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Plants are often exposed to shade over different time scales and this may substantially

affect not only their own growth, but also development and functioning of the energetically

dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal

(AM) fungi and rhizobia represent particularly important cases—on the one hand, they

consume a significant share of plant carbon (C) budget and, on the other, they generate

a number of important nutritional feedbacks on their plant hosts, often resulting in a

net positive effect on their host growth and/or fitness. Here we discuss our previous

results comparing mycorrhizal performance under different intensities and durations

of shade (Konvalinková et al., 2015) in a broader context of previously published

literature. Additionally, we review publicly available knowledge on the root colonization

and mycorrhizal growth responses in AM plants under light deprivation. Experimental

evidence shows that sudden and intensive decrease of light availability to a mycorrhizal

plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant

already within a few days, implying active and rapid response of the AM fungus to the

energetic status of its plant host. When AM plants are exposed to intensive shading on

longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are

often decreasing and may eventually become negative. This is most likely due to the

high C cost of the symbiosis relative to the C availability, and failure of plants to fully

compensate for the fungal C demand under low light. Root colonization by AM fungi

often declines under low light intensities, although the active role of plants in regulating

the extent of root colonization has not yet been unequivocally demonstrated. Quantitative

information on the rates and dynamics of C transfer from the plant to the fungus is mostly

missing, as is the knowledge on the involved molecular mechanisms. Therefore, these

subjects deserve particular attention in the future.

Keywords: mycorrhizal symbiosis, costs and benefits, light intensity, shading duration, plant growth, phosphorus

acquisition, common mycorrhizal networks

INTRODUCTION

Arbuscular mycorrhizal (AM) symbiosis is a widespread natural phenomenon, involved in
mineral nutrition of a great majority of the terrestrial plant species, and in carbon (C) cycling
between the plants and soil (Smith and Read, 2008; Drigo et al., 2010). This relationship
is unspecific, with many host plant species (at least potentially) being colonized by the
same fungal symbiont (van der Heijden et al., 2008). Due to its widespread nature and
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KEY CONCEPT 1 | Symbiosis

Persistent interaction between organisms belonging to different species,

including reciprocally positive (mutualism) as well as unequal relationships (e.g.,

parasitism).

KEY CONCEPT 2 | Arbuscular mycorrhizal (AM) symbiosis

Coexistence of plants with fungi from phylum Glomeromycota. The hyphae

provide direct connection of the root inner cortex with the soil, supplying the

plant with mineral nutrients. The fungi lack saprotrophic capacity and obtain all

their carbon from the plant host. AM symbiosis is generally considered to be

mutualistic, but this is not necessarily true under all circumstances.

the fact that many important agricultural crops (e.g., wheat, rice,
soybean, maize, potato etc.) establish this kind of symbiosis, it
has been intensively studied over several decades mainly from the
point of symbiotic benefits provided to its host plant. Among
those, improved acquisition of phosphorus (P) by mycorrhizal
plants as compared to their non-mycorrhizal counterparts is
considered to be most important. This is because P is often the
limiting resource for plant growth in a lot of natural as well
as agricultural habitats; it has a low mobility in soils and the
AM fungal hyphae, extending up to several cm from the roots,
markedly increase access for plants to this soil resource (Jakobsen
et al., 1992; Jansa et al., 2003, 2005; Cardoso et al., 2006; Jemo
et al., 2014). The AM fungi are supposed to have better access
to the sparsely distributed soil sources as compared to the plant
roots (Smith and Read, 2008; Neumann and George, 2010) due
to their very thin (3–7µm) hyphae, which can explore wider area
with lower overall expense (be it C or energy) than the roots.
AM fungi can also reach narrow soil pores physically inaccessible
to roots, in which water holds and nutrients are dissolved
longer than in larger soil pores (Neumann and George, 2010).
The symbiosis with AM fungi confers also other nutritional
and non-nutritional benefits such as improved zinc, sulfur and
nitrogen (N) acquisition (Jansa et al., 2003; van der Heijden
et al., 2008; Casieri et al., 2012) and improved drought and
pathogen tolerance (Newsham et al., 1995; Augé et al., 2003,
2014), which may be important under specific circumstances
and/or environmental contexts (Javaid, 2009). However, because
the AM fungi have higher N concentrations in their tissues than
the plants, they could compete with their hosts for this nutrient,
especially under severe N limitation (Johnson et al., 2015).

KEY CONCEPT 3 | Symbiotic benefit

Actual advantage, which an organism derives from the symbiotic relationship

(gross benefits, e.g., plant phosphorus uptake via mycorrhizal hyphae) or the

difference (measured or hypothetical) in growth/nutrition/fitness between the

same organism living with and without the symbiont (net benefits).

