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Bidirectional promoters, which show great application potential in genetic improvement

of plants, have aroused great research interest recently. However, most bidirectional

promoters were cloned individually in the studies of single genes. Here, we initiatively

combined RNA-seq data and cDNAmicroarray data to discover the potential bidirectional

promoters in rice genome. Based on the expression level and correlation of each adjacent

and oppositely transcribed gene pair, we selected four candidate gene pairs. Then, the

intergenic region between each pair was isolated and cloned into a dual reporter vector

pDX2181 for functional identification. GUS and GFP assays of the transgenic plants

indicated that all the intergenic regions showed bidirectional expression activity in various

tissues. Through 5′ and 3′ deletion analysis on one of the above bidirectional promoters,

we identified the enhancing region which sharply increased its bidirectional expression

efficiency and the essential regions respectively responsible for its 5′ and 3′ basic

expression activity. The bidirectional arrangement of the four gene pairs in six gramineous

plants was also analyzed, showing the conserved characteristics of the four bidirectional

promoters identified in our study. In addition, two novel cis-sequences conserved in the

four bidirectional promoters were discovered by bioinformatic identification. Our study

proposes a feasible method for selecting, cloning, and functionally identifying bidirectional

promoters as well as for discovering their bidirectional regulatory regions and conserved

sequences in rice.

Keywords: rice, bidirectional promoter, stable transformation, GUS assay, GFP assay, deletion analysis,

conservation analysis

INTRODUCTION

Plant architecture, development, and interaction with environment are controlled by the expression
of a series of genes (Chen F. et al., 2010; Li C. et al., 2011; Zhu et al., 2011). As a critical regulator
of gene expression, promoters are important in plant biotechnology and functional genomics
research for their great application potential in genetic engineering and theoretical significance
in the exploration of transcriptional regulation mechanism (Cai et al., 2007; Yi et al., 2011; Walcher
and Nemhauser, 2012; Ye et al., 2012; Balasubramani et al., 2014). Many researches have been
focused on the cloning and analysis of unidirectional promoters, such as constitutive promoters,
spatiotemporal promoters, and inducible promoters (McElroy et al., 1990; Pan et al., 2015; Vijayan
et al., 2015). Bidirectional promoters, which generally refer to the intergenic region between two
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adjacent genes transcribed in opposite directions, show
better applicability than unidirectional promoters in genetic
improvement (Trinklein et al., 2004; Mitra et al., 2009; Yang
et al., 2013). That is because a bidirectional promoter can drive
the expression of two genes simultaneously, and thus can be
time-saving in constructing expression vectors and pyramiding
of multiple genes (Kumar et al., 2015). Besides, it is very critical
for transgenic breeding to enable the functionally related genes
to express in the same pattern in the receptors (Ha et al., 2010;
Ogo et al., 2013). However, the unidirectional promoters with
the same specific expression patterns are only available in limited
quantities, and repetitious use of the promoters may have a
negative impact on the stability and expression of transgenes
(Peremarti et al., 2010). According to previous reports, the
expression patterns of bidirectional promoters in opposite
directions are similar in many cases due to the co-expression of
the adjacent genes (Huang et al., 2007; Wang et al., 2009; Chen
W. et al., 2010; Didych et al., 2013). Therefore, bidirectional
promoters could also compensate for the lack of unidirectional
promoters with the same expression pattern.

Much work has been done to analyze the bidirectional
promoters in mammalian genome with experimental and
bioinformatic methods (Trinklein et al., 2004; Yang and Elnitski,
2008; Uwanogho et al., 2010). The results suggest that the
divergent gene pairs regulated by bidirectional promoters exhibit
the characteristics of conserved arrangement, coexpression, and
functional association (Xu et al., 2012; Didych et al., 2013;
Meersseman et al., 2014; Yang and Elnitski, 2014). Since the
sequences of promoters are known to be variable (Müller et al.,
2007), for discovering bidirectional promoters, it is particularly
helpful to investigate the characteristics of the divergent gene
pairs regulated by them.

