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The ability of treeline associated conifers in the Central Alps to cope with recent climate
warming and increasing CO2 concentration is still poorly understood. We determined
tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and
Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf
level gas exchange measurements carried out in situ between 1979 and 2007. Results
indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies
and L. decidua remained constant during the last 36 years despite climate warming
and rising atmospheric CO 18

2 Temporal patterns in 13
. 1 C and 1 O mirrored leaf level

gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal
conductance of treeline conifer species. As at the study site soil water availability was not
a limiting factor iWUE remained largely stable throughout the study period. The stability
in iWUE was accompanied by an increase in basal area increment (BAI) suggesting
that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally,
our results suggest that iWUE may not change species composition at treeline in the
Austrian Alps due to similar ecophysiological responses to climatic changes of the three
sympatric study species.

Keywords: stable isotopes, intrinsic water use efficiency, tree growth, climate change, treeline, Central Alps

INTRODUCTION

High-altitude forest ecosystems at the timberline-treeline transition have raised concern as they
may undergo significant alterations due to climate warming and changes in ground-level air
chemistry (Holtmeier and Broll, 2007; Wieser et al., 2009). Dendroclimatological studies conducted
within the treeline ecotone of the Central European Alps have shown radial stem growth to be
limited by low summer temperature (Carrer and Urbinati, 2004; Oberhuber, 2004; Büntgen et al.,
2005; Frank and Esper, 2005; Oberhuber et al., 2008). During recent decades, several authors
report treeline-associated conifers to reflect increased radial growth, putatively related to climate
warming (Graumlich et al., 1989; Peterson et al., 1990; Jacoby and D’Arrigo, 1997; Rolland and
Florence-Schueller, 1998; Bunn et al., 2005). Moreover, increasing atmospheric CO2 concentration
may act in concert with climate warming to increase carbon accumulation within the treeline
ecotone (cf. Graumlich, 1991; Saurer et al., 1997; Duquesnay et al., 1998; Sidorova et al., 2009).
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Notwithstanding, reduced radial growth has been attributed to
late-summer drought under increasing treeline temperature in
the European Alps (Büntgen et al., 2006; Carrer and Urbinati,
2006; Oberhuber et al., 2008; Wieser et al., 2009).

Stable isotope ratios of carbon and oxygen, i.e., 13C/12C
and 18O/16O, respectively, may serve as dendrochronological
proxies that facilitate mechanistic understanding of climate-
related influences on physiological processes such as leaf gas
exchange and stem wood formation (Loader et al., 2007; Weigt
et al., 2015; and further references therein). In plant organic
matter, δ13C expressing the 13C/12C ratio in relation to an
international standard (Pee Dee Belimnite) depends on variables
such as leaf conductance for water vapor (gw) that modify the
net CO2 uptake rate (A; Farquhar et al., 1989). In addition, δ13C
of plant organic matter (δ13Cp) is a function of atmospheric
δ13C, which is accounted for by calculating discrimination of
photosynthesis against 13C (113C; Farquhar and Richards, 1984)
in relation to intrinsic water-use efficiency (iWUE), i.e., the ratio
of A (rate of net CO2 fixation) versus gw (leaf conductance
for water vapor). For a review see Brugnoli and Farquhar
(2000).

When analyzing δ13Cp alone, the impacts of A (demand
of CO2) and gw (supply of CO2) on iWUE are difficult to
separate (Saurer et al., 2008). The oxygen isotope ratio (δ18O),
however, may allow a distinction between biochemical and
stomatal limitations of photosynthesis as it is not affected
by the photosynthetic CO2 carboxylation but linked to gw
(Barbour et al., 2000; Grams et al., 2007). It is, therefore, an
ideal covariable to estimate to what degree photosynthesis and
stomatal conductance modify δ13Cp (Scheidegger et al., 2000;
Werner et al., 2012). Originally, this dual isotope approach was
introduced for photosynthetic tissue and only recently tested
conceptually for the interpretation of tree-ring data (Roden and
Farquhar, 2012), although several critical points should be taken
into account during interpretion. Among the most important
issues that need to be considered are the facts that the δ18O of
source and atmospheric water can vary spatially and temporarily
and that post-photosynthetic and post-evaporative oxygen atom
exchange processes could affect the initial leaf-level isotope signal
(see below).

At the leaf level, δ18O of photoassimilates derive primarily
from leaf water, typically being enriched in 18O compared to the
source water (i.e., xylem water) through evaporative enrichment
at the site of transpiration. This enrichment is counteracted by
the so-called Péclet effect and transpiratory leaf cooling (for
a review see Barbour, 2007), which may result in the above
mentioned negative correlation between δ18Op and gw (e.g.,
Barbour et al., 2000; Grams et al., 2007). However, to an extent
that may depend on species and site conditions, the signal is
dampend by oxygen exchange with source water during biomass
formation at the stem level (Gessler et al., 2013). This causes, at
least partially, a decoupling between oxygen isotopic signatures
of photoassimilates and the tree ring organic matter. However,
in a recent report Weigt et al. (2015) confirmed that information
may be exploited to relate ecophysiological responses of trees to
environmental changes for both total sapwood organic matter
and extracted cellulose. In any case, it appears advisable to

confirm interpretation from the dual isotope approach by gas
exchange assessments whenever possible.