Since the AM fungi are completely dependent on supply of
photosynthetically fixed C from their hosts for their metabolism
and growth (Bago et al., 2000), the C supply from the plant can
be regarded as an infinitely large benefit for AM fungal fitness.
On the other hand, from the plant’s perspective, the amount of C
provided to the fungal symbiont represents the symbiotic costs.
Previous research has mostly shown figures between 4 and 10%

KEY CONCEPT 4 | Symbiotic cost

Actual losses due to a symbiotic relationship by a given partner (gross cost,

e.g., carbon taken away from the plant by the mycorrhizal fungus) or the

difference (measured or hypothetical) in growth/nutrition/fitness between the

same organism living without and with the symbiont (net cost).

of the plant photosynthetic production to be allocated to the
AM fungal symbiont (Paul and Kucey, 1981; Grimoldi et al.,
2006; Lendenmann et al., 2011; Calderón et al., 2012), whereas
the highest reported value is 20% (Jakobsen and Rosendahl,
1990). Under sufficient light, the levels of plant photosynthesis
could be upregulated to compensate for the increased C sink
strength (Kaschuk et al., 2009). However, under conditions where
light limits the photosynthesis, symbiotic costs could rapidly
become a large part of the plant C budget, with pronounced
consequences for plant C allocation, functioning and ultimately
the growth. Such conditions are very common in nature and
may occur regularly and predictably (e.g., night, monsoons, or
variation in canopy transparency of deciduous trees) as well
as erratically, extending at time scales from minutes to weeks
(thunderstorms, cloudy weather, closing canopies of neighboring
plants, or development of microbial biofilms on leaves). Plants
have several possible ways to optimize their energy balance
under shading conditions, such as adjusting morphology of the
shoots (elongation) or the leaves (e.g., increasing their surface,
Valladares and Niinemets, 2008) or to reduce the assimilate
supply to the symbionts like mycorrhizal fungi or rhizobia.
Several studies have now provided insights into the dynamics of
symbiotic C allocation under changing light conditions and the
consequences thereof for the rates of root colonization by AM
fungi, plant nutrition, and growth (e.g., Fellbaum et al., 2012,
2014, and the references cited in Table 1).

Due to the context dependency of AM symbiotic functioning
(Hoeksema et al., 2010; Grman et al., 2012), AM symbiosis
is not always advantageous for plant biomass production
and/or fitness (Johnson et al., 1997, 2015; Janos, 2007). Wide
range of mycorrhizal growth responses (MGR) ranging from
positive to negative have been observed for different plant
species along environmental gradients. Despite of the potential
negative MGR under certain conditions, AM plants might
still have a better fitness than the non-mycorrhizal plants
because of their better nutrition (Koide, 2010). Nevertheless,
the cases of lower growth as well as total P content
of AM plants compared to their non-mycorrhizal controls
have also been recorded (e.g., Smith and Smith, 2015).

KEY CONCEPT 5 | Mycorrhizal growth response

Comparison of (total or shoot) biomass production at a given time point

between mycorrhizal (AM) and their respective non-mycorrhizal control (NM)

plants, commonly used as a proxy for the net effect of the symbiosis on the

plants. Various indices are used, e.g., AM-NM, AM/NM, 100×(AM-NM)/NM,

log(AM/NM).

The dynamics of C and P exchanges between the plants and
the fungi in AM symbiosis is sometimes explained as a biological
market, in which these sources are reciprocally exchanged, with
the preferential allocation to the partner offering the best rate
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TABLE 1 | Synthesis of previously published literature on the effects of experimentally manipulated light intensities on the mycorrhizal growth response

(MGR).

No. Plant AM PPFD Shading MGR Effect of light References

species species (µmol m−2 s−1) duration (days)
MGR % col.

