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The perennial and evergreen twining vine, Lonicera japonica is an important herbal

medicine with great economic value. However, gene expression information for flowers

and leaves of L. japonica remains elusive, which greatly impedes functional genomics

research on this species. In this study, transcriptome profiles from leaves and flowers

of L. japonica were examined using next-generation sequencing technology. A total

of 239.41 million clean reads were used for de novo assembly with Trinity software,

which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were

annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups), GO (Gene

Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. A total

of 35,327 differentially expressed genes (DEGs, P ≤ 0.05) between leaves and flowers

were detected. Among them, a total of 6602 DEGs were assigned with important

biological processes including “Metabolic process,” “Response to stimulus,” “Cellular

process,” and etc. KEGG analysis showed that three possible enzymes involved in the

biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based

regulation network in L. japonica identified three differentially expressed transcription

factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica.

Taken together, this study has provided a global picture of differential gene expression

patterns between leaves and flowers in L japonica, providing a useful genomic resource

that can also be used for functional genomics research on L. japonica in the future.

Keywords: Lonicera japonica, transcriptome, transcription factors, differentially expressed genes (DEGs), network

INTRODUCTION

As a perennial, evergreen and twining vine, Lonicera japonica Thunb is widely cultivated in Asian
countries such as China, Japan, and Korea (He et al., 2010). Pharmacological study has reported
that L. japonica is used as a herbal medicine with anti-bacterial, anti-viral, anti-endotoxin, anti-
inflammatory, and anti-pyretic effects (Hong et al., 1997). Therefore, L. japonica is often used
to treat some human diseases including severe respiratory syndromes, H1N1 flu and hand-foot-
and-mouth disease (Yuan et al., 2014a). L. japonica is also used as food, and worldwide as a
healthy beverage, which recently led to the rapid increase in commercial value of Flos Lonicerae
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Japonicae (the L. japonica flower bud) in herbal medicine
trading markets (Wang, 2010). Gene expression profiles of
some important genes involved in chlorogenic acid and luteolin
biosynthesis in L. japonica have been reported (Yuan et al.,
2014b). Recently, next-generation sequencing (NGS) technology
was used to examine transcriptome profiles of L. japonica. For
example, there were 51,500 unigenes from L. japonica buds
and leaves generated using the Roche/454 GS FLX platform
(He et al., 2013). Also, over 32 million reads and over 6000
expressed sequence tags (ESTs) from L. japonica buds were
obtained using the Illumina GAII platform (Illumina Inc., San
Diego, CA, USA; Yuan et al., 2013). These studies discovered
some important genes associated with the biosynthesis of active
ingredients and provided an effective resource to studymolecular
genetics and functional genomics of L. japonica (He et al.,
2013; Yuan et al., 2013, 2014a). NGS technology provides rapid
and effective genome-wide transcriptome analysis and is now
widely applied in many areas including biological, medical, and
clinical drug development research. NGS technology provides
a more sensitive and accurate way of analyzing transcriptome
profiles, in contrast with microarray and other technologies
(Schuster, 2008; Shendure and Ji, 2008; Wang Z. et al., 2009).
Furthermore, NGS allows the discovery of novel and rare
transcripts and the accurate quantification of gene expression
(Cloonan et al., 2008; Shi et al., 2011; Tang et al., 2011; Yang
et al., 2011). Various studies have reported that short sequencing
reads have been successfully used for de novo genome and
transcriptome assembly in organisms without genome reference,
which greatly facilitated functional genomics study of many
non-model plants (Knowles and McLysaght, 2009; Zhang et al.,
2012; Marcolino-Gomes et al., 2013; Paritosh et al., 2013; Wang
et al., 2013; Kim et al., 2014; Mudalkar et al., 2014; Zhou et al.,
2014).