Bidirectional promoters have become a research focus in
plants in recent years. With the development of plant genome
sequencing, bioinformatic analyses in plants like rice,Arabidopsis
and Populus have revealed that the divergent gene pairs regulated
by bidirectional promoters have similar characteristics, such as
coexpression, functional association, and conserved arrangement
(Krom and Ramakrishna, 2008; Dhadi et al., 2009; Wang et al.,
2009; Chen W. et al., 2010). The structural characteristics
of bidirectional promoters in plants are similar to those in
mammals, such as higher GC content and less TATA boxes
(Dhadi et al., 2009). Besides, bidirectional promoters have been
cloned in many species. In Arabidopsis, the tissue-specific and
light-inducible bidirectional promoter between cab1 and cab2,
the tissue-specific bidirectional promoter between At5g06290
and At5g06280, and the tissue-specific and stress-inducible
bidirectional promoter between At4g35985 and At4g35987 have
been cloned successively (Bondino and Valle, 2009; Mitra et al.,
2009; Banerjee et al., 2013). All of these promoters can be
widely used in gene functional analysis in Arabidopsis. Several
bidirectional promoters from other species such as melon and
Capsicum annuum, have been also cloned gradually (Shin et al.,
2003; Wang et al., 2008). In rice, a few promoters have been
found to show bidirectional expression activities (Huang et al.,
2007; Singh et al., 2009; Dhadi et al., 2013). So far, there has been
no report about the cloning and identification of bidirectional

promoters using two reporter genes simultaneously with stable
transformation in rice.

Rice is one of the most important food crops in the world
and a model plant for functional genomic researches in cereals
(Zhang, 2007). Therefore, it is highly necessary to introduce
multiple genes into rice for genetic improvement (Ha et al., 2010;
Yang et al., 2011; Ogo et al., 2013). Accordingly, discovery of
bidirectional promoters in rice is very critical. Besides, more
complete genomic information (Goff et al., 2002; Yu et al., 2002;
Pan et al., 2014) and more explicit gene expression information
(Wang et al., 2010; Kawahara et al., 2013; Sakai et al., 2013) will
greatly facilitate the development of a high-throughput method
for discovering bidirectional promoters.

Most of the known bidirectional promoters were found during
the researches of single genes. In this study, we reported amethod
of selection, cloning, functional identification, and deletion
analysis of bidirectional promoters for their de novo discovery in
rice. We first selected four adjacent and oppositely transcribed
gene pairs based on their expression levels and correlations,
which were derived from the RNA-seq data of the Michigan
State University Rice Genome Annotation Project Database
(MSU), the Rice Annotation Project Database (RAP), and the
microarray data of the rice cDNA microarray database (CREP).
Subsequently, the intergenic regions between the four gene
pairs were cloned for functional identification. GUS and GFP
assays of the transgenic plants indicated that all the intergenic
regions showed bidirectional expression activity in various
tissues. With 5′ and 3′ deletion analysis of one bidirectional
promoter above, we found the regulatory region responsible for
its bidirectional expression activity. Meanwhile, the bidirectional
arrangement of the four gene pairs in six gramineous plants
showed the conserved characteristics of the four bidirectional
promoters identified in our study. Then, we discovered two
cis-sequences conserved in the four bidirectional promoters
with MEME. The two cis-sequences showed overrepresentation
in the intergenic regions between divergent gene pairs in
rice genome under the reference of random promoters. Our
study proposes a feasible method for selecting, cloning, and
functionally identifying bidirectional promoters as well as for the
discovery of their bidirectional expression regulatory regions and
conserved sequences in rice.

METHODS

Selection of Candidate Bidirectional
Promoters
RNA-seq data were obtained from the Michigan State University
Rice Genome Annotation Project Database (MSU) and the Rice
Annotation Project Database (RAP; Kawahara et al., 2013; Sakai
et al., 2013), and the microarray data were downloaded from
the rice cDNA microarray database (CREP; Wang et al., 2010).
Based on the expression characteristics, the criteria for candidate
divergent gene pairs regulated by bidirectional promoters in
our study were set as: the maximum expression value of the
gene pair was simultaneously higher than 10 in RNA-seq data
and higher than 5000 in microarray data, and the expression
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correlation coefficient between the gene pair from RNA-seq data
of 95 samples was higher than 0.4. Because only 36 samples
were available in microarray data, which were not sufficient for
reliable correlation analysis, we did not consider the correlation
coefficient of the data from microarray data. According to the
criteria, we chose four divergent gene pairs (Table 1) and isolated
their intergenic regions (here designated as BIP1, BIP2, BIP3, and
BIP4, respectively) for functional identification.