1 Lycopersicum esculentum G. intraradices 600, 225 22 − + + Marschner and Timonen, 2005

2 Glycine max1 G. fasciculatum 700, 350, 170 80 + + + Bethlenfalvay and Pacovsky, 1983

3 Trifolium subterraneum1 G. mosseae 450, 100 42 + + 0 Tester et al., 1985a

4 Allium cepa “Endogone” (430, 224)b 70 + + 0 Hayman, 1974

5 Allium cepa G. mosseae 550/600, 250 14, 28, 42, 56 + + 0 Son and Smith, 1988c

6 Allium cepa G. mosseae 410, 190 42 + + 0 Smith and Gianinazzi-Pearson, 1990c

7 Allium vineale C. candidum 1339, 662 28, 42, 56 + + ? Zheng et al., 2015

8 Acmena resa2 field AM fungi 157, 54 180 + + 0 Gehring, 2003

9 Dicorynia guianensis2 field soil [sun 50%, 14%, 1%] 350 + + ± Bereau et al., 2000

10 Persea americana2 G. intraradices 1250, 125 180 + + 0 Violi et al., 2007

11 Sorghum vulgare4 G. fasciculatum 418, 308, 204 35 + + 0/+d Graham et al., 1982c

12 Andropogon gerardii4 field soil 618−1047, 66%, 33% 98 + +/±e + Johnson et al., 2015c

13 Allium porrum G. mosseae 515, 250 14, 28, 42, 56 +/−d (+/−)d,f 0 Pearson et al., 1991

14 Pisum sativum1 G. mosseae 390, 190 35 − − + Reinhard et al., 1993

15 Trifolium subterraneum1 G. intraradices 270, 68 14 − 0 + Olsson et al., 2010

16 Elymus repens3 field soil [glasshouse, 70%] 84 − 0 + Grman, 2012

17 Bromus inermis3 field soil [glasshouse, 70%] 84 − 0 0 Grman, 2012

18 Schizachyrium scoparium4 field soil [glasshouse, 70%] 84 + 0 0 Grman, 2012

19 Zea mays4 G. mosseae (119, 90, 30.5)b 60 + 0 + Daft and El-Giahmi, 1978

20 Triticum aestivum3 Gi. margarita 325−1025, 72−262 42, 112 + 0 0 Stonor et al., 2014

21 Flindersia brayleana2 field AM fungi 157, 54 180 + 0 0 Gehring, 2003

22 Vitis vinifera mix of 3 species 1100, 500 111 + 0 − Schreiner and Pinkerton, 2008

23 Allium cepa Gi. calospora (344, 258, 172, 86)b 20, 40, 60, 80, 100 + Variedg − Furlan and Fortin, 1977

Since not all publications provided explicitly calculated MGR values, the MGR responses referred to here as positive (+) or negative (−) means any significant difference between the

biomass of the mycorrhizal and non-mycorrhizal plants for a given experimental treatment. The effects of light intensity on MGR and on root length colonized by arbuscular mycorrhizal

(AM) fungi (% col.) are shown. “+”, positive effect; “−”, negative effect; “0”, absence of a significant effect; “±”, unimodal response, i.e., a significant peak at the medium light intensity.

“G”, Glomus; “C”, Claroideoglomus; “Gi”, Gigaspora. Species names are reported as in the original literature. PPFD, photosynthetic photon flux density.
1 legume, 2tree, 3C3 grass, 4C4 grass.
aThe lowest light treatment omitted because of no AM fungal colonization.
bFigures roughly converted from lux or W m−2.
cThe highest P level omitted because of no MGR at any light level.
d low P/high P.
eKonza soil/Fermi soil.
fThe effect of light on the MGR not specifically elaborated in the paper.
gEffect varied with time. Day 100: Peak at 10 klux.

of exchange (Kiers et al., 2011; Werner et al., 2014). Other
explanations assume that the volumes of exchanged C and P are
operated as surplus resources (Kiers and van der Heijden, 2006;
Walder and van der Heijden, 2015) or that they are controlled
primarily by the actual needs of symbionts (Landis and Fraser,
2008). From those points of view, plants should not supply the
AM fungi with C in situations where the primary limitation of
growth and/or reproduction is not mineral nutrition, but the
energy availability, such as under severe light deprivation. But the
extent to which plant can reduce C flux to the AM fungi is highly
questionable. Experimental evidence shows that the AM fungi are
not eliminated from roots even under very low light intensities
(Schubert et al., 1992). An alternative explanation could then
be that the root colonization by AM fungi is maintained as an
investment for potentially more favorable future (Landis and
Fraser, 2008; Walder and van der Heijden, 2015). It is not even

clear whether the decrease of AM fungal colonization of roots
under low light is actively driven by the host plant or just a
passive consequence of lack of assimilates within the roots. Other
question is if the observed decreases of symbiotic benefits under
light deprivation should be accounted to the active rule of AM
fungi consuming a large fraction of plant C budget or whether
they should be attributed to the inability of the AM fungi to
collect soil nutrients without sufficient C supply from the plant.
Also the rate at which both symbionts react to the change of
environmental conditions is virtually unknown.

To gain deeper insights into the dynamics of resource
exchange in AM symbiosis, we performed an experiment with
plants exposed to long- and short-term shading with different
intensities (Konvalinková et al., 2015). Here we discuss our data
within a broader context of other studies on AM symbiosis
functioning under manipulated light conditions. The purpose
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of this paper is thus to provide a more complete picture
of available knowledge on shading responses of mycorrhizal
plants and identify knowledge gaps deserving further attention.
To streamline the discussion, we focus specifically on the
light/energy deprivation by shading and do not include other
studies, where the plants were deprived of their energy resource
by defoliation or grazing, inevitably including plant injury and
loss of photosynthetic tissues.

CASE STUDY: RESPONSES OF MEDICAGO

TRUNCATULA TO EXPERIMENTAL
SHADING

Our previous glasshouse experiment (Konvalinková et al.,
2015) compared mycorrhizal (Rhizophagus irregularis) and
non-mycorrhizal (microbial “mock-inoculum”) barrel medic,
Medicago truncatula, both with a rhizobial symbiont. The
shading was applied either long-term (38 days, starting 14 days
after sowing) or short-term (last 6 days of the experiment). Four
different levels of shade were included in both variants: 100
(unshaded control), 65, 35, or 10% of the incoming light. The
100% light intensity level corresponded to about 40 klux sunlight
(photosynthetic photon flux density being approximately 690
µmol m−2 s−1). 13CO2 pulse labeling was carried out on selected
treatments 3 days before harvest to follow the allocation of
recently fixed C into shoots, roots, and the soil.