Previous tree-ring carbon isotope studies carried out in
tropical, arid, Mediterranean, temperate and boreal forest
ecosystems have identified an increase in iWUE over the
past 40 years in response to increasing atmospheric CO2
concentration (Penuelas et al., 2011; Saurer et al., 2014) and just
recently supported by tree-ring δ13C dynamic global vegetation
models comparisons (DGVMs; Frank et al., 2015). Tree growth
on the contrary, remained stable or even declined, suggesting
local site conditions to override a potential CO2-induced increase
in growth (Penuelas et al., 2011; Silva and Anand, 2013; Levesque
et al., 2014). Increasing iWUE accompanied by a reduced
productivity has been attributed to the combined effect of
elevated CO2 and climate change-induced soil drying (Penuelas
et al., 2011; Saurer et al., 2014).

The impact of the steadily increasing CO2 level and
concurrent climate change, however, still awaits clarification for
treeline-associated conifers in the Central Austrian Alps where
low temperatures limit tree growth (Oberhuber, 2007; Wieser
et al., 2009). At treeline in the Central Austrian Alps ample
precipitation during the growing season prevails every third
to fourth day on average (Wieser, 2012), so that soil water
limitation stays absent, allowing trees to meet their water demand
(Tranquillini, 1979; Mayr, 2007; Matyssek et al., 2009). Hence,
whole-tree conductance stays high and mainly depends on the
evaporative demand in terms of irradiance and vapor pressure
deficit (Wieser, 2012). Therefore, we hypothesize that treeline
trees passively respond to the increasing atmospheric CO2 level
(Ca), so that their leaf-intercellular CO2 concentration (Ci) rises
in parallel, while iWUE remains unchanged. The hypothesis was
evaluated by stable carbon and oxygen isotope sampling and
radial growth analysis over the past 36 years (1975–2010) in
stems of mature Pinus cembra, Picea abies and Larix decidua
trees growing at the treeline of Mt. Patscherkofel in the Central
Tyrolean Alps. Observed long-term trends in δ13Cp, δ18Op in tree
rings and iWUE were at least for some years compared with in
situ leaf-level gas exchange data, assessed at the same study site
between 1979 and 2007 in adult P. cembra and L. decidua trees.
Results are discussed in view of tree response to climate warming
at the treeline ecotone.

MATERIALS AND METHODS

Study Site, Climatic Data, and Tree
Species
The study was conducted in a scattered stand at the lower edge
of the treeline ecotone at 1950 m a.s.l. on Mt. Patscherkofel
(47◦12′37′′ N, 11◦27′07′′ E), south of Innsbruck, Austria.
The site is characterized by a cool subalpine climate, the
possibility of frost during the entire year and a continuous
snow cover from October through April. We used monthly
mean temperatures and monthly total precipitation from 1975
to 2010 from a weather station nearby (Klimahaus Research
Station and Alpengarten; 1950 m a.s.l.) for our analysis. Mean
annual precipitation averaged 878 mm, with 58% falling during
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the growing season (May through September). Mean annual air
temperature averaged 2.4◦C, with summer maxima of up to 27◦C
and winter minima of−28◦C.

The geology of Mt. Patscherkofel is dominated by gneisses
and schist. The soil at the study site is a haplic podzol, being a
typical soil type of the treeline ecotone in the Central Tyrolean
Alps (Neuwinger, 1972). The water holding capacity of the soil
(at 5–65 cm depth) at saturation (−0.001 MPa) averages 0.60
m3 m−3. Due to frequent precipitation during the growing
season soil water potential rarely drops below −0.01 MPa,
approximating soil water contents above 0.35 m3 m−3 (Wieser,
2012; including the dry summer of 2003, unpublished data).

The stand is composed of the dominant tree species Pinus
cembra, accounting for 84% of the tree population, and
accompanied by Larix decidua (9%) and Picea abies L. Karst
(7%) at some locations. Trees grew either as isolated trees or
in groups of four to five. The distance between single trees or
tree groups was 20–30 m. From 20 P. cembra trees cored at the
lower edge of the treeline ecotone Oberhuber et al. (2008) derived
an expressed signal population (EPS) value of 0.94, reflecting a
strong climate signal in the site chronology. From these trees
we selected five trees which had the strongest correlation to the
site specific mean tree-ring chronology, no missing rings, and
regular ring boundaries. In addition we cored five dominant
P. abies and L. decidua trees each to account for potential inter-
specific differences of the three associated treeline species. In 2010
the trees were 69 ± 9 years old, with stem heights averaging
12 ± 1.3 m. The stem diameter at breast height (DBH) averaged
22± 3.2 cm.

Tree Ring and Basal Stem Area
Increment
In fall 2010 we obtained two increment cores per trees at
DBH using a 5-mm-diameter increment bore. For contrast
enhancement of tree ring boundaries the cores were dried in
the laboratory, non-permanently mounted on a holder, and the
surface was prepared with a razor blade (Pilcher, 1990). Ring
widths were measured to the nearest 1 µm using a reflecting
microscope (Olympus SZ61) and the software package TSAP
WIN Scientific. Ring widths of both cores from each sample
tree were averaged and individual tree ring chronologies were
then checked for dating accuracy using the COFECHA software
(Holmes, 1994; Grissino-Mayer, 2001). As ring width may be
biased by a negative correlation with the time course during
tree maturation, ring width was converted to basal stem area
increment (BAI) according to:

BAI = 3.14 (R2
n−R2

n−1) (1)

where R is stem radius inside tree bark and n is the year of tree
ring formation (Fritts, 1976). Bark thickness was subtracted from
stem radius. Finally BAI of each year were averaged over the five
sample trees of each species.