Isolation and Vector Construction of BIP1,
BIP2, BIP3, and BIP4
The genomic DNA of Minghui 63 (Oryza sativa L ssp. indica)
was used as template to amplify BIP1, BIP2, BIP3, and BIP4 with
specific primers (Table 2). The PCR-generated fragments were
respectively inserted into T-vector (Promega) and confirmed by
sequencing with primers SP6 and T7. The sequence-confirmed
clone containing BIP1/BIP2/BIP3/BIP4 was digested by Pst
I/BamH I/BamH I/BamH I and was respectively cloned into a
dual reporter vector pDX2181 (Ye et al., 2012).

Agrobacterium-Mediated Rice
Transformation
The sequence-confirmed clones were transformed into the
Agrobacterium tumefaciens strain EHA105 by electroporation.
Subsequently, all the constructs were introduced into
Zhonghua11 (O. sativa L. ssp. japonica) by Agrobacterium-
mediated transformation. The callus culture and transformation
procedures were carried out as previously described (Hiei et al.,
1994).

Histochemical and Fluorometric Analysis
of GUS Activity
Histochemical staining of GUS activity in rice tissues was
conducted essentially as previously described (Jefferson et al.,
1987). Various tissues of T0 transgenic-positive transformants
(root, leaf, sheath, panicle, stem, and mature seed) were

incubated in GUS staining solution (50mM sodium phosphate
at pH 7.0, 10mM Na2-EDTA, 0.1% Triton X-100, 1mg/mL X-
Gluc, 100µg/ml chloramphenicol, 1mM potassium ferricyanide,
1mM potassium ferrocyanide and 20% methanol) at 37◦C for
2–10 h after 15-min vacuum filtration. After GUS staining, the
samples were incubated in 70% ethanol to remove chlorophyll
and photographs were taken under a dissecting microscope
(Leica MZFLIII).

Quantitative analysis of GUS activity was conducted as
previously described (Xu et al., 2010). The total protein
concentration in the supernatant was quantified using the
Bradford assay (Bradford, 1976). GUS protein in the supernatant
was determined fluorometrically with an INFINITE 200
photometer (Tecan Austria Gmbh, Ltd, Grodig, Austria). GUS
activity was determined fluorometrically by measuring the
amount of 4-methylumbelliferone (Mu) produced under the
catalysis of GUS in 1mg of total protein per minute. Five
biological replicates were assayed for each construct. Ten
transgenic lines were randomly divided into five groups and two
transgenic lines were considered as one biological replicate.

Histological and Quantitative Analysis of
GFP
Histological analysis of GFP in rice tissues was detected and
photographed under fluorescence microscope. Various tissues of
T0 transgenic-positive transformants (root, leaf, sheath, panicle,
stem, and mature seed) were sampled and observed under a
fluorescence microscope (Leica MZ16F) using GFP filter sets and
Leica Application Suite software.

The relative expression levels of GFP in rice tissues were
detected by quantitative real-time PCR (qRT-PCR). Total RNAs
of different rice tissues were extracted and reverse-transcribed
as described previously (Wang et al., 2015a), and qRT-PCR
was performed according to the same reference. The primers
of GFP were GFP-F: 5′-ATCCGCCACAACATCGAGGA-3′ and
GFP-R: 5′-TCGTCCATGCCGAGAGTGAT-3′, and the primers

TABLE 1 | Four divergent gene pairs chosen for functional identification.