Experimental plants at full light responded positively to the
presence of AM fungus in terms of both biomass production
and P content. Upon long-term shading, plant responses to
the light gradient were non-linear: while the reduction to 65%
of the incoming light intensity caused almost no change to
shoot biomass production or shoot P content, there was a
marked decrease of these variables under 35 and 10% light
intensities. This decrease wasmore pronounced in AM compared
to the non-mycorrhizal plants, resulting in a significant decline
of the mycorrhizal growth and P uptake responses along the
light intensity gradient applied over a long-term (Figure 1).
Hence plants growing at the lowest light intensity showed
a clearly negative MGR, whereas the P uptake response at
the same light intensity was around zero (Figure 1). Plants
adapted to light deprivation over a long-term through reduction
of their root-to-shoot biomass ratio and enlargement of the
leaflet surface. Interestingly, these morphologic adaptations were
further boosted by the presence of mycorrhiza under 35%
of incoming light, apparently to compensate for the higher
photosynthetic demands of the mycorrhizal plant. Two pieces of
evidence indicated a reduction of assimilate flux to the microbial
symbionts under long-term shading: First, the mycorrhizal
colonization decreased with decreasing light intensity from 71
to 41% of the root length colonized. Second, the isotopic
composition of N in plant shoots suggested that AM plants
gained higher portion of their N from rhizobia than did the non-
mycorrhizal plants at full light, but the situation was reversed at
10% of incoming light intensity—possibly because of relatively
higher C supply to AM fungi at the expense of rhizobial
symbiont under the C-limited conditions. Our results indicated

FIGURE 1 | Growth and phosphorus uptake responses of Medicago

truncatula plants subjected to experimental shading—either long-term

(38 days, closed symbols) or short term (6 days, open symbols)

shading, with four different light intensities each. Five replicate values for

shoots (green circles) and roots (brown triangles) per light treatment are shown,

together with the linear regression lines testing consistency of the observed

effects along the shading gradients (separately for the short- and long-term

shading and for the roots and shoots). Mycorrhizal responses were calculated

as 100×(AM-NM)/NM, where AM is the shoot or root dry weight of mycorrhizal

plant and NM is the mean value of the respective non-mycorrhizal control

treatment (N = 5). Solid lines indicate significant trends (p < 0.05), whereas

dotted lines show lack of statistical significance along the shading gradient.

that mycorrhizal plants were able to compensate for their higher
C/energy requirements even when the incoming light intensity
dropped to 35% of the ambient light, possibly due their better
mineral nutrition. But the compensatory mechanisms failed
under the lowest light level, where the mycorrhizal benefits were
obviously insufficient to offset the symbiotic costs.

Short-term shading revealed very interesting insights into
the dynamics of mycorrhizal functioning. While the levels of
mycorrhizal colonization in the roots were unaffected by the
different light intensities applied over a short-term, the symbiotic
functioning changed rapidly. Plant biomass production
decreased with decreasing light intensity independently of the
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plant mycorrhizal status, confirming the primary limitation
of plant growth by light availability over these time scales.
Most interestingly, shoot P content of the non-mycorrhizal
plants was unaffected by the short-term shading, whereas the
shoot P content of the mycorrhizal plants declined rapidly
with decreasing light intensity, resulting in gradual decrease
of the mycorrhizal shoot P uptake response along the shading
gradient (Figure 1). In contrast, the root P content decreased
only slightly under the light-shortage for both the mycorrhizal
and non-mycorrhizal plant treatments. This resulted in a relative
accumulation of P in the roots at the expense of shoots in the
shaded mycorrhizal plant. Because normally P is effectively
redistributed within the plant body to counteract local P
accumulation, P accumulated in roots is supposed to be inside
the AM fungal tissues. These results strongly indicate that the
AM fungi continued to take up P from the soil despite the
light-limitation of their host plant, possibly by mobilizing their
internal energy reserves. However, there was a strikingly effective
down-regulation of the P transfer from the fungus to the plant,
possibly due to decreasing assimilates supply to the roots.

OVERVIEW OF ARBUSCULAR
MYCORRHIZAL FUNCTIONING UNDER
LIGHT DEPRIVATION

To reveal the importance of light intensity on the functioning of
the AM symbiosis, we reviewed previous literature with respect
to the outcome of this symbiosis for plant biomass production
under varied light conditions (Table 1). We specifically focused
on the plant biomass because there were only few studies
measuring plant P uptake of mycorrhizal plants exposed to
experimental shading.We acknowledge the fact that various ways
of calculating the MGR have been used in the literature, or the
biomass of AM and non-mycorrhizal plants have been simply
compared. For the sake of this review, any significant difference
in the above comparisons was reported as a significant MGR.
To maintain a strong focus on the potential interaction between
the effects of light intensity and AM fungi on the plants, the
experiments (or plant-fungal combinations) with no significant
effect of at least one of these factors on plant biomass are excluded
from Table 1. Similarly, studies with negative impact of high light
intensity on the growth of seedling are excluded, because in those
studies, the effect of energy-supply along the light-gradient was
obviously confounded by other factors (UV, drought stress, etc.).
Full list of all reviewed literature is provided as a Supplementary
Table to this paper.