Stable Isotope Analysis
δ13C and δ18O analyses for the years 1975–2010 were performed
on the same cores as used for BAI assessment. Annual rings

(early wood plus late wood) were cut exactly at ring boundaries
by use of a scalpel and a reflecting microscope (Wild 308700).
For each of the five study trees per species the two samples
per tree ring were pooled and homogenized with a swing
mill (Retsch MM301, Retsch Haan, Germany). In a subsample,
we compared isotope signatures in bulk wood with those in
cellulose for determining the necessity of cellulose extraction
in our study trees. Cellulose extraction was performed using a
modified version of the method of Brendel et al. (2000). The
methodological comparison corroborated significant correlations
in the cases of δ13C and δ18O (Figure 1) as reported earlier from
coniferous and other tree species (Jaggi et al., 2002; Sohn et al.,
2013) and is in accordance with a recent report (Weigt et al.,
2015). On average, δ13C in cellulose was 1.0–1.1h higher than in
bulk wood (Table 1), being smaller than 1.3–1.4h found in Picea
abies by Borella et al. (1998) and Sohn et al. (2013). Mean δ18O in
cellulose was 4.3–4.9h higher than in bulk wood (Table 1) being
somewhat lower than 5.9h in bulk wood of Picea abies (Sohn
et al., 2013). Based on these findings and in accordance with a
recent methodological study (Weigt et al., 2015), we used bulk
wood samples rather than extracted cellulose for isotope analysis.

Regarding δ13C, 2.0 ± 0.02 mg of homogenized samples
were weighed into tin capsules each (3.5 × 5 mm, IVA
Analysentechnik e.K., Meerbush, Germany) and combusted to
CO2 in an elemental analyzer (Eurovector EA3000) connected
to an isotope ratio mass spectrometer (Isoprime, Elementar,
Hanau, Germany). For δ18O analysis 0.7± 0.05 mg were weighed
into silver capsules each (3.5 × 5 mm, IVA Analysentechnik
e.K., Meerbush, Germany) to obtain CO at 1,430◦C in a
high-temperature pyrolysis system (HTO, HekaTech, Wegberg,
Germany) which was connected via an open-split interface
(Conflo III; Finnigan MAT, Bremen, Germany) to an isotope
ratio mass spectrometer (Delta Plus; Finnigan MAT, Bremen,
Germany). Isotope abundances were expressed using the
δ-notation in h relative to the international standards:

δsample = (Rsample/Rstandard − 1) ∗ 1000 (2)

where Rsample is the molar fraction of the 13C/12C or 18O/16O
ratio of the sample, and Rstandard that of the international IAEA
standards V-PDB for carbon and V-SMOW for O. The analytical
precision was <0.12h and <0.28h regarding δ13C and δ18O,
respectively (expressed as standard deviation of the internal
laboratory standard at the same sample mass).

Isotope Discrimination and iWUE
Tree ring specific δ13Ctring were corrected for the progressive
decline in atmospheric δ13Catm through calculating 13C
discrimination (113C):

113C(%) = (δ13Catm − δ13Ctring)/(1+ δ13Ctring/1000) (3)

To this end, δ13Catm with its nearly linear time course during
1980 through 20101 was extrapolated for the years 1975 through
1979. In a simplified model, Farquhar et al. (1982) related 113C

1www.scrippsco2.ucsd.edu/home
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FIGURE 1 | Comparison of (A) δ13C and (B) δ18O in bulk wood and cellulose of annual growth rings of P. cembra (solid circle), P. abies (solid square)
and L. decidua (open circle). Dashed lines reflect the one-to-one lines for comparison and the solid lines correspond to the linear regression analyses of the data
points: δ13C: y = 1.03x + 1.86, r2 = 0.92, P < 0.001, n = 36; δ18O; y = 0.92x + 6.65, r2 = 0.73, P < 0.001, n = 18.

through plant physiological processes during CO2 fixation in
C3 plants with the ratio of intercellular to ambient CO2 partial
pressure (Ci/Ca):

113C = a+ (b− a) ∗ Ci/Ca (4)

where a (=4.4h) refers to the slower diffusivity of 13CO2 relative
to 12CO2 in air and b (=27h) is the isotopic fractionation
caused by enzymatic C fixation. Ca was obtained from published
data2. It should be noted that 113C is determined by the ratio
of chloroplast to the ambient CO2 mole fraction (Cc/Ca) rather
than Ci/Ca, as used in equation 3, making the here calculated
value sensitive to mesophyll conductance (gm; Seibt et al., 2008).
The latter varies in accordance to changes in environmental
conditions such as temperature, irradiance, water and CO2
availability (Flexas et al., 2008). Consequently using Ca may be
problematic if gm to CO2 is not constant (Seibt et al., 2008).
However, as information on mesophyll conductance of the three
conifers under study is not available and published means of
gm would not improve results (Cernusak et al., 2013), we chose
using the simplified linear model of Farquhar et al. (1982). Hence,
iWUE, i.e., the ratio of the net carbon gain (A) versus leaf
conductance for water vapor (gw), was calculated as follows:

iWUE = A/gw = Ca(b−113C/Ca)/1.6 ∗ (b− a) (5)

where 1.6 is the ratio between the diffusivities of water vapor and
CO2 in air.

Enrichment in 18O in tree rings over source water (118O),
resulting from incorporation of 18O-enriched photoassimilates
into stem biomass, was calculated from d18O of tree ring organic
matter (δ18Otring) and precipitation (δ18Oprep) according to:

118O(%) = (δ18Otring − δ18Oprep)/(1+ δ18Oprep/1000) (6)

2http://cdiac.ornl.gov/trends/co2/sio-mlo.html

TABLE 1 | δ13C and δ18O difference between cellulose and bulk wood in
annual growth rings of Pinus cembra, Picea abies and Larix decidua.

