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Extracellular recognition of pathogens by plants constitutes an important early detection
system in plant immunity. Microbe-derived molecules, also named patterns, can be
recognized by pattern recognition receptors (PRRs) on the host cell membrane that
trigger plant immune responses. Most knowledge on extracellular pathogen detection
by plants comes from research on bacterial and fungal pathogens. For oomycetes, that
comprise some of the most destructive plant pathogens, mechanisms of extracellular
pattern recognition have only emerged recently. These include newly recognized
patterns, e.g., cellulose-binding elicitor lectin, necrosis and ethylene-inducing peptide
1-like proteins (NLPs), and glycoside hydrolase 12, as well as their receptors, e.g.,
the putative elicitin PRR elicitin response and the NLP PRR receptor-like protein 23.
Immunity can also be triggered by the release of endogenous host-derived patterns,
as a result of oomycete enzymes or damage. In this review we will describe the types
of patterns, both pathogen-derived exogenous and plant-derived endogenous ones,
and what is known about their extracellular detection during (hemi-)biotrophic oomycete
infection of plants.

Keywords: oomycete pathogens, pattern recognition, MAMP/DAMP, plant disease resistance, secreted proteins,
extracellular recognition

INTRODUCTION

Most plant pathogens are able to penetrate host tissues but essentially grow in the plant apoplast
or extracellular space. Even haustoria, feeding structures formed by many biotrophic fungi and
oomycetes that invaginate host cells, remain separated from the plant cell cytoplasm by the plant-
derived extrahaustorial membrane (Parniske, 2000). It, therefore, comes as no surprise that a
first line of pathogen recognition is extracellular and mediated by membrane-bound receptors
that detect microbe- or host damage-derived molecules or patterns. Over the last decades, many
pattern-recognition receptors mediating immunity to patterns of bacteria and fungi have been
reported. Well known examples include the Arabidopsis receptor-like kinase (RLK) FLAGELLIN-
SENSITIVE 2 (FLS2) that mediates recognition of bacterial flagellin, and the RLK, CHITIN
ELICITOR RECEPTOR KINASE 1 (CERK1) involved in detection of fungal chitin (Zipfel, 2014).
Flagellin and chitin are considered microbe-associated molecular patterns (MAMPs), while their
cognate receptors are termed pattern-recognition receptors (PRRs; Jones and Dangl, 2006; Hein
et al., 2009; Dodds and Rathjen, 2010). MAMPs are generally considered conserved molecules
that occur in all species of a given taxon. There are, however, many examples of patterns that
are species-specific or that are less well conserved, e.g., apoplastic effectors that are recognized
by cognate resistance gene-encoded membrane-bound receptors (Thomma et al., 2011).
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In this review we, therefore, refer to all extracellular molecules
that trigger immunity as patterns (Cook et al., 2015). In older
papers the term “elicitor” is most often used, but many of these
can be regarded as patterns too (Boller and Felix, 2009; Cook
et al., 2015). Although numerous oomycete patterns have been
described, knowledge on the mechanism of their extracellular
recognition has only emerged recently for some of them.

Oomycetes are filamentous organisms that belong to the
Stramenopiles, a taxon that also encompasses the diatoms and
brown algae. Many oomycetes are free-living saprobes in soils or
aquatic environments. The best known oomycetes, or the most
infamous ones, are species that are pathogenic on plants, e.g., the
potato late blight pathogen Phytophthora infestans and the grape
downy mildew Plasmopara viticola (Haas et al., 2009; Kamoun
et al., 2015). Five main taxa of phytopathogenic oomycetes can
be distinguished: (i) the genus Phytophthora, (ii) the downy
mildews, (iii) the white blister rusts, (iv) the genus Pythium, and
(v) the genus Aphanomyces (Thines and Kamoun, 2010).