Intergenic

regions

5′ gene Minimum

value

Maximum

value

Mean value 3′ gene Minimum

value

Maximum

value

Mean

value

Pearson

correlation

coefficient

Spearman

correlation

coefficient

Database

BIP1 LOC_Os02

g42314

0.6 21.57 7.88 LOC_Os02

g42320

0 31.16 11 0.67 0.62 MSU

1.65 35.33 10.35 0 10.25 3.8 0.58 0.51 RAP

2143.75 9118.85 5662.15 6009.55 15236.5 9940.64 CREP

BIP2 LOC_Os05

g27940

1.58 88.59 17.19 LOC_Os05

g27950

0.38 40.61 8.91 0.45 0.5 MSU

2472.2 22698.9 13559.4 1381.8 7987.6 4900.6 CREP

BIP3 LOC_Os02

g47000

0 30.11 13.56 LOC_Os02

g47010

0.37 16.17 4.96 0.51 0.49 MSU

0.05 639.27 19.56 0.23 720.79 45.81 0.84 0.93 RAP

568.4 4000.9 1680.54 709.45 7154.35 3080.98 CREP

BIP4 LOC_Os03

g22880

0 69.12 9.42 LOC_Os03

g22890

0 184.71 15.17 0.65 0.78 MSU

0.16 21.51 3.8 1.31 142.75 12.44 0.74 0.81 RAP

274.55 13458.05 4949.52 1065.65 14857.15 7410.79 CREP
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TABLE 2 | Polymerase chain reaction (PCR) primers used in this study.

Primer name Primer sequence (5′–3′)a Purpose

BIP1-F AACTGCAGCTGGTCTCCTCTCTACTGTTG Promoter clone

BIP1-R AACTGCAGAGCTGCAAACATAACAAATATACC Promoter clone

BIP2-F CGGGATCCCTTGTGATAACCCTGTAGTG Promoter clone

BIP2-R CGGGATCCCTCTTCCTGAAGAAACCATC Promoter clone

BIP3-F CGGGATCCCTCGCTGAGCTACCAATAACC Promoter clone

BIP3-R CGGGATCCCTACACCACACCCACACCCCATT Promoter clone

BIP4-F CGGGATCCCTCGCCGGCGGCGTCGGC Promoter clone

BIP4-R CGGGATCCCGCAGAGGATTTTTCTTCTTC Promoter clone

BIP1-2F AACTGCAGCAGCTCGCAGCTCCCCT 5′ deletion

analysis

BIP1-2R AACTGCAGGCTGCAAACGAAATCGCCAC 3′ deletion

analysis

BIP1-3R AACTGCAGGGCCGCCGACGCGCAGGCCTA 3′ deletion

analysis

aThe underlined letters indicate the restriction enzyme sites.

of GAPDH (the endogenous control) were GAPDH-F: 5′-
CTGCAACTCAGAAGACCGTTG-3′ and GAPDH-R: 5′-CCT
GTTGTCACCCTGGAAGTC-3′. Relative expression levels were
determined using 2−11C

T method (Livak and Schmittgen, 2001).

Melatonin Treatment
Melatonin (N-acetyl-5-methoxytryptamine), which is known
as an indispensable hormone related to many physiological
activities in animals, has also been identified as an important
signaling molecule in response to many stresses in plants. In
order to test the response of the four bidirectional promoters to
melatonin, melatonin treatment was performed on the transgenic
plants according to the procedure described by Shi and Chan
(2014).

5′ and 3′ Deletion Analysis of BIP1
Among the four bidirectional promoters above, BIP1 showed
the highest expression efficiency in both 5′ and 3′ orientations.
Therefore, it was selected for 5′ and 3′ deletion analysis in
order to find the regulatory regions responsible for bidirectional
expression activity (Figure 1). The specific primers used for PCR
amplification to generate different 5′ and 3′ truncated fragments
are shown in Table 2. Vector construction, callus culture and
transformation, histochemical and fluorometric analysis of GUS
activity, histological and quantitative analysis of GFP were
performed as described above.