In this study, the transcriptome profiles of leaves and flowers
in L. japonica were characterized by NGS. Over 200 million
clean reads were generated using the Illumina Hiseq 2000
platform. De novo assembly of the L. japonica transcriptome was
performed using the Trinity program (Grabherr et al., 2011).
There were 150,523 unigenes obtained with an average length
of 632 bp and an N50 of 947 bp. All unigenes were annotated
with available protein and nucleotide databases. Furthermore,
differentially expressed genes (DEGs) between leaves and flowers
were identified and the three most important pathways were
revealed by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis. Finally, multiple
transcription factors (TFs) were detected in unigene libraries of
leaves and flowers. Taken together, the transcriptome assembly
and annotation of L. japonica tissues provide important genome
information that will facilitate functional genomic research and
metabolism regulation of medicinal composition in L. japonica
in the future.

MATERIALS AND METHODS

Plant Material and RNA Isolation
The flowers and leaves of L. japonica were harvested and
stored at −80◦C. TRIzol (Invitrogen) was used to isolate total

RNAs of the flowers and leaves according to the manufacturer’s
instructions. An Agilent 2100 Bioanalyzer (Agilent Technologies
Inc.) was used to assess the integrity of the isolated total RNAs.
DNase I (Promega) was then used to remove genomic DNA
contamination. The isolated total RNAs were further quantified
using a NanoDrop spectrophotometer (Thermo Fisher Scientific
Inc.), and the purity of the total RNAwasmeasured by calculating
the A260/280 and A260/230 ratios. Finally, the purified RNA was
dissolved in RNase-free water and stored in a−80◦C freezer.

cDNA Preparation and Sequencing
cDNA libraries were prepared using a TruSeqTM RNA sample
preparation kit (Illumina) according to the manufacturer’s
instructions. In short, poly-A mRNA from total RNA of the
flowers and leaves was purified using oligo (dT) magnetic
beads (NEB). The collected mRNAs were first fragmented and
further used to synthesize first-strand cDNAs with hexamer
and reverse transcriptase (Promega). Subsequently, the second-
strand cDNAs were synthesized with DNA polymerase I and
RNase H. The obtained cDNA fragments were then purified, end-
repaired, A-tailed and ligated to index adapters (Illumina). The
ligation products were amplified by PCR and sequenced using the
Illumina HiSeq2000 platform and a 100-bp pair-end sequencing
protocol was employed.

De novo Transcriptome Assembly
De novo assembly of the unigenes in L. japonica was performed
as described by Zhang et al. (2013). Briefly, Illumina Pipeline
software was first used to transform the raw image data
generated into sequence information after the cDNA libraries
were sequenced. The clean reads were generated by removing
adaptor sequences and low-quality reads and then deposited in
NCBI Sequence Read Archive (SRA) Sequence Database with
accession number (SRP052594). The Trinity program was used
to assemble the clean reads and obtain non-redundant unigenes
(Grabherr et al., 2011). In short, reads which overlapped were
assembled to generate contigs. The generated contigs were joined
into scaffolds which were further assembled through gap filling to
generate unigenes. In this study, default k-mer size of 25 was set
for the de novo transcriptome assembly of the flowers and leaves.
All other parameters were set as default values and the length of
the assembled unigenes used for further study was ≥200 bp.

Transcriptome Annotation
Annotation of the assembled unigenes was performed by
searching transcripts against the NCBI non-redundant protein
(Nr), COG (Cluster of Orthologous Groups), Swiss-Prot, and
Trembl databases. The search was conducted using BLASTx
with an E-value cut-off of 1e−5. According to the BLAST hits
identified by interrogation of the Nr and Swiss-Prot databases,
the annotation program BLAST2GO was used to obtain cellular
component, molecular function, and biological process terms
(Conesa et al., 2005). The KEGG metabolic pathway database
(http://david.abcc.ncifcrf.gov/) was used to annotate the pathway
of these unigenes.
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Identification of DEGs
The RPKM (Reads Per kb per Million reads) of each unigene
in leaf and flower tissues was calculated and used to measure
gene expression level as described by Mortazavi et al. (2008). The
edgeR program was used to determine the DEGs with a log-fold
expression change (log FC)> 2 or< −2 using a threshold of false
discovery rates (FDR < 0.001) and a high significance value (P <