Species δ13C [h] δ18O [h]

P. cembra 1.1 ± 0.0 4.4 ± 0.4

P. abies 1.0 ± 0.1 5.0 ± 0.6

L. decidua 1.1 ± 0.1 4.9 ± 0.4

Precipitation is the only source of water on Mt. Patscherkofel
and thus was assumed to reflect source water of trees.
Furthermore, as there is evidence from a treeline in the Central
Swiss Alps that mean values of δ18Oprep and δ18O of soil water do
not differ significantly, although soil water δ18O carries a distinct
signal from snow melt water far into the growing season (Treydte
et al., 2014), we used annual means of δ18Oprep sampled on top
of Mt. Patscherkofel (2246 m a.s.l.) (Umweltbundesamt Austria;
personal communication) approximately 300 m south of the
selected study trees for our 118O calculation. We elevationally
corrected δ18Oprepby a factor of 0.17h per 100 m of elevation
(Umweltbundesamt Austria; personal communication) which is
considerably lower than the global mean of 0.28h per 100 m of
elevation (Poage and Chamberlain, 2001).

Leaf Level Gas Exchange Data
To illustrate long term trends in foliar CO2 and H2O gas
exchange we compiled published gas exchange data of mature,
field grown P. cembra and L. decidua trees carried out at our
study site between 1979 and 2007 (Table 2). Maximum net
photosynthetic capacity at ambient CO2 (Amax; sensu Larcher,
2001) was assessed of sun exposed twigs from the upper canopy.
Employed in situ were thermoelectrically climate-controlled
cuvettes (Walz, Effeltrich, Germany) or a portable exchange
system (CIRAS 1, PP Systems, Hitchin, Hertfordshire, UK). For
methodological details see publications given in Table 2.
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TABLE 2 | A comparison of published maximum net photosynthetic capacity (Amax) and leaf conductance for water vapor of sun exposed shoots of
mature Pinus cembra and Larix decidua trees at the lower end of the treeline ecotone on Mt. Patscherkofel.

Species Year Measured trees Amax [µmol m−2 s−1] gw [mmol m−2 s−1] Reference

P. cembra 1979 1 3.4 n d Havranek, 1981

P. cembra 2002 2 4.6 ± 0.2 n d Wieser et al., 2005

P. cembra 2007 3 5.2 ± 0.7 n d Wieser et al., 2010

L. decidua 1980 1 3.3 48 Benecke et al., 1981

L. decidua 1993 4 5.6 ± 0.9 85 ± 14 Volgger, 1995

n d, not determined.

FIGURE 2 | Temporal variation in (A) growing season mean air temperature (Tair), (B) total growing season precipitation (P) and (C) growing season
mean vapor pressure deficit (VPD) during the period 1975 throughout 2010. Data were fit by linear regression analysis: Tair: y = 0.053x−97.0, r2 = 0.30,
P < 0.001; P: y = 0.075x−365.3, r2 = 0.00, P = 0.95; VPD: y = −0.055x + 13.3, r2 = 0.01, P = 0.49.

Statistical Analysis
Temperature, precipitation, vapor pressure deficit, 113C, 118O,
BAI, Ci, Ci/Ca and iWUE trends were calculated for the time
period 1975–2010 by least-squares linear regression analysis.

For a given variable, differences among trends (slopes) between
P. cembra, P. abies and L. decidua were assessed by the two-
slope comparison test (Zar, 1999). We used repeated measures
ANOVA to detect significant differences in the mean values
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FIGURE 3 | 113C (A), 118O (B), and BAI (C) chronologies of P. cembra (solid circle, solid line), P. abies (solid square, dashed line) and L. decidua (open
circle, dotted line) between 1975 and 2010. See Table 2 for regression information.

(1975–2010) of 113C, 118O, BAI, Ci, Ci/Ca and iWUE of
P. cembra, P. abies and L. decidua. Following Kunter et al.
(2004) we used multiple least-squares linear regression models
to assess the influence of atmospheric CO2 concentration (Ca)
and mean growing season (May-Sep) air temperature (Tveg )and
their interactions (explanatory variables) on tree-ring variables.
For assessing the climatic impact on tree ring variables (BAI,
113C, and 118O) statistical analyses were based on mean
monthly air temperature (◦C) and total monthly precipitation
(mm) throughout the study period (1975–2010). For each
species Pearson’s correlation coefficients between BAI, isotope
chronologies and both climate variables were calculated from
August of the year prior to growth to September of the growth
year. All the statistical analysis were conducted by use of the
SPSS 16 software package (SPSS. Inc. Chicago, IL, USA), and

a probability level of P < 0.05 was considered as statistically
significant. As suggested by Sarris et al. (2013) we did not
remove any age related trend from our tree-ring chronologies
by conventional detrending procedures, thus avoiding the risk
of removing any environmental signal or trend captured by our
tree-ring series.

RESULTS

Inter-annual Trends in Climate and
Tree-Ring Indices
A warming trend is reflected at our treeline site during the
growing seasons (0.50◦C per decade P < 0.001) of 1975–2010,
without concurrent trends in precipitation and vapor pressure
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deficit (Figure 2). During the whole study period 113C and
118O chronologies were synchronized between the three studied
species. In each species 113C increased over time (Figure 3A;
Table 3) whereas 118O decline (Figure 3B; Table 3). The increase
in 113C was accompanied by rising of Amax for both P. cembra
(1979–2007) and L. decidua (1980–1993) by about 50%. Likewise,
gw increase by about 75% in L. decidua (Table 3).