We hypothesized that the AM fungi were less beneficial
to plant growth under reduced light availability, when the
(potential) mycorrhizal benefits were relatively less important
as compared to the energy supply. In agreement with our own
experimental data (Konvalinková et al., 2015), we found 13
cases of MGR reduced by decreasing light intensity (nos. 1-
13 in Table 1). These comprise plants of different functional
groups, from usually non-responsive forbs to highly mycorrhiza-
responsive legumes and onions, C4 grasses, and seedlings of
tropical trees. Nevertheless, there were also 8 cases of MGR

independent of light (nos. 15-22 in Table 1) despite the shading
levels strong enough to reduce plant growth. Two cases of MGR
higher (or rather less negative) under low light (nos. 13-14) and
two cases of non-monotonic impact of light onMGR (nos. 12 and
23) were also recorded.

The decrease of MGR with decreasing light intensity can be
attributed to the high C demands of the mycorrhizal fungus (nos.
1-3, 5, 9-10, 12). An alternative explanation might be a reduction
of direct P-uptake by roots from soil, which is often observed
after roots are colonized by AM fungi (Smith et al., 2009), and
subsequent P-deficiency of AM plants under the low light, when
only low amount of assimilates is available to the fungi. Tester
et al. (1985), however, dismissed such an explanation because
of non-limiting concentrations of P in tissues of plants growing
under low light. This is also confirmed by the fact that shaded AM
plants still had higher P concentrations in tissues than the non-
mycorrhizal ones, despite the decrease of the MGR (nos. 2, 3, 5-6,
9). Hayman (1974) assumed the C drain to the AM fungi to be too
low to cause a decrease of MGR under low light. Unfortunately,
studies quantifying the C drain to the AM fungi are still scarce
and incoherent. In our experiment (Konvalinková et al., 2015),
the positive impact of AM fungi on plant biomass production has
turned to negative by a strong light deprivation over a long-term,
regardless of the higher P concentrations in tissues of AM- as
compared to the non-mycorrhizal plants. This strongly suggests
the importance of a mycorrhizal C drain and indicates that C is
not operated as a surplus resource under all circumstances. The
observed discontinuity of plant growth andmycorrhizal response
along the light gradient (Figure 1) might fit with the model of
Tuomi et al. (2001), in which plants gain the maximum benefits
from the symbiosis when their growth is limited by nutrients
(corresponding to our full- and 65% light intensities), but the
positive MGR also occurs under C limited conditions, if the
AM symbiosis-induced increase of P acquisition allows for the
increase in C assimilation high enough to compensate C drain to
the fungi (our 35%-light intensity).

Not only plant biomass, but also plant P content was reduced
by light-deprivation, and this decrease was stronger for AM-
as compared to the non-mycorrhizal plants in our experiment
(Konvalinková et al., 2015). Several previous studies also reported
that P inflow per unit length of root was reduced by low
light intensity and that this decrease was stronger in AM- as
compared to the non-mycorrhizal plants (Tester et al., 1985;
Son and Smith, 1988; Smith and Gianinazzi-Pearson, 1990). The
dependence of mycorrhizal P uptake on light was also illustrated
in an experiment with compartmented microcosms, in which
unshaded medic plants obtained considerably more radioactively
labeled P from AM hyphae than the shaded plants sharing the
same microcosm (Fellbaum et al., 2014). Together with the above
reviewed decreases in MGR induced by low light intensities,
these findings highlight the importance of light supply for the
symbiotic functioning of arbuscular mycorrhiza.

Furthermore, because of the tripartite nature (plant-
mycorrhiza-rhizobia) of symbiosis in our experimental system
and in many other leguminous plant models, the MGR reduction
under shade may not be unequivocally and solely explained by
reduction of mycorrhizal function. Both the mycorrhizal fungi
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and rhizobia rely on the same source of C (namely the plant’s
photosynthesis), and are thus increasingly competing for this
resource under C limiting conditions, e.g., under shade. There is
at least one more potential feedback between plant nutrition and
symbiotic functions, which is related to high P demand of the
symbiotic N2 fixation (Sulieman et al., 2013). Thus, the decrease
of MGR of legumes under shade could also be explained by
negative effect of shade on the symbiotic N2 fixation—due to
lack of P or C or both.

It also needs to be mentioned here that a large functional
diversity has been documented among different AM fungal
genotypes and species with respect to P acquisition efficiency, as
well as C costs incurred (e.g., Munkvold et al., 2004; Lendenmann
et al., 2011)—adding further level of uncertainty when comparing
different experimental studies considering different AM fungal
species and/or communities.

Smith and Read (2008) remark that the negative growth
responses are most commonly observed in experiments carried
out in glasshouses in winter or in growth rooms with poor
light sources. Although meta-analysis of context-dependency of
MGR found no significant effect of location (growth chamber or
glasshouse vs. field) on MGR in AM symbiosis (Hoeksema et al.,
2010), the above mentioned results suggest that the intensity of
light might be a crucial factor for the reproducibility of AM
research. This might also be one of the reasons of the often
found (but not often published) discrepancy between similar
experiments carried out at different seasons or in different
glasshouses (especially when their cooling systems include
shading screens) or growth chambers, the latter often with
inherently low light levels as compared to the outdoor conditions.