0.005).

qRT-PCR Validation of DEGs
mRNA expression levels in the leaf and flower tissues
of L. japonica were determined by quantitative reverse
transcription-PCR (qRT-PCR) assay. Of total RNA, 1 µg was
reverse-transcribed using SuperScript III Reverse Transcriptase
(Invitrogen) and oligo (dT) 18 according to the manufacturer’s
protocol. The qPCR experiment was carried out using an ABI
7300 Real-Time PCR System (ABI) and each reaction was
performed in triplicate. For mRNA expression detection, U6
RNA was set as an internal reference gene. The primers for qPCR
are listed in Supplementary Dataset 1.

Functional Enrichment Analysis
The GO functional enrichment analysis of down- and up-
regulated DEGs in the network was performed by Bingo plugin
in Cytoscape software (Maere et al., 2005). TF-based network
analysis was constructed using the plugin of Agilent Literature
Search in Cytoscape software.

TF Identification in L. japonica
All assembled unigenes were searched against the plant
TF database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/
downloads.php) to identify TFs using BLASTx (cut-off E-value
of 1e−5; Kalra et al., 2013).

RESULTS

Sequencing and De novo Transcriptome
Assembly of L. japonica
NGS technology has significantly promoted multiple functional
genomics studies in many non-model plants that do not yet have
a reference genome. To obtain transcriptome expression profiles
in L. japonica, flowers and leaves were used for transcriptome
sequencing and analysis. Two cDNA libraries were constructed
from the total RNA of fresh flowers and leaves. The libraries were
sequenced using the Illumina Hi-Seq2000 platform, and a total of
239,405,270 clean pair-end reads (including 124,617,394 reads in
flowers and 114,787,876 in leaves) were obtained after removing
adaptor sequences and low-quality reads. The Trinity program
was then used for de novo assembly of all clean reads, which
generated a total of 150,523 unigenes with an average length of
632 bp and an N50 of 947 bp (Table 1). Among these unigenes,
the shortest and longest were 201 and 16,473 bp, respectively. The
length distribution of the unigenes was also investigated. There
were 83,664 unigenes in the range of 200–400 bp, 43,027 within
400–1000 bp and 21,015 within 1000–3000 bp (Figure S1). We
also found 2817 unigenes of >3000 bp, which will be useful for
further annotation and functional analysis.

Annotation of the L. japonica

Transcriptome
The assembled unigenes of flowers and leaves in L. japonica
generated by the Trinity program were annotated using BLASTx
similarity analysis (E ≤ 1e−5) of common protein databases
including the NCBI COG (Figure 1A), NCBI Nr and Swiss-Prot
databases. Approximately 32.7, 29.1, and 15.5% of unigenes were
mapped to Nr, Swiss-Prot, and COG, respectively (Table 2).
There were 23,331 unigenes assigned to COG classifications
(Figure 1A). Among the 25 COG categories, the cluster for
“general function prediction only” (7050, 30.2%) was the largest
group; followed by “posttranslational modification, protein
turnover, chaperones” (2621, 11.2%); “signal transduction
mechanisms” (2584, 11.1%); and “translation, ribosomal
structure, and biogenesis” (1593, 6.9%).

Importantly, 32.7% of the unigenes were mapped to the
Nr library, suggesting that many of the unigenes could be
translated into proteins. Distribution analysis based on BLASTx
searches showed that the unigenes of L. japonica had homologs
in numerous plant species (Figure 1B). Among various plant
species, the unigenes of L. japonica had the highest number of
hits compared to sequences from Arabidopsis thaliana (54.94%),
Thellungiella salsuginea (54.83%), Brassica rapa (54.39%), and
B. oleracea (50%). As L. japonica is a type of vine, we performed
a distribution analysis among L. japonica, Vitis vinifera, Populus
euphratica, and P. trichocarpa Torr. & Gray. The result showed
that L. japonica had 25,353 homologous genes with V. vinifera,
P. euphratica and P. trichocarpa; and L. japonica had more
hits when compared with P. euphratica (62.3%), P. trichocarpa
(62.1%), and V. vinifera (54.2%; Figure S2).

