented as a critical regulator
of photomorphogenesis (Chen et al., 2008). The conserved
sequence motif CACGTG, generally known as the G-box or
“ABA-responsive” element (ABRE), is present in the promoter
regions of many light-regulated genes (Choi et al., 2000; Uno
et al., 2000; Jiao et al., 2007; Xu et al., 2014). Numerous bZIP
class proteins have been isolated, and experiments have shown
that these factors can interact with the ABRE or G-box both
in vivo and in vitro (Huang et al., 2010; Dai et al., 2013).
Previous studies have reported that many bZIP proteins bind
to a G-box/ABRE element, which contains an ACGT core
motif. For example, AtABF proteins 1–4 were isolated by a
Y1H system using a prototypical ABRE, the Em1a element
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FIGURE 7 | Transactivation assay of GmbZIP04g and GmbZIP07g in the yeast strain AH109. Positive control (pGADT7-T and pGBKT7-53); Negative control
(pGADT7-T and pGBKT7-lam); BD-GmbZIP04g and pGADT7; BD-GmbZIP07g and pGADT7. The SD/-Trp/-Leu/X-α-Gal (DDO/X, Upper) and
SD/-Trp/-Leu/-His/-Ade/X-α-Gal (QDO/X, Lower) plates were incubated at 30◦C for 3 days and then visualized.

FIGURE 8 | Tissue-specific expression of GmbZIP04g (A), GmbZIP07g (B), and GmRCAα (C). Transcript expression levels were measured by RT-PCR. Total
RNA was isolated from soybean roots, stems and leaves harvested at the seedling stage, from flowers harvested at the R2 stage (flowering) and from seeds
harvested at the R6 stage (full seed). Tubulin was used as an internal control, and error bars represent the standard error of three independent repetitions.

(GGACACGTGGCG) (Choi et al., 2000). In the present study, we
also found that GmbZIP04g, GmbZIP07g and the C-terminus of
GmbZIP07g interact with a 21-nt DNA sequence containing the
G-box/ABRE element (Figure 5) using a Y1H assay, suggesting
that GmbZIP04g and GmbZIP07g might directly regulate the
expression of GmRCAα through this region. The bZIP TFs
GmbZIP04g, and GmbZIP07g are localized in the nucleus and
exhibit transactivation activity in yeast cells (Figures 6 and 7),
in agreement with their homologs, such as AtABF2 and AtABF4
(Uno et al., 2000; Yoshida et al., 2010).

All of GmRCAα, GmbZIP04g, and GmbZIP07g are expressed
in leaf (Figures 8A–C), suggesting a functional role in this
tissue. GmbZIP04g and GmbZIP07g revealed a higher expression
in root, while the expression of GmRCAα in root was almost
undetectable, we suppose that GmbZIP04g and GmbZIP07g
may have other interacting promoters in addition to that of
GmRCAα. And a possible explanation for low expression of
GmRCAα in root may be due to the function of its unknown
repressors. As the ABRE is involved in abiotic stresses (Choi

et al., 2000; Gao et al., 2011), it would be interesting to investigate
the involvement of GmbZIP04g, GmbZIP07g, and GmRCAα

in abiotic stresses in soybean. The levels of GmbZIP04g,
GmbZIP07g, andGmRCAα transcripts were examined in soybean
seedlings upon abiotic stresses, and RT-PCR analysis showed that
expression of GmbZIP04g and GmbZIP07g was highly induced
after ABA and NaCl treatments, whereas the transcriptional levels
of GmRCAα appeared to be unchanged (Figure 9). GmRCAα
mRNA expression only showed a slight change after PEG and
ABA treatments. One possible explanation for the lack of an
immediate effect on the transcriptional levels of GmRCAα with
GmbZIP04g and GmbZIP07g induction may due to competition
with other TFs that activate or repress the expression of
GmRCAα. In addition, ABFs are extensively regulated at the
post-transcriptional level (Fujita et al., 2013), and as a result,
an increase in transcript levels may not always correlate directly
with an increase in protein levels. Furthermore, ABFs or AREBs
in Arabidopsis were shown to interact with other proteins, form
homo- and/or heterodimers (Kim et al., 2004a; Choi et al., 2005;
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Lee et al., 2010; Yoshida et al., 2010), suggesting a potential
mechanism for generating diversity in these protein regulation
networks. Such interaction between the two GmbZIP proteins

may be examined in the future. As RCA diurnally regulated in
higher plants (Chao et al., 2014; Yin et al., 2014), we examined
the expression levels of GmbZIP04g and GmbZIP07g at different