Conservation Analysis of the Four
Bidirectional Promoters and Bioinformatic
Identification of Their Conserved
Sequences
The conserved arrangements of the four gene pairs in
six gramineous plants (O. sativa, Sorghum bicolor, Setaria
italica, Brachypodium distachyon, Zea mays, and Triticum
aestivum) were identified with the information from the
Ensembl Plants database (http://plants.ensembl.org/index.html).
The bidirectional genes whose homologous genes in other

FIGURE 1 | Schemes of constructs carrying BIP1 and different deleted

versions fused with GFP and GUS reporter genes.

species were still arranged in a bidirectional architecture were
considered to be regulated by conserved bidirectional promoters
(c-BIP); otherwise, they were considered to be regulated by
non-conserved bidirectional promoters (n-BIP).

The conserved sequences in the four bidirectional promoters
were discovered by MEME (http://meme-suite.org//tools/meme)
and their frequencies in the intergenic regions between
divergent gene pairs in rice genome were identified by
FIMO (p < 1E-8) using the reference of random promoters
(http://meme-suite.org//tools/fimo).

RESULTS

Selection of Four Novel Bidirectional
Promoters in Rice Genome and Their
Functional Characterization in Transgenic
Plants
Based on RNA-seq and microarray data, we chose four divergent
gene pairs (Table 1) according to the criteria in Section Methods
and isolated their intergenic regions for functional identification.
The four fragments were respectively cloned to a dual reporter
vector pDX2181 and transformed into rice variety Zhonghua 11.

According to the results of GUS and GFP assays of the
transgenic plants, all the intergenic regions showed bidirectional
expression activity in various tissues. Histological GUS and
GFP analysis of the transgenic plants showed that four novel
bidirectional promoters (BIP1, BIP2, BIP3, and BIP4) were
successfully identified in our work. Among them, BIP1, BIP2,
and BIP3 showed bidirectional constitutive expression patterns
and BIP4 showed bidirectional seed-specific expression pattern
(Figure 2). Analysis of GUS fluorometric activities in various
tissues of BIP1 transgenic plants (Figure 3) showed that the
expression efficiency of BIP1 toward 3′ was the highest in the
seed, which showed a GUS enzymatic activity of 17806 ± 2108
pmol 4-MU/min/mg protein, followed by in the root, which
exhibited a GUS enzymatic activity of 14769 ± 1782 pmol 4-
MU/min/mg protein, while the GUS enzymatic activities in the
stem, sheath, panicle, and leaf were 9825 ± 1510, 8681 ± 834,

Frontiers in Plant Science | www.frontiersin.org 4 May 2016 | Volume 7 | Article 766

http://plants.ensembl.org/index.html
http://meme-suite.org//tools/meme
http://meme-suite.org//tools/fimo
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Bidirectional Promoters in Rice

FIGURE 2 | Histological analysis of GFP and GUS expression in various tissues of the transgenic plants containing different GFP/bidirectional

promoter/GUS fusions. (A–D), plants containing GFP::BIP1-BIP4::GUS. Localization of GFP is shown at the left area; Localization of GUS is shown at the right area.

FIGURE 3 | Quantitative analysis of GFP and GUS expression in various tissues of the transgenic plants containing different GFP/bidirectional

promoter/GUS fusions. (A–D), plants containing GFP::BIP1-BIP4::GUS. a, b, c, d, e: significant difference (P < 0.05). Error bars indicate SE based on five

independent biological replicates.

7380 ± 895, and 6092 ± 875 pmol 4-MU/min/mg protein,
respectively. Analysis of GFP expression in BIP1 transgenic
plants (Figure 3) revealed that the expression efficiency of BIP1
toward 5′ was the highest in the panicle, which was 2.4-fold
higher than that in the leaf. While the expression levels of

GFP in the root, sheath, stem, and seed were 1.8-, 1.5-, 0.4-,
and 0.1-fold higher than that in the leaf, respectively. GUS
assays of BIP2 transgenic plants (Figure 3) indicated that the
expression efficiency of BIP2 toward 3′ was the highest in the
leaf, which showed a GUS enzymatic activity of 3713± 445 pmol
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4-MU/min/mg protein, and the GUS activities in the sheath,
panicle, stem, and seed were 2548 ± 339, 1755 ± 220, 1063 ±