In this review, we focus on the extracellular recognition of
(hemi-)biotrophic oomycetes, on patterns that trigger immunity,
and on mechanisms of pattern recognition. A broad range of
molecules or patterns are released during oomycete infection
of plants, either exogenous ones derived from the pathogen,
or endogenous ones that are released from the plant host
(Figure 1). The distinction between exogenous and endogenous
signals can also be referred to as non-self and modified-self
patterns (Schwessinger and Zipfel, 2008). Endogenous patterns,
also known as damage-associated molecular patterns (DAMPs),
either result from oomycete enzyme activities, or from lysis or
disruption of host cells during the infection process. Oomycete
patterns and other elicitors can be grouped based on their cellular
origin (oomycete cell wall/membrane, or pathogen secreted). We
will review the different patterns, their cellular origin, and what
is known about the detection mechanisms that have evolved to
recognize such patterns, and trigger the plant immune system.

OOMYCETE PATTERNS TRIGGERING
IMMUNITY

Plants can sense a wide variety of extracellular oomycete-derived
patterns. These molecules can be secreted by oomycetes during
infection, or released from the invading pathogens by host-
derived enzymes (Table 1). Several oomycete patterns are derived
from the pathogen’s cell wall or membrane, whereas others are
secreted to the extracellular environment before being detected
by the plant immune system. Below we discuss the different
extracellular patterns, where they derive from, and what is known
about their function.

Cell Wall/Membrane-Derived Patterns
β-Glucans
The most abundant constituents of oomycete cell walls are
glucans, polysaccharides that consist of linked glucose units
(Aronson et al., 1967; Sietsma et al., 1969). β-1,3 and β-
1,6-glucan are the major components of oomycete cell walls,
whereas cellulose, a β-1,4-glucan, forms a relatively small fraction

(Aronson et al., 1967). β-1,6-Glucan is only found in oomycetes
and fungi, whereas cellulose and β-1,3-glucan are present in plant
cell walls too (Fesel and Zuccaro, 2015).

A β-glucan-triggered response, i.e., the accumulation of the
phytoalexin glyceollin, was first observed when soybean (Glycine
max) was treated with glucans isolated from cell walls of
Phytophthora sojae (previously P. megasperma f. sp. glycinea and
P. megasperma var. sojae) (Ayers et al., 1976). β-Glucans also
trigger phytoalexin production in several other fabaceous species,
and in potato (Solanum tuberosum), although this is a weaker
response (Cline et al., 1978; Cosio et al., 1996). A purified β-
1,3/1,6-glucan heptaglucoside was found to be one of the active
molecules in eliciting production of phytoalexins in soybean
(Sharp et al., 1984a,b). Laminarin, an oligomeric β-1,3-glucan
with β-1,6-glucan branches isolated from the marine brown alga
Laminaria digitata, is another pattern that can induce a plethora
of defense-associated responses in Nicotiana tabacum, grapevine
(Vitis vinifera), and the monocots rice (Oryza sativa) and wheat
(Triticum aestivum; Inui et al., 1997; Klarzynski et al., 2000; Aziz
et al., 2003). Furthermore, Arabidopsis thaliana is responsive
to the β-glucan laminarin, although it does not respond to the
oomycete-derived heptaglucoside elicitor. Arabidopsis responses
to laminarin are mediated by the plant hormone ethylene, and
do not seem to involve the well-known defense hormone salicylic
acid (SA). In contrast, when Arabidopsis or tobacco plants are
treated with a sulfated form of laminarin the expression of the
SA-induced marker gene PR1 is induced (Ménard et al., 2004).
Taken together, responses to β-glucans vary greatly depending on
the specific β-glucan and plant species. Therefore, different plant
species might have different receptors involved in the recognition
of different β-glucan patterns.

Phytophthora-derived β-1,3-glucan was shown to bind
soybean membranes (Yoshikawa et al., 1983). The glucan-
binding protein (GBP) from soybean was identified and it was
demonstrated that, when expressed in tobacco and Escherichia
coli, GBP conferred β-glucan-binding activity. Furthermore, an
antibody raised against GBP inhibited β-glucan-binding activity
in soybean and reduced phytoalexin accumulation (Umemoto
et al., 1997). Interestingly, GBP also shows β-glucanase activity
and might release β-glucans from the pathogen’s cell wall
(Fliegmann et al., 2004). After heterologous expression of
soybean GBP in tomato, high affinity binding of the β-1,3/1,6-
glucan heptaglucoside was observed. However, this did not
result in activation of downstream defense responses in tomato
(Mithöfer et al., 2000; Fliegmann et al., 2004). These data
suggest that additional, probably membrane-bound, proteins
are required to recognize the β-glucan patterns (Mithöfer et al.,
2000).