Different Gene Expression between
Flowers and Leaves in L. japonica
There were 86,510 and 129,764 unigenes identified in flowers
and leaves, of which 65,751 were observed in both flowers
and leaves. Among them, the top 10,000 highly-expressed
unigenes both in flower and leaf tissues were displayed by
heatmap analysis (Figure 1C). In order to identify DEGs

TABLE 1 | Assembly summary of flower and leaf unigenes of L. japonica.

Assembly Number

Number of clean reads (Leaf) 124,617,394

Number of clean reads (flower) 114,787,876

Total unigenes generated 150,523

N50 length (bp) 947

Average unigene length (bp) 632

TABLE 2 | Blast results of L. japonica unigenes.

Database Total unigenes Mapped unigenes

Nr 150,523 49, 247 (32.72%)

SwissProt 43, 829 (29.12%)

COGs 26, 326 (17.49%)
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FIGURE 1 | Transcriptome annotation and expression analysis of L. japonica unigenes. (A) Transcriptome annotation of L. japonica unigenes against COGs

database. (B) Mapping result of L. japonica unigenes to familiar species. The homologs of L. japonica unigenes in various plant species [including Arabidopsis thaliana

(ATH), Thellungiella salsuginea (TSA), Brassica rapa (BRA) and Brassica oleracea (BOL)] were shown. (C) Heatmap analysis of top 10,000 highly-expressed unigenes

both in flower and leaf tissues.

between flowers and leaves, we set the expression level of
unigenes in flower as a control and detected the up- or
down-regulated unigenes in leaves. The results indicated that
35,327 unigenes were differentially expressed between leaf and
flower tissues: 26,680 up-regulated and 8647 down-regulated
(FDR ≤ 0.001, Supplementary Datasets 2, 3). Furthermore, we
randomly selected 25 differentially expressed unigenes for qRT-
PCR analysis. The mRNA expression level of 22 differentially
expressed unigenes (11 up-regulated and 11 down-regulated)
were confirmed by qRT-PCR (Figure 2). For example, TFs
comp104921_c1_seq1 (Ein3, Eil1) and Gbf1 were up-regulated in
leaves, while Nap1 was down-regulated (Figure 2). In addition,
there were 20,759 unigenes detected only in flowers, and 64,013
only expressed in leaves. These DEGs between leaves and flowers
were further annotated with GO terms that were classified into
three categories: biological process, cellular component, and
molecular function. These categories contained 13,893, 11,104,
and 8110 DEGs, respectively (Figure S3).

For functional annotation of DEGs, the DEGs were also
analyzed using Cytoscape Enrichment Map (http://www.
cytoscape.org/). There were 6602 DEGs assigned with Biological
Process terms (Figure 3). The common terms between up-
regulated (Figure 3A) and down-regulated genes (Figure 3B)
were “Metabolic process,” “Response to stimulus,” “Cellular
process,” “Cellular component organization,” “Biological
regulation,” “Localization,” and “Developmental process.”
Furthermore, some DEGs were clustered in different GO

terms. For example, within up-regulated genes, 35 (0.5%)
genes were significantly enriched in “Multi-organism process.”
Nevertheless, within the down-regulated genes, 297 (4.5%)
genes were significantly enriched in “Multicellular organismal
process” and 129 (2.0%) genes were significantly enriched in
“Reproduction.” Among these genes, AT5G66570 encodes
a 23-kDa extrinsic protein, called OEE2 (Oxygen-evolving
enhancer protein). OEE2 is a component of photosystem II and
participates in the regulation of oxygen evolution. Moreover, the
phosphorylation of OEE2 is dependent on calcium. Collectively,
OEE2 up-regulation in leaf tissue (Figure S4) is very consistent
with the biological functions of leaf tissues and supports the
feasibility of GO classifications in Figure 3.

