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The Editorial on the Research Topic

Transport in Plant Microbe Interactions

Plant–microbe interactions are omnipresent in terrestrial ecosystems and central to understand
processes of individual growth, community assembly, and biogeochemical cycling. Plants and
microbes interact above and below ground, and such interactions could theoretically include
all combinations of positive (i.e., mycorrhizal and legume-rhizobia), negative (i.e., pathogenic
interactions), or neutral effects.Many plant pathogenic and symbioticmicrobes produce specialized
structures that invade plant cells, but remain enveloped by plant-derived membranes. These
intimate contacts between plant and microbial structures drive either bidirectional flows of
nutrients as symbiotic (mycorrhizal or legume-rhizobia) or unidirectional flows as in pathogenic
interactions. Whatever the biotrophic context (symbiotic vs. pathogenic), nutrients must pass
several membrane barriers and the apoplastic interface before their assimilation by plant or
microbial cells. Plant and microbial cells must be “re-programmed,” which includes differentiation
and polarization of membrane transport functions to take up, to transfer or to exchange
nutrients between partners of the biotrophic interaction. However, the mechanisms underlying the
functioning and the dynamics of the transportome (the range of genes of an organism that encode
proteins contributing to transport molecules across cellular membranes: membrane transporters,
ions exchangers, and ion channels) at the biotrophic interface are still poorly understood. The
transportome is a key player in nutrient uptake and exchange mechanisms and its regulation
pattern is essential in determining the outcome of plant fungal interactions and in adapting to
environmental changes.

Availability, uptake, and exchange of nutrients in biotrophic interactions will drive plant growth
and modulate biomass allocation, that are central to plant yield, a major outcome, in the context
of high biomass production. In a long term approach, unraveling those biotrophic transportomes
and their underlying mechanism will be extremely useful in (i) the prediction of plant–microbes
ecological niches, (ii) plant diagnosis (i.e., health, nutritional status), (iii) our understanding
of microbial ecology and evolution of function, (iv) the development and implementation of
environmentally and sustainably agro-ecosystems for crop production, (v) the identification of
natural routes to the cycling and sequestration of carbon in terrestrial environments, and (vi) the
ecosystem response to climate change (i.e., Schroeder et al., 2013; Gerlach et al., 2015; Larsen et al.,
2015; Lemanceau et al., 2015).

Comparative genomics revealed that plants and microbes have a variable repertoire of
transporters (Ward et al., 2009; Kohler et al., 2015). In prokaryotes, organisms with larger
genomes have been shown to have proportionally more transporters (Paulsen et al., 2000;
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Markowitz et al., 2012). The question of number of microbial
transporters functioning at the biotrophic interface is of central
interest. This number could be related either to (i) a strong
host dependency, (ii) a reduced host dependency if the genome
complexity increased, or (iii) a broad plant range with which
they interact. The nutritional/trophic transportome puzzle at
the biotrophic interface is still far from complete and major
pieces such as (i) the system of cellular efflux are still missing,
(ii) the functional regulation within microbial species is a
black box, (iii) the regulation of nutrient exchanges between
organisms is still poorly understood, (iv) the knowledge on the
alteration/reorganization of the traffic of vesicular membranes
in both partners is on infancy (i.e., Leborgne-Castel and
Bouhidel), and (v) also the metabolic patterns of how plants
and microbes interact at the biotrophic interface is unknown,
suggesting that the key transporter genes need to be elucidated
from model organism. Regarding the availability of plant
and microbial genomes, only several transporters involved
in biotrophic interactions were characterized: mycorrhizal
symbiosis (phosphorus nutrition: Becquer et al. general
overview: Casieri et al., 2013; nitrogen nutrition: Courty
et al., 2015; phosphorus nutrition: Garcia and Zimmermann),
root nodule symbiosis (Clarke et al.), actinorhizal symbiosis
(Imanishi et al.), and pathogenic interaction (amino-acid
nutrition: Struck). Moreover, only few recent studies are about
such characterization: metal transporters (Tamayo et al.), an
ammonium transporter (Calabrese et al.), phosphate transporters
(Walder et al., 2016), and a dipeptide transporter (Belmondo et
al.) in the mutualistic fungus Rhizophagus irregularis forming
arbuscular mycorrhizas, an aquaporin (Xu et al., 2015) in the
mutualistic fungus Laccaria bicolor forming ectomycorrhizas,
a monosaccharide transporter (Schuler et al., 2015) in plant
pathogenic fungi Ustilago maydis, phosphate transporters
(Walder et al., 2015), monosaccharide transporters (Doidy
et al., 2012), and sulfate transporters (Casieri et al., 2012) in
mycorrhizal plants and an hexose transporter in plants infected
by pathogens (Moore et al., 2015). Effects of nutrient deficiency
on the transcriptome of both partners at the biotrophic interface

are poorly characterized (Bonneau et al., 2013; Wipf et al.).
Increasing applications and improvements of methodologies
could complete classical transporter characterization and
give a better detection and resolution of the functioning of
biotrophic interfaces: transcripts and proteins by laser capture
microdissection technology (Koegel et al., 2013), nutrients by
NanoSIMS (Kaiser et al., 2015), and metabolites by liquid/gas
chromatography–mass spectrometry (Gaude et al., 2015; Rivero
et al.). These recent technological achievements in model plants
associated to microbial consortia will facilitate comprehensive
identification of the key nutrient transporters involved in
biotrophic (mutualistic and pathogenic) interactions. The
functioning of some of these transporters (i.e., phosphate
transporter) could be evolutionary linked in plant–mutualistic
(Delaux et al., 2013) and plant–pathogen (Wirthmueller et al.,
2013) interactions.

Beside the biotrophic interactions, we should also consider
interactions between microbes and their environment
(rhizosphere, phyllosphere) that could influence microbial

nutritional/trophic transportome. Soils, minerals, and leaves
represent specific microbial habitats influencing and controlling
the establishment of microbial communities, but also the
expression of transport-related genes (Johnson, 2010; Correa
et al., 2015; Uroz et al., 2015).
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