The mean tree-ring 113C was highest in L. decicua, although
the increase was significantly higher in P. cembra and P. abies
(Table 4). Temporal changes in 118O by contrast, did not differ
significantly between the tree species (Table 4). P. cembra showed
the highest 118O while P. abies presented the lowest 118O and
L. decidua displayed an intermediate mean (Table 4). On average,
growth of P. cembra was significantly higher than growth of
P. abies and L. decidua (Figure 3C; Table 4). During the whole
study period all three species showed an increase in growth
expressed as BAI, being significantly lower in P. cembra than
P. abies, and L. decidua (Figure 3C; Table 4).

Paralleling atmospheric CO2 enhancement (Figure 4A), tree
ring derived Ci increased from 1975 through 2010 from 180 to
234 µmol mol−1 in P. cembra, from 185 to 227 µmol mol−1

in P. abies and from 213 to 256 µmol mol−1 in L. decidua
(Figure 4A; Table 2). Although species specific differences in
the temporal change of Ci were not statistically significant
different from each other, mean Ci was significantly lower in
P. cembra and P. abies as compared to L. decidua (Table 4).
Averaged over the study period P. cembra showed the lowest
and L. decidua, the highest Ci/Ca, while the Ci/Ca of P. abies
was intermediate (Table 4). The increase in Ci/Ca over time
(Figure 4B; Table 3) was significantly higher in P. cembra and
P. abies than in L. decidua (Table 4). In all the three species
iWUE had remained stable during the study period (Figure 4C;
Table 3). However, we observed statistically significant between
species, with P. cembra showing the highest and Larix decidua
showing the lowest iWUE averaged over the study period
(Table 4).

TABLE 3 | Regression information for Figures 3 and 4.

Variable Species Equation r2 P-value

113C P. cembra y = 0.054x − 91.3 0.77 <0.001

P. abies y = 0.049x − 79.2 0.76 <0.001

L. decidua y = 0.030x − 40.1 0.49 <0.001

118O P. cembra y = −0.062x + 159.9 0.50 <0.001

P. abies y = −0.075x + 184.7 0.60 <0.001

L. decidua y = −0.056x + 148.0 0.51 <0.001

BAI P. cembra y = 0.147x - 281.9 0.50 <0.001

P. abies y = 0.219x − 430.8 0.90 <0.001

L. decidua y = 0.273x − 538.4 0.77 <0.001

Ci P. cembra y = 1.81x − 3392.5 0.94 <0.001

P. abies y = 1.75x − 3296.0 0.94 <0.001

L. decidua y = 1.56x − 2873.3 0.94 <0.001

Ci/Ca P. cembra y = 0.002x − 4.33 0.77 <0.001

P. abies y = 0.002x − 3.88 0.76 <0.001

L. decidua y = 0.001x − 2.18 0.62 <0.001

iWUE P. cembra y = −0.085x + 249.4 0.09 0.067

P. abies y = −0.061x + 199.5 0.06 0.148

L. decidua y = 0.045x − 21.9 0.05 0.215

TABLE 4 | Tree-ring carbon isotope characteristics (113C, 118O, BAI, Ci, Ci/Ca, and iWUE) in P. cembra, P. abies, and L. decidua during the period
1975–2010.

P. cembra P. abies L. decidua

Change Average (±SE) Change Average (±SE) Change Average (±SE)

113C [h] 1.9a 17.2 ± 0.7a 1.8a 17.3 ± 0.6a 1.1b 18.8 ± 0.484b

118O [h] −2.2a 35.9 ± 0.9a −2.7a 35.0 ± 1.052b −2.0a 35.6 ± 0.883c

BAI [cm2] 5.3a 7.6 ± 3.8a 7.9b 5.7 ± 2.473b 9.8b 5.8 ± 3.3b

Ci [µmol mol−1] 65.2a 203.5 ± 19.6a 63.06a 208.5 ± 19a 56.2a 228.8 ± 16.9b

Ci/Ca 0.1a 0.6 ± 0.03a 0.1a 0.6 ± 0.03b 0.00b 0.6 ± 0.03c

iWUE [µmol mol−1] −3.1a 81.0 ± 2.9a
−2.2a 78.4 ± 2.6b

−1.6a 67.8 ± 2.2c

Significant changes from 1975–2010 at P < 0.05 are in bold and italics. Between species differerences in change and average (±SE) are marked with different letters.
Change values were calculated as the slope of the corresponding least-squares linear regressions (Table 2) multiplied by the number of years of the study period
1975–2010 (=36).
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FIGURE 4 | (A) Ambient armospheric CO2 concentration (Ca, thin solid line) Ci, (B) Ci/Ca, and (C) iWUE chronologies of P. cembra (solid circle, solid line), P. abies
(solid square, dashed line) and L. decidua (open circle, dotted line) between 1975 and 2010. See Table 2 for regression information.

Effects Ca and Tveg on 113C, 118O, BAI,
Ci, Ci/Ca and iWUE
Multiple linear regression analysis show that 113C and 118O
of all species significantly increased with increasing ambient
CO2 concentration (Ca) while growing season mean air
temperature (Tveg) had no effect on 113C and on 118O
(Table 5). Growth (BAI) of P. cembra, and P. abies significantly
increased with increasing Ca and Tveg. L. decidua presented
a significant increase in BAI at increasing Ca without any
response to Tveg (Table 5). For all species we found a significant
increase in Ci and Ci/Ca at higher Ca but not at higher
Tveg (Table 5). iWUE of P. cembra, P. abies, and L. decidua,
however, did not significantly respond to increasing Ca and Tveg
(Table 5).