145, and 872 ± 173 pmol 4-MU/min/mg protein, respectively,
while GUS activity was hardly detected in the root. Analysis of
GFP expression in BIP2 transgenic plants (Figure 3) showed that
the expression efficiency of BIP2 toward 5′ was the highest in
the stem, which was 8.6-fold higher than that in the panicle,
while the expression levels of GFP in the root, sheath, leaf,
and seed were 3.9-, 2.6-, 2.3-, and 1.6-fold higher than that in
the panicle, respectively. BIP3 transgenic plants showed GUS
enzymatic activities of 1126 ± 128, 841 ± 117, 806 ± 85, and
734 ± 71 pmol 4-MU/min/mg protein in the sheath, seed, stem,
and leaf, respectively, while GUS activity was hardly detected in
the panicle and root. The expression efficiency of BIP3 toward
5′ was the highest in the panicle, which was 5.7-fold higher than
that in the leaf, while the expression levels of GFP in the seed,
stem, root, and sheath were 3.6-, 2.9-, 1.3-, and 0.9-fold higher
than that in the leaf, respectively. BIP4 showed a bidirectional
seed-specific expression pattern, as a GUS enzymatic activity of
1659 ± 211 pmol 4-MU/min/mg protein was detected in the
seed while almost no GUS activity was detected in other tissues,
and a 23-fold higher expression level of GFP was observed in the
seed compared with in the leaf. In addition, these results indicate
that all the bidirectional promoters identified here direct gene
expression in an orientation-independent manner; namely, the
expression patterns in opposite directions of these bidirectional
promoters are similar, which is consistent with the co-expression
characteristics of the adjacent genes.

Melatonin is one of the most important hormones in plant
and animal. In order to test the response of the four bidirectional
promoters to melatonin, melatonin treatment was performed
on the BIPs transgenic plants. The results of GUS and GFP
assays indicated that the four bidirectional promoters were not
induced by melatonin (Figure 4). Hence, it can be inferred
that no melatonin-responsive cis-element was harbored in these
promoters.

Identification of the Expression Regulatory
Regions in BIP1
In order to identify the regulatory regions in BIP1, 5′ and
3′ deletion analysis of this promoter was performed. A series
of truncated BIP1 were respectively cloned to pDX2181 and
transformed into Zhonghua 11. Transgenic plants carrying BIP1-
1F2R showed much lower GUS activity than BIP1 transgenic
plants in various tissues, especially in the root, stem, seed and
panicle, whose GUS activities were lower than 10% of that in the
corresponding tissues of BIP1 transgenic plants (Figures 5, 6).
It thus could be inferred that region 1 could greatly increase
the transcriptional activity of BIP1 toward 3′. Meanwhile, BIP1-
1F2R transgenic plants also showed an obvious decrease of GFP
expression in various tissues compared with BIP1 transgenic
plants (Figure 6). These results could be integrated to reveal
that region 1 is a bidirectional transcription-enhancing region
of BIP1. Further truncating in 3′ of BIP1 led to complete
abolishment of GUS activity in BIP1-1F3R transgenic plants,
while the GFP expression level was not obviously reduced

in BIP1-1F3R transgenic plants compared with in BIP1-1F2R
transgenic plants. These results suggest that region 2 is the
essential region responsible for the basic expression activity
of 3′ but not for that of 5′. Transgenic plants carrying BIP1-
2F1R or BIP1-2F2R showed no expression of GFP, indicating
that truncating 5′ of BIP1 will completely abolish 5′ expression
activity of the promoter. GUS assays in BIP1-2F1R transgenic
plants revealed that truncating 5′ of BIP1 caused slight changes
of 3′ expression activity in most tissues except for the root,
which showed obviously decreased GUS activity compared with
that of BIP1 transgenic plants (Figure 6). These results suggest
that region 3 is the essential region responsible for the basic
expression activity of 5′ but not for that of 3′; however, it can
positively regulate the expression activity of 3′ in the root.

Conserved Arrangement of the Four Gene
Pairs Regulated by Bidirectional Promoters
The sequences of promoters are known to be variable (Müller
et al., 2007). Therefore, in order to analyze the conservation
of the four bidirectional promoters in different species, we
investigated the conservation of the four gene pairs regulated by
these promoters.

