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Plants being sessile in nature are often challenged to various abiotic stresses including

temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of

plants to such environmental perturbations result in the formation of reactive oxygen

species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are

produced at a cellular level. ROS act as a signaling entity at lower concentrations

maintaining normal growth and development, but if their levels increase beyond certain

threshold, they produce toxic effects in plants. Some developmental stages, such as

development of reproductive organs aremore sensitive to abiotic stress than other stages

of growth. As success of plant reproductive development is directly correlated with grain

yield, stresses coinciding with reproductive phase results in the higher yield losses. In this

article, we summarize the redox control of plant reproductive development, and elaborate

how redox homeostasis is compromised during abiotic stress exposure.We highlight why

more emphasis should be given to understand redox control of plant reproductive organ

development during abiotic stress exposure–to engineer crops with better crop yield. We

specifically discuss the role of ROS as a signaling molecule and its cross-talk with other

signaling molecules such as hormones and sugars.
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INTRODUCTION

The entire life cycle of flowering plants is a succession of distinct growth phases, where plants depict
various developmental stages. The growth phase between seed germination and vegetative maturity
is termed as “vegetative-phase”; and the subsequent phase including formation of reproductive
organs, sexual reproduction, and seed set is termed as “reproductive-phase.” Plant performance in
these growth phases, and transition from vegetative to reproductive phase is under tight control of
genetic network (Huijser and Schmid, 2011).Moreover, signalingmediators such as reactive oxygen
species (ROS), reactive nitrogen species (RNS), calcium, and phytohormones play crucial roles in
integrating information from various endogenous and environmental cues, thus regulating plant
growth and developmental transitions (Kocsy et al., 2013; Considine and Foyer, 2014; Traverso
et al., 2014). Of these, ROS or redox mediated signaling has recently emerged as a core signaling
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pathway that shows crosstalk with calcium (Steinhorst and
Kudla, 2013; Gilroy et al., 2014) and hormone-mediated
signaling (Bartoli et al., 2013; Xia et al., 2015). The redox state is
a broad term often described as an integrated ratio of different
redox couples present inside the cell (König et al., 2012). Each
developmental stage possess a specific redox pattern, determined
by the concerted action of various ROS producing [NADPH
oxidase (NOX), ascorbate oxidase (AO), and alternative
oxidase (AOX)] and scavenging [superoxide dismutase (SOD),
catalase (CAT), peroxidase(POD), ascorbate peroxidase (APX),
glutathione peroxidase (GPX), and glutathione reductase (GR)]
antioxidant enzymes and antioxidant molecules like ascorbate,
glutathione, and tocopherols (Considine and Foyer, 2014). In
addition, redox state is regulated by various sugars and amino
acids, which apart from playing role in plant metabolism are
now considered an integral part of ROS scavenging machinery
(Bolouri-Moghaddam et al., 2010; Hayat et al., 2012; Matros
et al., 2015).

REDOX REGULATION OF PLANT SEXUAL
REPRODUCTION

In flowering plants, flower is a seat of plant sexual reproduction
encapsulating both male and female reproductive organs. The
sterile part of flower consists of calyx and corolla, and the fertile
part consists of androecium (male) and gynoecium (female). The
detailed structure of plant reproductive organs and the sequence
of events leading to fertilization are described in the legend of
Figure 1. Starting from male or female gametogenesis through
meiosis, followed by pollen/embryo sac growth, pollen-pistil
interaction, and double-fertilization—the entire process is redox
regulated.