Another question arises about the relevancy of the tested
light conditions in the different experiments for real ecological
situations. We previously detected a major impact of light
intensity on MGR between 26 and 14 klux (Konvalinková et al.,
2015), corresponding to about 450 and 240 µmol m−2 s−1

photosynthetically active radiation, while the negative impact
of AM symbiosis on plant growth was found under 4 klux
(∼70 µmol m−2 s−1). These values are not beyond the natural
variation of daylight caused by sudden weather changes (at least
in Europe), though the last stands for a fairly dark skies (Palz
and Greif, 1996). They are also comparable to conditions under a
closed tree canopy (Pohlman et al., 2007). Other studies revealing
the importance of light supply for MGR operated predominantly
with similar intensities (Table 1 nos. 1-6, 10-12, and probably also
9). The studies of Bereau et al. (2000) and Gehring (2003), for
example, intentionally simulated light conditions in understory
of tropical forest and in the gaps within the closed tree canopy.

Plants have a wide range of mechanisms to adapt to energy-
shortage caused by low incoming light intensity as well as by
high C demands of the root symbionts. These include changes in
morphology, physiology or symbiotic functioning. Enlargement
of the photosynthetically active tissues by the presence of
AM fungi was observed as an increase in specific leaf area
(Wright et al., 1998) or decrease in root-to-shoot or root-to-leaf
ratios (Bethlenfalvay and Pacovsky, 1983; Smith and Gianinazzi-
Pearson, 1990; Pearson et al., 1991). In our own experiment,
we observed the reduction of the root-to-shoot biomass ratio

and enlargement of the leaflet surface as a response to AM
symbiosis establishment interestingly only under the lower light
intensities, suggesting that the assimilate deficiency caused by
low light was more pressing in the AM plants (Konvalinková
et al., 2015). Similarly, Kyllo et al. (2003) found a significant
difference in root-to-shoot ratio between the AM- and non-
mycorrhizal tropical shrubs under the low light only, though
the difference was only significant for one out of three tested
species. To meet their higher C demands, AM plants may
also increase the rate of photosynthesis, at least under some
conditions (Paul and Kucey, 1981; Wright et al., 1998; Johnson
et al., 2015). This is sometimes attributed to the photosynthesis
sink strength stimulation (Kaschuk et al., 2009), or thoroughly
to the alleviation of sink-limitation of photosynthesis by AM
fungi (Louche-Tessandier et al., 1999). However, the last point
is unlikely to be broadly valid because the AM plants usually
have the same or higher sugar content in leaves than their
non-mycorrhizal counterparts (Franken, 2010).

PLANTS AND FUNGI—PASSIVE PIPELINES
OR ACTIVE PLAYERS?

Besides others, mycorrhizal plants may also deal with the
energy-shortage under low light by reducing assimilate supply
to the AM fungi. The decreased extent of fungal colonization
of roots under reduced light intensity, indicating activation of
such a mechanisms, was observed not only in numerous pot
experiments such as those quoted in Table 1, but also in many
others (Gamage et al., 2004; Euliss et al., 2007; Olsson et al.,
2010; Shi et al., 2014), and in the fields (Heinemeyer et al.,
2003; Füzy et al., 2014). Nevertheless, no detectable decrease
of fractional AM fungal colonization of roots despite the light
limitation of plant growth is also commonly reported from other
pot experiments (Table 1). Field studies found no consistent
response of AM colonization to the light intensity in the roots
of the New Zealand trees (Hurst et al., 2002) or even slightly
negative response in the forb Geranium sylvaticum (Korhonen
et al., 2004), whereas Whitbeck (2001) found positive impact of
light intensity on colonization of a tropical tree Inga leiocalycina
grown in shade houses but not in its natural habitats. The two
cases of increased fractional root colonization by shading in the
Table 1 were attributed to the vigorous growth of the roots under
full light, effectively outgrowing a slower mycorrhizal fungus,
which could not have kept the pace with the growth of roots
(Furlan and Fortin, 1977; Schreiner and Pinkerton, 2008). In
addition, the dependence of C flux to the fungi on the available
light is further modulated by the P side of the symbiosis, as
revealed by the experiments with combined effects of light and P
fertilization: While no effect of light on the root colonization was
observed in P-limited soil, the decrease of colonization by the low
light occurred after P addition to onion and Sorghum (Graham
et al., 1982; Son and Smith, 1988; Smith and Gianinazzi-Pearson,
1990) and also in a field experiment on a Tibetan meadow (Liu
et al., 2015).