KEGG Pathway Analysis in L. japonica
To better understand the biological functions of assembled
unigenes in L. japonica, the DEGs between flowers and leaves
were further assigned to the biochemical pathway analysis in
the KEGG database (Kanehisa and Goto, 2000). As shown
in Supplementary Dataset 4, 564 unigenes were assigned to
the top 10 KEGG biochemical pathways (ranked by P-value).
The top three pathways included “Ribosome” (198 unigenes, P
= 1.67 × 10−9), “Oxidative phosphorylation” (109 unigenes, P
= 1.46 × 10−6), and “Glycolysis/gluconeogenesis” (47 unigenes,
P = 2.64 × 10−6). This result suggested that the DEGs were
associated with the growth and metabolism activities of flower
and leaf tissues in L. japonica. Among them, ribosomes are
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FIGURE 2 | Quantitative RT-PCR Validation of differentially expressed unigenes between leaf and flower tissues in L. japonica.

FIGURE 3 | Biological Process analysis of DEGs between leaf and flower tissues. GO modules enriched with up-regulated DEGs (A) and down-regulated

DEGs (B) were visualized by the Enrichment Map in Cytoscape. The red and yellow circles indicate the common and different biological processes between

up-regulated and down-regulated DEGs, respectively.

found in all cellular organisms and are responsible for synthesis
of proteins in cells, while oxidative phosphorylation is the
metabolic pathway in which mitochondria in cells use the
enzymes and energy released by the oxidation of nutrients
to synthesize ATP. For example, many other DEGs were
involved in the process of “Glycolysis/gluconeogenesis” (Figure
S5). As an energy-conversion process, glycolysis/gluconeogenesis
is associated with the photosynthesis pathway. For instance,
glucose is one of the main products of photosynthesis and fuels

for many biological activities, while glycolysis is a metabolic
pathway that converts glucose into pyruvate, in which the
released free energy is used to synthesize ATP compounds.
Our result showed that many genes (Figure S5, red column)
involved in the “Glycolysis/gluconeogenesis” pathway were up-
regulated in flowers of L. japonica, such as FBP, mtLPD1,
and HCEF1. FBP encodes a fructose-1,6-bisphosphatase and
catalyzes the formation of fructose-6-phosphate for sucrose
biosynthesis. Collectively, these results suggest that DEGs have
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important regulatory roles in glycolysis/gluconeogenesis. We
also observed that many DEGs were involved in the pathway
of glycerophospholipid metabolism (Figure S6). For example,
PSD1 (phosphatidyl decarboxylase 1) was up-regulated in
flower tissues, while DGK1 (diacylglycerol kinase1) and LPAT2
(lysophosphatidyl acyltransferase 2) were down-regulated in
flower tissues. Importantly, various studies have shown that
chlorogenic acid is a primary active component in L. japonica and
has multiple properties including anti-oxidant (Tsuchiya et al.,
1996), anti-inflammatory (Lee et al., 1995), anti-carcinogenic
(Mori et al., 1986), and anti-viral effects (Wang G. F. et al., 2009).
In this study, three important genes involved in the synthesis
pathway of chlorogenic acid, such as SK1 (shikimate kinase 1),
C4H (cinnamate 4-hydroxylase), and HCT (hydroxycinnamoyl-
coenzyme A shikimate/quinate hydroxycinnamoyltransferase),
were up-regulated in flowers (Figure 4). This result showed that
L. japonica flowers contained a higher proportion of chlorogenic
acid than leaves, suggesting that chlorogenic acid synthesis was
more active in flowers than leaves.