Specific ROS levels, antioxidant molecules, and enzyme
activities control the individual steps of sexual reproduction
(Figure 1). Arabidopsis roxy1mutant, deficient in CC-type GRXs
(glutaredoxins: glutathione dependent oxidoreductases) displays
reduced petal number and male-sterile phenotype. A deeper
analysis revealed that this mutant lacks ability to enter meiotic
phase (Xing and Zachgo, 2008). Furthermore, generation of
reductive environment through exogenous supplementation of
KI rescued the msca1 (male sterile converted anther1: a CC-
type GRX) mutant phenotype of maize, confirming that excess
ROS formation wasmainly responsible for male sterility (Kelliher
and Walbot, 2012). Arabidopsis phytoalexin-deficient (pad2-1)
mutant which is impaired in glutathione (GSH) synthesis shows
poor pollen germination, indicating that GSH is essential for
pollen development (Zechmann et al., 2011). Also, proper ROS
gradient is required for pollen tube elongation. The rbohH
and rbohJ (respiratory burst oxidase homolog H and J) double
mutant of Arabidopsis, which lacks the ability of ROS burst
shows severe reduction in pollen tube tip growth (Kaya et al.,
2014). Similarly, ROS homeostasis is important for female
gametophyte development, where mitochondrial SOD (MSD1)
plays a crucial role in regulating ROS levels (Martin et al., 2013).
The mee33 (maternal effect embryo arrest 33) mutant lacking
MSD1 activity shows defects in embryo sac development. The

sperm cell release from pollen tube is a redox (ROS) dependent
process. It is regulated through FERONIA (FER) receptor kinase
which induces the production of high ROS levels, especially
hydroxyl radicals, at the entrance of female gametophyte to
facilitate the rupture of pollen tube in a calcium dependent
manner (Duan et al., 2014). Interaction between pollen and
pistil during pollination is one of a key step that determines
the fate of fertilization, and decides whether seed set will
happen or not. ROS (H2O2) and NO (nitric oxide) mediated
redox signaling is involved in pollen-pistil interactions (Sharma
and Bhatla, 2013). Before pollen-pistil interaction, higher H2O2

production and enhanced activity of a Stigma-Specific Peroxidase
(SSP) was observed at the receptive papillae, while pollen still
retain high NO levels (McInnis et al., 2006; Bright et al., 2009;
Zafra et al., 2010). After pollen landing on stigma, during
the period of pollen-pistil interaction, the levels of H2O2 and
activity of SSP declines dramatically in the stigmatic papillae.
Following successful fertilization, formation of an embryo, and
the development of mature seed requires extensive cell division
and cell expansion, and both these processes are again redox
regulated, and require low molecular weight antioxidants such
as ascorbate and glutathione (Cairns et al., 2006; Livanos et al.,
2012; Gallie, 2013). Thus, well-coordinated changes in the redox
metabolism is essential for successful plant sexual reproduction.
Such concept has also been proposed for other organisms such
as Caenorhabditis elegans (De Henau et al., 2015) and mammals
(Ufer et al., 2010).

ABIOTIC STRESS INDUCES REDOX
IMBALANCE DURING REPRODUCTIVE
GROWTH

Exposure of plants to abiotic stresses such as temperature
fluctuations, water supply, and salinity, result in the formation
of ROS (Gill and Tuteja, 2010; Suzuki et al., 2012; Zinta
et al., 2014). Although, ROS acts as a signaling molecule
at lower concentrations, it’s accumulation beyond threshold
leads to oxidative damage of macromolecules, resulting in
growth retardation (Mittler, 2002). Because the success of plant
reproductive development determines grain yield, it is obvious
that stress exposure during reproductive phase will reduce the
crop yield (Dolferus et al., 2011; Sage et al., 2015). Therefore, it
is essential to understand how stress affects redox homeostasis in
the context of plant sexual reproduction.