Although the arbuscules (highly branched hyphal structures
formed by most AM fungi inside living root cortical cells of
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their hosts) are expected to be the place of intensive P-for-
C exchange between the fungus and the plant (Dickson, 2004;
Kiers et al., 2011), the impact of insufficient light on their
incidence has only rarely been addressed. For example, Hayman
(1974) noticed smaller arbuscules being formed in roots of
shaded onions. Similarly, Pearson et al. (1991) reported lower
incidence of arbuscules formed by Glomus mosseae in roots
of leeks plants shaded for up to 1 month, but no longer—
consistent with to the absence of long-term (42 days) shading
effect on the arbuscules in onions colonized by same fungus
(Smith andGianinazzi-Pearson, 1990). Interestingly, the decrease
of arbuscular incidence under shade was found in both pot and
field experiments in Tibetan plateau only when fertilizers were
added to the soil (Shi et al., 2014; Liu et al., 2015)—indicating
a possible interplay between nutritional and energetic status
of the host plant playing a role in regulating its mycorrhizal
colonization levels.

The question now arises, whether the observed light-induced
changes in colonization happen only passively by the low
assimilate content of the light-deficient plants or if the plants
can actively reduce the C supply to the fungi. This question
is challenging because of the fragmentary knowledge of the
mechanisms and their regulation of C transport between plant
and the AM fungus (Hall and Williams, 2000; Doidy et al.,
2012). Furthermore, studies of sugar concentrations in AM roots
exposed to the different light conditions are scarce. An earlier
study on ash seedlings seems to support the idea of decreased
sugar concentration in roots under low light intensities (Borges
and Chaney, 1993), but in this case the light was obviously
not the primary limitation of plant growth. The study on
soybean plants exposed or not to a complete darkness for 12
days showed a decrease in sugar content in the light-deprived
plants, going hand in hand with suppressed development of
AM fungi in roots of light-deprived plants (Schubert et al.,
1992). Interestingly, neither intercellular hyphae nor arbuscules
were formed in bean seedlings grown in darkness since their
germination, although the hyphal attachments were abundant
and appresoria were formed, suggesting the importance of
assimilates as signal molecules in AM fungal development
(Vierheilig et al., 2002).

Once in the roots, colonization by AM fungi might be reduced
by low light, although this is not always the case (see above and
in Table 1). Important is that, despite the severe light deprivation
levels tested and potential growth depressions in comparison to
the non-mycorrhizal plants, the fungi are usually not eliminated
from the roots due to light shortage. This indicates that the
reduction of AM development in roots is not the common
mechanism of compensation of relative increase in the symbiotic
costs under persistent light deficiency. In our own experiment,
the AM fungi were not eliminated despite the evident plant
growth depression. One can argue that plants are actually not
able to evaluate the benefits supplied by fungi (Walder and van
der Heijden, 2015), for example they have no ability to assess
the amount of (scattered and immobile) P, which is available
in the soil beyond the root depletion zone (Landis and Fraser,
2008) and, indeed, plant itself has no comparison with the
hypothetical non-mycorrhizal state. Thus, the maintenance of

the AM fungal colonization in the roots under unfavorable
conditions might also be understood as an investment which has
not yet returned its benefits, and may or may not return them
in the future. However, there is another plausible explanation,
relevant for natural settings. It has been long recognized that
even plants growing in a deep shade like in a forest understory
are often well-colonized by the AM fungi. This can be attributed
to the existence of common mycorrhizal networks (CMN), in
which shaded plants might gain the benefits from AM fungi,
which are actually being fed by the other (neighboring) plants.
This has not often been tested, but there is an increasing
number of experiments specifically asking this sort of question,
using both shaded and unshaded plants interconnected by a
shared AM hyphal network (Hodge and Fitter, 2010; Fellbaum
et al., 2014; Knegt et al., 2016). Once a common mycorrhizal
network has established, one particular plant is unable to impose
strong sanctions onto the fungi because the fungus could easily
reallocate the resources to the other plant; thus it can only join the
network or compete for nutrients with the AM fungi maintained
by other plants. This can thus be regarded as a strategy of the
AM fungus to maintain the biological markets (Werner et al.,
2014).

KEY CONCEPT 6 | Common mycorrhizal network

Situation where the hyphal network of one mycorrhizal fungal individuum

interconnects two to many different plant individuals, belonging to the same

or different species. Thus, mycorrhizal benefits and costs for the individual

plants can dynamically shift depending on the environmental context, with

consequences for plant coexistence and community structure.

Another question is whether the observed decreases in
mycorrhizal benefits under low light, namely the decreased P
supply to the shoots (Konvalinková et al., 2015), are due to a
controlled downregulation of the transfer at the plant-fungal
interface or whether this is a result of the fungus running out
of its own energy reserves necessary to obtain P from the soil
solution. The studies showing preferential allocation of fungal P
to the sugar-richer roots (Lekberg et al., 2010; Kiers et al., 2011;
Fellbaum et al., 2014) support the active rule of the fungi. But the
natural shading events like rainy days often affect large stretches
of landscape. What happens when the fungi have no choice of a
“better” partner? The short-term shading part of our experiment
(Konvalinková et al., 2015) allowed addressing this particular
question, at least for the particular plant species under the given
conditions. The rapid decline of P uptake to the shoots of AM
plants and simultaneous accumulation of P in their roots under
the growth-limiting light-deprivation imply accumulation of P in
the intraradical hyphae, consistent with earlier observation from
monoxenic root cultures (Hammer et al., 2011). These results
indicate that the fungi were still able to gain P from the soil
(or growth media) despite the energy-limitation of their host,
perhaps using their own energy reserves, but they stopped, very
rapidly, to supply plants with P. These observations might be
important for our understanding of AM symbiotic functioning
under changing weather conditions, because they indicate, how
active the role is played by the AM fungi in controlling P flux
from the soil to the plant.
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FIGURE 2 | Plant or plant community processes affected by shading at different temporal scales compared to the lengths of shading period