113C, 118O, and BAI Response to
Climate (Climate-Growth Relationships)
Climate-response relationships of 113C, 118O, and BAI differed
both in time and in signal strength (Figures 5 and 6). In all
three species 113C was significantly positive correlated with April

throughout June temperatures (Figure 5A) and significantly
negative correlated with January precipitation (Figure 6A).
Previous-year August and October temperature also favored
113C in P. cembra and in P. abies, respectively (Figure 5A),
whereas previous- and current-year August precipitation did so
in P. abies (Figure 6A).

The effects of temperature and precipitation on 118O
were clearly in opposite directions (Figures 5B and 6B). In
all the three species tree-ring 118O was negative correlated
to air temperature from April to June of the current
year and significantly positive correlated to previous-year
December temperature (Figure 5B) as well as to January
precipitation (Figure 6B). From Figure 5B, previous- year
August temperature had a negative correlation with L. decidua
and current-year January temperature showed a negative
correlation with L. decidua. Previous-year November and
current-year March precipitation showed a negative correlation
with 118O in L. decidua, as did June precipitation in P. cembra
(Figure 6B).

We also found significant positive correlations between
BAI and temperature during April, May, and June in
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TABLE 5 | Summary of multiple linear regression models fitted to explain inter-annual changes (1975–2010) in 113C, 118O, BAI, Ci, Ci/Ca, and iWUE of
P. cembra, P. abies, and L. decidua in response to atmospheric CO2 concentration (Ca) and mean growing season (May-Sep) air temperature (Tveg).

Species Variable coefficient SE β t-value r-value
partial

P-value

113C

P. cembra Intercept
Ca

Tveg

5.483
0.034
−0.058

1.225
0.004
0.067

0.903
−0.091

4.477
8.584
−0.865

0.831
0.149

<0.001
<0.001

0.393

P. abies Intercept
Ca

Tveg

6.797
0.031
−0.064

1.054
0.003
0.058

0.925
−0.111

6.446
9.187
−1.106

0.848
−0.189

<0.001
<0.001

0.277

L. decidua Intercept
Ca

Tveg

11.883
0.023
−0.164

1.027
0.003
0.056

0.901
−0.378

11.572
6.917
−2.900

0.769
−0.451

<0.001
<0.001

0.007

118O

P. cembra Intercept
Ca

Tveg

49.624
−0.039

0.054

2.360
0.008
0.130

−0.742
0.060

21.030
−5.158

0.419
−0.668

0.073

<0.001
<0.001

0.678

P. abies Intercept
Ca

Tveg

51.708
−0.050

0.143

2.363
0.008
0.130

−0.842
0.143

21.886
−6.513

1.0103
−0.750

0.189

<0.001
<0.001

0.278

L. decidua Intercept
Ca

Tveg

45.863
−0.026
−0.094

2.219
0.007
0.122

−0.574
−0.120

20.671
−3.671
−0.768

−0.538
−0.0132

<0.001
0.001
0.448

BAI

P. cembra Intercept
Ca

Tveg

−19.964
0.079
0.357

5.482
0.018
0.301

0.627
0.166

−3.642
4.472
1.184

0.614
0.202

0.001
<0.001
<0.001

P. abies Intercept
Ca

Tveg

−40.583
0.120
0.401

2.643
0.009
0.145

0.855
0.169

−15.354
13.990

2.761
0.925
0.433

<0.001
<0.001

0.009

L. decidua Intercept
Ca

Tveg

−53.532
0.159
0.272

5.382
0.017
0.296

0.844
0.085

−9.947
9.128
0.919

0.846
0.158

<0.001
<0.001

0.365

Ci

P. cembra Intercept
Ca

Tveg

−188.830
1.119
−1.033

19.045
0.062
1.047

0.991
−0.054

−9.915
18.130
−0.987

0.953
−0.169

<0.001
<0.001

0.331

P. abies Intercept
Ca

Tveg

−177.500
1.100
−1.014

17.308
0.056
0.952

0.996
−0.054

−10.255
19.623
−1.065

0.960
−0.182

<0.001
<0.001

0.294

L. decidua Intercept
Ca

Tveg

−113.938
0.987
−1.313

14.692
0.048
0.808

1.011
−0.079

−7.755
20.726
−1.625

0.964
−0.272

<0.001
<0.001

0.114

Ci/Ca

P. cembra Intercept
Ca

Tveg

0.037
0.002
−0.003

0.054
0.000
0.003

0.906
−0.087

0.680
8.752
−0.843

0.836
−0.145

0.501
<0.001

0.405

P. abies Intercept
Ca

Tveg

0.087
0.001
−0.003

0.049
0.000
0.003

0.918
−0.096

1.795
9.118
−0.995

0.864
−0.164

0.082
<0.001

0.347

L decidua Intercept
Ca

Tveg

0.321
0.001
−0.004

0.041
0.000
0.002

0.887
−0.0193

7.817
7.240
−1.574

0.783
−0.264

<0.001
<0.001

0.125

iWUE

P. cembra Intercept
Ca

Tveg

98.731
−0.062

0.534

9.964
0.032
0.548

−0.372
0.189

9.909
−1.915

0.974
−0.316

0.161

<0.001
0.064
0.337

P. abies Intercept
Ca

Tveg

92.903
−0.053

0.534

9.052
0.029
0.534

−0.351
0.210

10.263
−1.798

1.072
−0.299

0.184

<0.001
0.081
0.291

(Continued)
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TABLE 5 | Continued

Species Variable coefficient SE β t-value r-value
partial

P-value

L. decidua Intercept
Ca

Tveg

59.644
0.007
0.695

7.661
0.025
0.421

0.052
0.317

7.785
0.270
1.650

0.047
0.276

<0.001
0.789
0.108

Explanatory variables significantly influencing 113C, 118O, BAI, Ci, Ci/Ca, and iWUE at P < 0.05 are in bolt and italics. Multiple linear regressions to obtain a relationships
between (dependent) tree-ring variables and the explanatory variables Ca and Tveg were calculated according to: Tree-ring variable = a + (b∗Ca) + (c∗Tveg), where a,
b, and c are fitting coefficients. Note that the β-coefficient expresses the relative importance of each explanatory variable in standardized terms. The direction of the
relationships between variables (plus or minus) of the β-coefficients and the Pearson’s correlation coefficient indicates whether the relationship between the explanatory
variable and the dependent variable is positive or negative.