Stress negatively affects male reproductive development in
plants (De Storme and Geelen, 2014). Drought imposed to rice
during anthesis resulted in generation of sterile pollen, due to
higher ROS accumulation and lower expression of transcripts
related to antioxidant enzymes (Selote and Khanna-Chopra,
2004; Nguyen et al., 2009). Similarly, a study performing the
comparative analysis of anthers of a drought sensitive and
tolerant rice lines (under drought stress) revealed sensitive line
exhibiting higher malondialdehyde (MDA) content and lower
activity of antioxidant enzymes (SOD, POD, and CAT) as
compared to tolerant line (Fu et al., 2011). These studies indicate
that stress-induced over accumulation of ROS leads to pollen
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FIGURE 1 | Structure of reproductive organs and the sequence of events involved in plant sexual reproduction. Male gametophyte (pollen grain) is

comprised of a pollen tube consisting of a vegetative tube cell and two sperm cells. The female gametophyte (embryo sac) has two female gametes (egg and central

cell) and accessory cells at the opposite poles. Two synergid cells adjoining the egg cell are located at micropylar entry of the ovule, while antipodal cells neighboring

the central cell are present at the chalazal end. Sexual reproduction involves two major steps: pollination and fertilization. Pollination involves pollen-pistil interaction

and fertilization involves fusion of meiotically generated haploid cells of a male (pollen grain) and a female gametophyte (embryo sac). During fertilization, pollen tube

penetrates embryo sac at the micropyle by entering a synergid cell and delivers two sperm cells. Eventually, two gametic cell pairs of the embryo sac and two sperm

cells undergo “double-fertilization.” The fertilized central cell develops into endosperm, while the fertilized egg cell gives rise to embryo. The involvement of redox

proteins at different steps of sexual reproduction is highlighted in blue boxes.

abortion and programmed cell death (PCD) of microspores in
developing anthers, consequently resulting in male sterility.

Similarly, the female reproductive development is impaired
by abiotic stress exposure (Moss and Downey, 1971; Sun
et al., 2004; Loka and Oosterhuis, 2014). Heat stress caused
activation of GR activity in the heat-stressed cotton pistils
(Snider et al., 2009). Thermotolerant cotton variety showed
higher pre-stress activity of SOD and GR in the pistil,
suggesting it as a thermotolerance mechanism specific to female
reproductive organs (Snider et al., 2011). Moreover, in salt
stressed Arabidopsis plants, genes encoding ROS detoxifying
enzymes, APX, and POD, were downregulated after ovules
committed to abort. These changes in gene expression coincided
with the accumulation of ROS in female gametophytes (Sun et al.,
2005). This may have resulted from increased ROS biosynthesis,
reduced ROS scavenging capacity or both, indicating that like

male gametophyte, female gametophyte is also susceptible to
stress-induced ROS accumulation.

Sugars or sugar-mediated transcriptional control play an
important role in ROS homeostasis in the reproductive organs
during stress episode (Couée et al., 2006; Keunen et al., 2013).
Reduction in starch content prior to anthesis and decline in
total soluble sugar content in mature pollen grains resulted
in decreased pollen viability in tomato plants exposed to
high temperature (Pressman et al., 2002). Recent metabolomic
and transcriptomic profiling of floral organs (anthers and
pistil) of heat-tolerant (N22) and heat-sensitive (Moroberekan)
rice cultivars identified modulation in sugar metabolism as a
regulatory mechanism imparting heat and drought tolerance to
floral organs (Li et al., 2015). Therefore, stress-induced redox
imbalance due to inefficient antioxidant system or alterations in
the sugar metabolism could lead to higher ROS accumulation,
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which results in PCD of developing microspores/megaspores,
finally leading to male sterility or ovule abortion.

ENGINEERING REDOX COMPONENTS
FOR IMPROVED REPRODUCTIVE
SUCCESS

A dynamic network of redox homeostasis related genes function
to repair or abrogate stress-induced oxidative damage in the plant
reproductive tissues (Meyer et al., 2012). Therefore, engineering
redox components could be a way forward to impart stress
tolerance in plants during reproductive phase.