applied in the previously published experiments with arbuscular mycorrhizal plants. Cumulative numbers of publications are shown for each shading

duration. Each closed circle represents one publication, indicating the shortest shading duration tested. Publications shown in red are those listed in Table 1, dark

blue are publications without non-mycorrhizal control treatment, light blue are publications with no significant impact of either mycorrhiza or light on the plant biomass,

and gray indicates publications with confounding factors such as coincidental treatment with shade and temperature shift or those not reporting on plant biomass or

those primarily addressing functioning of common mycorrhizal networks (CMN). Each small empty circle indicates repeated observation (sequential harvest) within a

publication that is already shown in the figure. Arrows start at the earliest time point when a shading-induced effect in the respective process has been documented.

Please note the log scale of the time axis. P, phosphorus; MGR, mycorrhizal growth response (here regarded broadly as a significant difference in biomass production

of mycorrhizal vs. non-mycorrhizal plant at a given time point). Uncertainty related to the onset of the statistically significant difference in mycorrhizal colonization levels

between shaded and unshaded plants in the publication by Tester et al. (1986) is indicated with a question mark.

Despite the fact that light conditions often change abruptly
under natural settings, the rate at which AM fungi react to
these changes remains poorly characterized. So far, we were
able to locate only four publications specifically addressing
the temporal changes in AM symbiotic functioning due to a
sudden change in light conditions over periods shorter than
10 days (Figure 2): Two studies have shown fast decrease of
mycorrhiza-mediated P flux to the plants (Fellbaum et al.,
2014; Konvalinková et al., 2015), while another found no
significant change in mycorrhizal N transport due to shading
(Hodge and Fitter, 2010). The remaining study (Saito and
Kato, 1994) focused on plants under low light and low
temperature stress (simulating cool summer), thus impact of
light-shortage alone could not be separated from the other
factor here. Obviously, this topic deserves further dedicated
attention.

CONCLUSIONS AND PERSPECTIVES

Review of the existing literature on the effects of light intensity
on AM symbiosis revealed following aspects of its symbiotic
functioning:

• Light/energy deprivation of plants could decrease the MGR,
likely due to the symbiotic costs (C transferred to the
mycorrhiza) outweighing the symbiotic benefits.

• Plant P uptake is more sensitive indicator of shade-imposed
limitation of mycorrhizal functioning than the MGR, yet it

has only rarely been measured in the past. Current studies,
however, clearly indicated fast downregulation of the fungal
P transfer to the plants under light shortage.

• Plants’ compensatory mechanisms could buffer the high C
costs of the symbiosis over a limited range of light/shade
intensities, but they may not be sufficient beyond that
range.

• Root colonization levels sometimes react to light-intensity
changes, although the active role of plant host in regulating
these levels remains unclear.

• Light conditions strongly modulate the outcome of AM
symbiosis, ranging from positive to negative effects on the
plant host. This appears particularly important for indoor
mycorrhizal experiments, where the light provided to the
plants should be given special attention.

• It is premature to speculate about mechanisms of regulation
of C transfer from the plant to the fungus before the
actual (molecular) transfer mechanism is unequivocally
demonstrated.

As a particularly important and attainable perspective appears
to be a systematic study of the rates of AM fungal and plant
responses in terms of their growth and symbiotic exchange
of goods such as P and C to experimental shading, covering
time scales between hours and several days. Although very
relevant from an ecosystem point of view (e.g., cloudy weather),
the effect of short-term shading has almost been neglected in
past mycorrhizal research. Future efforts should include several
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(functionally different) plant and fungal genotypes/species, a
range of soil properties, and direct isotopic labeling of C, P,
and N to account for possible direct and indirect interactions
between plant and microbial processes, nutrient availabilities
and C allocation. Besides, current high-throughput molecular
technologies bear the promise of uncovering the actual molecular
transfer mechanisms responsible for these exchanges in a
near future (Bravo et al., 2016), opening the door to study
the mechanisms of their regulation. A particular attention
should be given to the possible changes in turnover of fungal
polyphosphates within the AM fungal structures, a process
that likely controls the immediate availability to the plant of
P transported via mycorrhizal hyphae from the soil to the
root cortical cells (Ezawa et al., 2002; Kiers et al., 2011).
Ultimately, this research shall allow for better understanding
of the magnitude, dynamics, and ecosystem consequences of
one of the largest and fastest C flows from plants to soil
(i.e., the one mediated by mycorrhizal fungi, Drigo et al.,
2010), with particular relevance to soil structure buildup
and stabilization of the soil organic matter (Jakobsen and
Rosendahl, 1990; Heinemeyer et al., 2006; Verbruggen et al.,
2016).
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