TF Identification in the L. japonica

Transcriptome
The assembled unigenes in flowers and leaves were subjected
to BLASTx similarity analysis (E ≤ 1e−5) against the PlnTFDB,
and 144 potential TFs were identified (Figure 5A). The length
of these TF unigenes varied from 209 to 1512 bp, with an
average value of 550 bp and an N50 of 396 bp. The 200–300-bp
class was the most enriched in total sequence number (36.02%),
followed by 300–400 bp (14.91%), >1000 bp (20.21%), 400–
500 bp (8.69%), 500–600 bp (6.83%), 700–800 bp (6.21%), 800–
900 bp (2.83%), 600–700 bp (5.59%), and 900–1000 bp (3.08%;
Figure 5B). The potential TFs were distributed in 29 families
(Figure 5A and Supplementary Dataset 5). Among them, the
MYB family contained 19 TFs, followed by C2H2 (16), ERF (15),
YABBY (12), and GRAS (11). For example, the YABBY family
possesses a characteristic zinc finger domain close to the N-
terminal end and a helix-loop-helix “YABBY” domain close to
the C-terminal end (Bowman, 2000).

Cytoscape software was used to construct a TF-based
regulation network between TFs and their gene targets. There
were 84 nodes and 171 edges obtained in L. japonica. A total of
10 TFs, such as the MYB family, ein3, eil1, gbf1, and nap, were
involved in the complicated regulation network (Figure 5C).
Among them, DEG analysis showed that ein3, eil1, and gbf1
were up-regulated in leaves compared with flowers, while nap
was down-regulated in leaves. Ein3 and its closest homolog eil1
are two primary TFs downstream of ein2 and are very important
for the induction of multiple ethylene response genes (Alonso
et al., 2003; An et al., 2010). Furthermore, Li et al. (2013) found
that ein3 was a senescence-associated TF and accelerated age-
dependent leaf senescence by directly inhibiting the transcription
level of miR164 in Arabidopsis. In the present study, network
analysis showed that ein3 interacted with two targets including
eil1 and ap2. Both eil1 and ap2 were linked with the ethylene-
mediated signaling pathway. Therefore, the results indicate that
ein3, eil1, and ap2 may form a complex gene network to regulate

the process of leaf senescence in L. japonica. Furthermore, we
observed that ein3 was down-regulated in flowers, suggesting that
there was a different signal pathway in the regulatory process
of flower senescence in L. japonica. Meanwhile, we observed
that ap3 interacted with nap in the network; and ap3 was also
down-regulated in leaf tissue (Figures 2, 5C), suggesting that nap
positively regulated the expression level of ap3. Finally, all genes
involved in this network were overlapped with DEGs between
flower and leaf tissues. The result showed that 12 genes (including
one TF) and 13 genes (including three TFs) in this network were
down- and up-regulated in leaves, respectively (Figure 5C).

DISCUSSION

L. japonica is a woody perennial, evergreen to semi-evergreen
vine. The dried leaves and flowers are employed in traditional
Chinese medicine to treat fever, headache, cough, thirst and
sore throat. Components isolated from L. japonica include
phenolic acids and flavonoids, which have been reported to
have pharmacological functions (Tang, 2008). However, due
to the limited genome information of L. japonica, functional
genomic studies and gene discovery are greatly limited in
L. japonica. NGS technologies have provided powerful tools for
high-throughput sequencing, allowing easy discovery of novel
genes by obtainingmassive sequence information with enormous
depth and coverage. For example, Li et al. (2015) obtained a total
of 62,348,602 clean reads using the Illumina sequencing platform,
which generated 66,026 unigenes in Sophora moorcroftiana by
use of the Trinity program. They identified a large number of
important genes involved in drought tolerance.