The conserved arrangement of the four gene pairs in
six gramineous plants was identified with information from
the Ensembl Plants database. The bidirectional genes whose
homologous genes in other species were still arranged in a
bidirectional architecture were considered to be regulated by c-
BIP; otherwise, they were considered to be regulated by n-BIP
(Table 3). It was found that BIP1 and BIP3 were the most c-
BIP in the six gramineous plants. BIP1 was conserved in O.
sativa, S. bicolor, B. distachyon, and Z. mays; BIP3 was conserved
in O. sativa, S. bicolor, S. italic, and B. distachyon; BIP4 was
conserved in O. sativa, S. bicolor, and S. italica; while BIP2 was
only conserved in O. sativa and T. aestivum.

Potential cis-Sequences Involved in
Bidirectional Expression
By MEME, two conserved cis-sequences in the four bidirectional
promoters were identified (Figure 7). Cis-sequence 1 was a
G/C-rich sequence, while cis-sequence 2 was an A/T-rich
sequence. Subsequently, the frequencies of these cis-sequences
in the intergenic regions between divergent gene pairs in
rice genome were analyzed by FIMO using the reference of
random promoters. Consistent with the expectation, the two cis-
sequences conserved in the four bidirectional promoters both
showed overrepresentation in potential bidirectional promoters
in rice genome compared with random promoters. This result
further reveals that the two novel cis-sequences are probably
involved in bidirectional expression.

DISCUSSION

In this study, we initiatively combined RNA-seq data and cDNA
microarray data to discover potential bidirectional promoters
in rice. Four adjacent and oppositely transcribed gene pairs
were selected based on their expression levels and correlations.

Frontiers in Plant Science | www.frontiersin.org 6 May 2016 | Volume 7 | Article 766

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Bidirectional Promoters in Rice

FIGURE 4 | Quantitative analysis of GFP and GUS expression of the BIPs transgenic plants in response to melatonin. (A–D), plants containing

GFP::BIP1-BIP4::GUS. a: no significant difference. Error bars indicate SE based on five independent biological replicates.

FIGURE 5 | Histological analysis of GFP and GUS expression in various tissues of the transgenic plants containing different GFP/BIP1 deleted

version/GUS fusions. Localization of GFP is shown at the left area; Localization of GUS is shown at the right area. R1 (blue dashed line), region 1; R2 (red dashed

line), region 2; R3 (green dashed line), region 3.

The intergenic regions between the four gene pairs were
successfully cloned, and all of them were identified to be
bidirectional promoters, confirming the feasibility of our method
for discovering bidirectional promoters. This is the first study
to clone and identify bidirectional promoters using two reporter
genes simultaneously with stable transformation in rice. Among
the four identified bidirectional promoters, BIP1 shows high

expression efficiency in various tissues, and thus has a high
application potential in genetic engineering, such as driving two
resistant genes simultaneously in transgenic breeding against
pest/disease stress, which can confer more strong, broad, and
durable resistance in rice (Du et al., 2009; Shah et al., 2009;
Yang et al., 2011; Wang et al., 2015a). Rice is one of the most
important food crops in the world, and its seed is the edible part
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FIGURE 6 | Quantitative analysis of GFP and GUS expression in various tissues of the transgenic plants containing different GFP/BIP1 deleted

version/GUS fusions. 1F2R, plants containing GFP::BIP1-1F2R::GUS; 1F3R, 2F1R and 2F2R follow the same pattern. a, b, c, d: significant difference (P < 0.05).

Error bars indicate SE based on five independent biological replicates.

TABLE 3 | Conservation analysis of the four bidirectional promoters in gramineous plants.