FIGURE 9 | Time-course expression analysis of GmbZIP04g, GmbZIP07g, and GmRCAα. (A–C) Soybean seedlings were exposed to PEG (15%), NaCl
(250 mM), ABA (100 µM), and water treatments. GmbZIP04g expression under water treatment at 0 h was used as the reference for the basal expression level. The
left y-axis indicates the relative expression level of GmbZIP04g and GmbZIP07g, and the right y-axis represents the expression of GmRCAα. Tubulin was used as an
internal control. Error bars represent the SE (n = 3).

FIGURE 10 | Diurnal pattern of GmbZIP04g (A), GmbZIP07g (B), and GmRCAα (C) mRNA accumulation in soybean leaves. Total RNA was extracted at
0:00, 6:00, 12:00, and 18:00 from the upper-third leaves of soybean plants at the R2 stage. Tubulin was used as an internal control, and error bars represent the SE
(n = 3).
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time points. Our RT-PCR analysis showed that GmbZIP04g
and GmbZIP07g expression increased from midnight to noon,
suggesting that these genes may have a diurnal expression
pattern similar to that of GmRCAα, ABF3 (Seung et al., 2012)
and GmbZIP1 (Marcolino-Gomes et al., 2014). However, the
maximal transcript level of GmRCAα appeared at 6:00, earlier
than GmbZIP04g and GmbZIP07g, both of which reached their
peaks at 12:00; thus, we infer that other TFs may be involved in
this process.

In higher plants, Arabidopsis protoplasts system was widely
used to study the regulation between TFs and its binding
promoter (Yi et al., 2010; Figueiredo et al., 2012; Wang et al.,
2015). A transient assay in Arabidopsis protoplasts was performed
to investigate the effects of GmbZIP04g and GmbZIP07g on
GmRCAα promoter activity, and the LUC/REN values of
GmbZIP04g and GmbZIP07g were higher than that of the
empty vector (Supplementary Figure S1 and Supplementary
Table S3). Further studies with transgenic approaches will help to
understand the precise functions of GmbZIP04g and GmbZIP07g
on the expression of GmRCAα.

In recent years, cross-talk between light and ABA as well
as sugar and ABA are being increasingly studied. The plant
hormone ABA plays essential roles during many phases of the life
cycle and adaptation to environmental stresses, such as stomatal
closure in response to drought. It was reported that light and ABA
signaling are integrated at the promoters of HY5 (Chen et al.,
2008) and ABI5 (Xu et al., 2014), which are bZIP proteins, during
seed germination and early seedling development. Carbohydrates
are the end products of photosynthesis, and ABF proteins
are also involved in sugar signaling (Kim et al., 2004b). In
addition, ABA and sugar have been shown to suppress many
photosynthetic genes, including RBCS and CAB (Rook et al.,
2006), and bZIP TFs were found to mediate the effects of sugar
signaling on gene expression and metabolite content (Hanson

and Smeekens, 2009). Moreover, interaction between ABA and
Rubisco was recently identified biochemically (Galka et al., 2015),
and RCA is a type of chaperone that functions to promote and
maintain the catalytic activity of Rubisco, which is a crucial
photosynthesis protein (Portis, 2003). Our research identified
two bZIP TFs, GmbZIP04g and GmbZIP07g, interacting with
the soybean GmRCAα promoter in yeast. However, it remains
largely unknown how these two TFs are involved in the regulation
of GmRCAα gene expression in soybean. Further studies on
the relationship between GmRCAα and the TFs, GmbZIP04g
and GmbZIP07g, in soybean are necessary to fully elucidate the
complex regulatory mechanism of GmRCAα expression and to
help unravel the function of these proteins in the regulation of
photosynthesis processes.
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