In the present study, we sequenced two cDNA libraries from
L. japonica leaves and flowers using the Illumina Hiseq 2000
platform and obtained 150,523 unigenes. Notably, more unigenes
were identified in this study than identified in previous work;
for instance, Yuan et al. (2013) obtained over 32 million reads
and over 6000 ESTs from a library made from L. japonica
buds. Also, He et al. (2013) obtained 51,500 unigenes from
L. japonica buds and leaves using the Roche/454 GS FLX
platform. Nevertheless, we observed that <50% of the unigenes
were successfully annotated by BLAST against public databases
including Nr, Swiss-Prot and COG. The possible cause of this
result is the absence of genome information of L. japonica
and technical limitations such as sequencing depth and read
length. Gene expression profiles in different tissue types have
been extensively studied to reveal tissue-specific gene functions.
For example, based on microarray technology, Kram et al.
(2009) identified many DEGs between secretory lateral nectaries
and non-secretory median nectary tissues, as well as between
mature lateral nectaries (post-anthesis) and immature lateral
nectaries (pre-anthesis), which provided a promising approach
to reveal molecular mechanisms underlying nectar synthesis and
secretion. Fang et al. (2013) detected 2405DEGs by incorporating
multi-level microarray data of SWT (Si-Wu-Tang, a traditional
Chinese medicine). Moreover, they found that 20 proteins
targeted by SWT were encoded by these DEGs and could be
targeted by two FDA-approved drugs and 39 experimental drugs,
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FIGURE 4 | The sketch map of the synthesis pathway of chlorogenic acid in L. japonica. The red rectangles indicate up-regulated genes including SK1, C4H,

and HCT genes.

which elaborated the potential pharmacological mechanisms of
SWT. In this study, we identified a total of 35,327 unigenes
differentially expressed between leaf and flower tissues: 26,680
up-regulated and 8647 down-regulated. Notably, we found three
important genes, SK1, C4H, and HCT, were up-regulated in

flowers (Figure 2). SK1, C4H, andHCT are key enzymes involved
in the synthesis pathway of chlorogenic acid, which is one
biomarker used by the Chinese Pharmacopoeia for evaluating
the quality of L. japonica. This result suggested the content of
chlorogenic acid was higher in L. japonica flowers than leaves.
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FIGURE 5 | Discovery of the transcription factors (TFs) and Construction of TFs-based regulation network in L. japonica. (A) Distribution of identified

transcription factors in various TFs families. (B) Length distribution of the identified transcription factor genes. (C) Construction of TFs-based regulation network in L.

japonica using Cytoscape software.

Previous study reported that L. japonica flower buds contained
a higher proportion of chlorogenic acid than flowers (Geng
et al., 2005). Thus, this study will broaden our understanding
of the distribution of chlorogenic acid in different L. japonica
tissues.

TFs are important DNA-binding proteins. TFs affect the
access of RNA polymerase to the gene promoter (Udvardi
et al., 2007) and play an important role in the regulation

process of gene transcription (Alves et al., 2013) by interacting
with other components of the transcriptional machinery. Here,
a total of 144 potential TF unigenes were identified by
comparing L. japonica unigenes with the PlnTFDB. Among
them, the main TF families include MYB, C2H2, and ERF.
For instance, the MYB family was reported to be the largest
TF family in Arabidopsis (Yanhui et al., 2006) and could be
involved in various biological processes such as regulation
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of stress responses. Although TFs play important roles in
regulating almost each aspect of the organism’s metabolism,
understanding how the TF-based regulation network eventually
affects phenotypes remains difficult. A TF-based regulation
network in L. japonica was thus constructed, in which ein3
and gbf1 were up-regulated, while nap was down-regulated in
leaves compared with flowers. This result indicated that some
TFs have special distributions in plant tissues, which may be
linked with their regulatory roles in metabolic activity in L.
japonica.

CONCLUSIONS

This study characterized the transcriptome profiles in the leaves
and flowers of L. japonica using NGS technology. A total
of 35,327 DEGs were identified between leaves and flowers.
Among them, 6602 DEGs were assigned within some important
biological processes including “Metabolic process,” “Response
to stimulus,” and “Cellular process.” KEGG analysis showed
that three possible enzymes involved in the biosynthesis of
chlorogenic acid were up-regulated in flowers, which revealed
new insight into the molecular regulation of chlorogenic acid
metabolism in the flower tissues. Meanwhile, the TF-based
regulation network in L. japonica showed three DEGs for TFs
between leaves and flowers, suggesting their regulatory roles in
metabolic activity in L. japonica. Overall, this study provided
a global picture of different gene expression patterns between
leaves and flowers in L. japonica. These results not only provide a

useful genomic resource of L. japonica but will also shed light on
functional genomics research on L. japonica in the future.
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