P. cembra, P. abies, and L. decidua (Figure 5C). Current-
year August temperature also favored BAI in L. decidua
and P. abies, and also previous-year October temperature
in P. abies (Figure 5C). The correlations between BAI
and precipitation were weak, except for significant positive
correlations in February and current-year August in P. cembra
and a significant negative correlation in January in P. abies
(Figure 6C).

DISCUSSION

Similar growth and 113C, and 1δ18O responses were found over
time in P. cembra, P. abies and L. decidua at the lower edge
of the treeline ecotone in the central Austrian Alps. From 1975
throughout 2010 the three species increased 113C and BAI, while
118O showed a declining trend. Apparently, underlying response
mechanisms were similar across the three studied species.

Our observed correlations for temperature and precipitation
for 113C and 118O (Figures 5 and 6) are consistent with results
reported for oak and pine trees at temperate sites in Switzerland
(Saurer et al., 2008). Weather conditions prevailing during April
through June predominantly were responsible for variations in
tree-ring 113C, 118O, and BAI of P. cembra, P. abies, and
L. decidua. We found positive correlations between April to June
temperatures and 113C. 113C is strongly affected by net CO2
uptake rates, which at treeline are governed by both photon flux
density and temperature (Treydte et al., 2001; McCarrol and
Pawellek, 2004; Kress et al., 2011) as well as enhanced plant
transpiration (Liu et al., 2015). Moreover, at our study site in
situ net photosynthetic capacity of sun exposed twigs from the
upper canopy of mature P. cembra and L. decidua trees measured
under clear summer days also tended to increase between 1979
and 2007 (Table 2), which might be attributed to both the
observed increase in atmospheric Ca and Tair. Additionally, the
temperature optimum of Amax for P. cembra increased from
12.5◦C in 1956 (Pisek et al., 1969, 1973) to 15.0◦C in 2002
(Wieser, 2004) and to 17.1◦C in 2007 (Wieser et al., 2010),
matching the observed increase in mean growing season air
temperature of 0.9◦C per decade (Figure 2). An increase in
net photosynthetic rates under elevated CO2 was also observed
in P. mugo and L. decidua after nine years of free-air CO2
enrichment at the Swiss treeline (Dawes et al., 2013; Streit et al.,
2014). Three years of ecosystem warming also increased carbon

uptake of Pinus cembra at treeline in the Austrian Alps (Wieser
et al., 2015).

Our precipitation signals suggest that trees do not suffer from
moisture stress. Indeed the observed declining trend 118O and
the strong negative correlations between 118O and growing
season precipitation is consistent with the physiological isotopic
responses (Barbour and Farquhar, 2000), suggesting that stomatal
conductance is increased during the study period. Although a
leaf physiological signal in δ18O will be dampened at the level
of tree rings due to oxygen exchange with source water during
cellulose biosynthesis, impact of gw on 18O in tree rings may
be still detectable, even in whole wood analyses (Weigt et al.,
2015). Ecosystem warming accompanied by unchanged VPD
also increased gw and hence also transpiration in boreal Picea
abies (Bergh and Linder, 1999), Pinus sylvestris (Kellomäki and
Wang, 1998), Picea mariana (Van Herk et al., 2011), Pinus
cembra at treeline (Wieser et al., 2015), and Populus deltoides
(Barron-Gafford et al., 2007). Thus, it seems that in cold
environments under non-limiting water availability increasing
temperatures counteract the diminishing effect of rising CO2 on
leaf conductance (Saurer et al., 2014).

The observed positive correlations between BAI and April–
June temperatures are also reflected in wood formation. At the
study site wood formation of larch, spruce and pine generally
starts in May, reaches its maximum in June, and terminates
in August (Havranek, 1981; Loris, 1981; Gruber et al., 2009).
Beside summer temperatures (Figure 5C) other climatic variable
like winter and August precipitation (Figure 6C) are also
known to influence radial growth at treeline as shown for
P. cembra by Oberhuber (2004), reflecting minor soil water
effects on tree growth at treeline (Tranquillini, 1979; Wieser,
2004). Although treeline trees are saturated with carbohydrates
(Gruber et al., 2011), growth of trees at treeline is primarily
affected by temperature dependent carbon sink activity during
tissue formation (Hoch and Körner, 2003, 2012). The observed
increase in BAI (Figure 3C) suggests that our treeline trees benefit
from climate warming, although effects of CO2 fertilization
on growth may not completely ruled out (Table 5). Four
years of experimental air warming with open-top-chambers also
stimulated radial growth of Picea glauca seedlings at the subarctic
treeline in southwest Yukon, Canada (Danby and Hik, 2007).
Thus, when growth is stimulated and there is plenty of water gw
can increase as indicated by a decline in 118O (Figure 3B) along
with increasing A, resulting in a constant iWUE (Figure 4C).