Oryza sativa Sorghum bicolor Setaria italica Brachypodium distachyon Zea mays Triticum aestivum

BIP1 C/C, c-BIP C/C, c-BIP C/C, n-BIP C/C, c-BIP C/C, c-BIP C/C, n-BIP

BIP2 C/C, c-BIP C/C, n-BIP C/C, n-BIP C/C, n-BIP C/C, n-BIP C/C, c-BIP

BIP3 C/C, c-BIP C/C, c-BIP C/C, c-BIP C/C, c-BIP C/C, n-BIP C/C, n-BIP

BIP4 C/C, c-BIP C/C, c-BIP C/C, c-BIP C/C, n-BIP C/C, n-BIP C/C, n-BIP

If 5′ gene/3′ gene of the bidirectional promoters had homologous gene in another species (C/C) and the homologous genes were still arranged in bidirectional architecture, they were

considered to be regulated by conserved bidirectional promoters (c-BIP). Otherwise, they were considered to be regulated by non-conserved bidirectional promoters (n-BIP).

consumed by human. Therefore, it is highly necessary to improve
the nutrient quality of the seed (Ha et al., 2010; Li Y. et al.,
2011, 2014; Ogo et al., 2013). Efficient and specific expression of
multiple target genes for seed improvement in rice could hardly
be realized without seed-specific promoter. In this work, BIP4
shows a bidirectional seed-specific expression pattern, indicating
its high application potential in the improvement of seed quality
by specifically driving multiple genes. The results of 5′ and
3′ deletion analysis reveal that region 1 is the bidirectional

transcription-enhancing region of BIP1; region 2 is the essential
region specifically responsible for the basic expression activity
of 3′; region 3 is the essential region responsible for the basic
expression activity of 5′ but not for that of 3′, while it can
positively regulate the 3′ expression activity in the root.

Conservation analysis of the four bidirectional promoters
in gramineous plants reveals the possible co-evolution of
adjacent genes regulated by these promoters. The bidirectional
arrangement of LOC_Os02g42314 and LOC_Os02g42320,

Frontiers in Plant Science | www.frontiersin.org 8 May 2016 | Volume 7 | Article 766

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Bidirectional Promoters in Rice

FIGURE 7 | Two novel cis-sequences conserved in the four identified

bidirectional promoters. The frequencies of the two cis-sequences in the

intergenic regions between divergent gene pairs in rice genome and in the

random promoters used as a reference set are shown on the second column

and the third column, respectively.

which are regulated by BIP1, is conserved in four species
of six gramineous plants, suggesting that they are relatively
conserved during co-evolution. The functional annotations
of these two genes, which are “ubiquitin-conjugating
enzyme” and “peptidase,” show that both of them are
structural genes conserved during evolution. Moreover, the
functional relationship between the two genes further supports
their co-evolutionary conservation. LOC_Os02g47000 and
LOC_Os02g47010, which are regulated by BIP3, also show
conserved arrangement in four species of six gramineous plants.
Although the functional annotation of LOC_Os02g47000 is
unclear, considering that LOC_Os02g47010 is annotated to
encode “secretory carrier-associated membrane protein,” we
speculate that LOC_Os02g47000 may encode a structural protein
related to secretory pathway.

So far, many cis-regulatory sequences have been identified,
which are involved in inducible expression (Liu et al., 2010,
2014; Yuan et al., 2011; Koschmann et al., 2012; Walcher and
Nemhauser, 2012) and tissue-specific expression (Hartmann
et al., 2005; Cai et al., 2007; Ye et al., 2012; Wang et al.,
2015b). A previous report also has suggested that several

known cis-sequences might be related to bidirectional expression
(Dhadi et al., 2009). Here, we used the experimentally verified
bidirectional promoters to predict two cis-sequences related
to bidirectional expression which had not been identified
in rice genome. Subsequently, overrepresentation of the two
novel cis-sequences in the intergenic regions between divergent
gene pairs further reveals their involvement in bidirectional
expression. Interestingly, cis-sequence 1 is a G/C-rich sequence,
which is consistent with the characteristics of higher GC
content in bidirectional promoters; however, cis-sequence 2
is an A/T-rich sequence, which might be a new finding in
the sequence characteristics of bidirectional promoters. Overall,
the novel bidirectional promoters identified using two reporter
genes simultaneously with stable transformation in rice are
expected to have high applicability in genetic engineering. Our
study proposes a feasible method for selecting, cloning, and
functionally identifying bidirectional promoters as well as for
discovering their bidirectional regulatory regions and conserved
sequences in rice.
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