The role of plant GRXs as master regulators of redox
homeostasis during anther and gamete formation has been well-
demonstrated (Kelliher and Walbot, 2012). A conserved plant
specific CBSX (single cystathionine β-synthase domain) CC-
type GRXs (ROXY1 and ROXY 2) genes and SQUAMOSA
PROMOTER BINDING PROTEIN (SBP-box) transcription
factors (target of miR156 and miR157) have been implicated
in redox clean up during male reproductive development
(Yoo et al., 2011). The role of these intriguing proteins was
revealed in the studies using maize msca1 mutant (Chaubal
et al., 2003; Timofejeva et al., 2013). The CC-type GRXs,
ROXY 1 and 2 act via interaction with basic leuine-zipper
transcription factors, TGACG (TGA) motif-binding proteins
TGA9 and TGA10 (Murmu et al., 2010). This association was
demonstrated later in rice, where authors showed that rice
MICROSPORELESS1(MIL1) gene, coding for a similar CC-type
GRX, functions in the formation of surrounding somatic layer of
anthers and in the transition of microsporocytes from mitosis to
meiosis (Hong et al., 2012).

The role of cytosolic ascorbate peroxidase 2 (APX2) in
enhanced seed production subjected to chronic heat stress was
illustrated in Arabidopsis thaliana (Suzuki et al., 2013). Similarly,
heat-stressed microspores in tomato showed upregulation of
ROS-scavenging SlAPX3, safeguarding spores against toxic ROS
accumulation (Frank et al., 2009). These two are relevant
findings in the context of global warming, and demonstrate the
protective role of APX against heat-induced oxidative damage in
reproductive tissues.

One of plant’s remarkable strategy to deal with stress is
to escape the stressful environment via reproduction. Hence,
proper timing of transition from vegetative to reproductive phase
determines the success of reproduction. The OXS2 (OXIDATIVE
STRESS 2) is a member of zinc-finger transcription factor
family, which is involved in maintaining vegetative growth,
stress tolerance, and stress-induced reproduction (Blanvillain
et al., 2011). OXS2 is a stress responsive nucleo-cytoplasmic
protein, shuttling between cytoplasm (no stress) to nucleus under
stress conditions promoting stress resilience. OXS2 autoactivates
itself, while coherently activating other floral integrator genes
via direct binding to floral integrator promoter SUPPRESOR

OF CONSTANS (SOC1). This auto-regulatory loop of OXS2
may constitute an altruistic response choosing between stress
tolerance to stress escape via reproduction (Blanvillain et al.,
2011).

Two contrasting hypothesis have been proposed to explain
the effects of redox status on meiosis and germline formation.
The “reductive hypothesis” proposes that reduced ROS levels
are required for successful meiosis (Kelliher and Walbot,
2014). This is supported by the evidences where chemical
(Kelliher and Walbot, 2012) or genetic (Zechmann et al.,
2011) approaches were used to reduce ROS levels, resulting
in improved reproductive success as well as crop yield. In
contrast, the “oxidative hypothesis” advocates increased ROS
levels as a prerequisite for initiation of meiosis and sexual
reproduction (Hörandl and Hadacek, 2013). In this view, the
role of a meiotic protein SPO11 has been proposed. This protein
initiates generation of DSBs (double-strand DNA breaks) during
meiotic recombination and have antioxidant like properties
to repair oxidatively damaged DNA (Hörandl and Hadacek,
2013). Moreover, oxidative stress can deregulate the epigenetic
machinery comprising of DNA methylation and small RNA-
based transcriptional regulation (Schmidt et al., 2015; Zhang
et al., 2015). Thus, plant sexual reproduction is a highly
complicated process which requires a fine-tuning of oxidative-
reductive (redox) pathways as well as epigenetic mechanisms,
hence complicating the engineering of modules for enhancing
stress tolerance in plants.

CONCLUSIONS

The redox control of plant reproductive development has been
the long standing dilemma of plant scientists. Understanding
the reproductive cost of oxidative stress requires a targeted
molecular approach for engineering transgenes responsible
for stress resilience in plant’s reproductive system. But our
knowledge is demarcated by methods to intertwine regulatory
networks underlying reproductive development. Although much
of the studies now focus on Arabidopsis as a model organism,
future research should input judicious use of major crop species
ensuring yield robustness in meeting continual demands of an
ever increasing human population.
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