Frontiers in Plant Science | www.frontiersin.org 10 June 2016 | Volume 7 | Article 799

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00799 June 4, 2016 Time: 11:44 # 11

Wieser et al. iWUE in Treeline Conifers

FIGURE 5 | Pearson correlation coefficients between (A) 113C (B) 118O, and (C) BAI, and monthly mean temperature for P. cembra (solid circle, solid
line), P. abies (solid square, dashed line) and L. decidua (open circle, dotted line) between 1975 and 2010. Horizontal gray lines indicates P < 0.05.

Elevated atmospheric CO2 is expected to affect plant carbon-
water relationships, as a decline in stomatal conductance is often
observed when plants are exposed to elevated CO2 (Battipaglia
et al., 2013). If stomatal conductance declines under increasing
CO2 in combination with an increased or unchanged carbon
assimilation, this will decrease the Ci to Ca ratio and thus
decrease 113C. Conversely, in all three study species 113C
increased from 1975 throughout 2010, while tree-ring derived
iWUE remained stable (Figure 4C) although ambient CO2
concentration increased by 60 µmol mol−1 (Figure 2B). The
stability of iWUE resulted as Ci drifted upward paralleling the
rise in Ca (Figure 2B). Likewise, in Picea schrenkiana at treeline
in the western Tianshan Mountains in China iWUE remained
also unchanged from 1985 to 2010 (Wu et al., 2015). No change
in iWUE (i.e., homeostasis) over the last 100 years was also
reported for three conifer species in the Selkirk Range (Rocky
Mountains, Idaho, ID, USA) by Marshall and Monserud (1996).
Other studies by contrast observed a 20% increase in iWUE
from the 1960 throughout 2000 in mature trees in tropical,
arid, Mediterranean, wet temperate and boreal forests distributed

through Europe, Asia, Africa, America, and Oceania (Penuelas
et al., 2011; Saurer et al., 2014; Frank et al., 2015). In these
latter studies, increasing iWUE was attributed to the combined
effect of increasing CO2 and climate change-induced soil drying
that reduced stomatal aperture. Soil drought can be ruled out
along the treeline ecotone of the Central Alps (Mayr, 2007;
Wieser, 2012). Occurrence of soil drought strongly depends on
site conditions such as precipitation patterns, water holding
capacity of the soil, and evaporative demand. Ample precipitation
and moderate evaporative demand in general cause soil water
availability to be sufficiently high to meet the trees’ water demand
at treeline in the Central Tyrolean Alps (Mayr, 2007; Wieser et al.,
2009). As a consequence, treeline trees are rarely forced to restrict
transpiration (Tranquillini, 1979; Benecke et al., 1981; Matyssek
et al., 2009; Wieser and Leo, 2012; Wieser et al., 2014, 2015).
Given the ample soil water availability whole-tree conductance
of P. cembra, P. abies, and L. decidua remains high for CO2
uptake because leaf conductance for water vapor depends only on
the evaporative demand driven by irradiance and vapor pressure
deficit (Wieser, 2012).

Frontiers in Plant Science | www.frontiersin.org 11 June 2016 | Volume 7 | Article 799

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00799 June 4, 2016 Time: 11:44 # 12

Wieser et al. iWUE in Treeline Conifers

FIGURE 6 | Pearson correlation coefficients between (A) 113C (B) 118O, and (C) BAI, and monthly total precipitation for P. cembra (solid circle, solid
line), P. abies (solid square, dashed line) and L. decidua (open circle, dotted line) between 1975 and 2010. Horizontal gray lines indicates P < 0.05.

Beside climate warming and increasing Ca, nitrogen
deposition could also be important for explaining the observed
increase in tree growth as increasing nitrogen deposition during
the 1980ties (Smidt and Mutsch, 1993) has been suggested as
a possible growth stimulator. However, there is evidence that
nitrogen contents per needle dry mass are higher in trees at
treeline as compared to trees growing at lower elevation sites
(Körner, 1989; Birmann and Körner, 2009). Furthermore, since
1988, nitrogen deposition at treeline in the Tyrolean Alps is
steadily declining (Amt der Tiroler Landesregierung, 2015),
and a nitrogen fertilizer experiment at the alpine treeline in
the Swiss Alps showed little or no growth stimulation (Keller,
1970). Thus, it seems that presently nitrogen deposition is
insufficient to explain observed growth trends at treeline as

reported previously by Tranquillini (1979) and Nicolussi et al.
(1995).

CONCLUSION

Treeline trees respond to the increasing atmospheric
CO2 level (Ca) in a way that their leaf-intercellular CO2
concentration (Ci) drifted upward paralleling the rise in
atmospheric CO2 while iWUE remained stable over the
last 36 years. The stability in iWUE was accompanied by
an increase in BAI suggesting that treeline trees benefit
from both recent climate warming) and CO2 fertilization.
In addition, treeline trees are rarely forced to restrict
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transpiration due to ample soil water availability (Tranquillini,
1979; Matyssek et al., 2009; Wieser et al., 2015). A stable
iWUE suggests an increase of both carbon gain and
leaf conductance for water vapor as also indicated by
stable C and O isotope analysis and direct gas exchange
assessments. Furthermore, iWUE may not change species
composition at treeline in the Austrian Alps due to similar
ecophysiological responses to climatic changes of the three
sympatric study species. Our finding that growth of treeline
associated conifers increases with slowly rising ambient CO2
concentration and warming may be relevant for assessing
complex growth models with empirical data, finally leading to
model improvements and better estimations of forest-climate
feedbacks.
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