Glucan-Chitosaccharides
Recently, glucan-chitosaccharides were isolated from the cell
wall of the root oomycete Aphanomyces euteiches and were
found as novel patterns that triggered calcium oscillations in
the nucleus of root cells and induced defense genes in Medicago
truncatula (Nars et al., 2013). How these molecules are perceived
is not yet known, but there is a role for the nod factor
perception (NFP) protein, a lysin motif (LysM)-RLK. NFP is
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FIGURE 1 | Recognition of exogenous and endogenous patterns during oomycete infection leads to the activation of plant immunity. Oomycete
pathogens secrete proteins in the apoplast (white) and extrahaustorial matrix (red) which can be perceived as exogenous patterns by pattern recognition receptors
(PRRs) in the plant plasma membrane (PM) or extrahaustorial membrane (EHM). Furthermore, pathogen-derived cell wall or membrane fragments are released
during infection, possibly by host enzymes, and recognized as patterns by the host. Mechanical damage or damage caused by oomycete secreted enzymes can
release endogenous patterns that trigger immunity. The receptor-like kinase (RLK) BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1), a member of the SOMATIC
EMBRYOGENESIS RECEPTOR KINASE (SERK) family, functions as a central hub of RLK and receptor-like protein (RLP) triggered immunity. RLPs form a
bimolecular receptor kinase with the RLK SUPPRESSOR OF BIR1 1 (SOBIR1). RLKs and RLPs bound to SOBIR1 associate with BAK1 to activate pattern-triggered
immunity upon perception of exogenous or endogenous patterns. The haustorial callosic neckband that is sometimes formed in oomycete–plant interactions is
depicted in blue. Oomycete-derived patterns and proteins are depicted in orange, plant-derived patterns in green.

involved in the recognition of microbial N-acetylglucosamine
patterns and is required for nodule formation in interaction
with Rhizobium bacteria. An nfp mutant was more susceptible
to A. euteiches, whereas overexpression of NFP led to increased
resistance, demonstrating its involvement in the perception of
A. euteiches by M. truncatula (Rey et al., 2013). However, NFP
was not required for the glucan-chitosaccharide-induced calcium
oscillations, suggesting a regulatory function in defense for NFP
rather than direct recognition (Nars et al., 2013).

Transglutaminases (Pep-13)
Transglutaminases (TGases) are a widespread family of enzymes,
found in prokaryotes and eukaryotes, that facilitate cross-
linking between glutamine and lysine residues in proteins,
thereby strengthening structures, e.g., cell walls (Lorand and
Graham, 2003; Martins et al., 2014). The formation of a covalent
bond between amino acid residues confers high resistance to
proteolysis (Reiss et al., 2011). In oomycetes, TGases could
protect cell walls from hydrolytic host enzymes. A 42-kDa
TGase cell wall glycoprotein (GP42) of P. sojae functions
as a potent elicitor of phytoalexin synthesis in the non-host

parsley (Petroselinum crispum) (Parker et al., 1991). A 13-amino
acid peptide fragment (Pep-13) derived from GP42 was found
responsible for triggering immunity and was shown to bind
to purified plasma membranes of parsley. Furthermore, Pep-
13 elicits a multitude of defense responses, e.g., expression of
defense-related genes and phytoalexin production (Nürnberger
et al., 1994, 1995; Hahlbrock et al., 1995). Interestingly, Pep-13
treatment of potato resulted in a similar defense activation, with
the distinct difference that it induced a hypersensitive response
(HR; Halim et al., 2004).

GP42 homologs are only found in oomycetes and some
marine bacteria belonging to the genus Vibrio that are pathogenic
on fish and several marine invertebrates (Reiss et al., 2011).
It is thought that an ancestral oomycete, from which species
of Phytophthora, Pythium and downy mildews have evolved,
acquired GP42 from Vibrio bacteria through horizontal gene
transfer, giving an selective advantage over oomycetes that lack
this TGase (Reiss et al., 2011). A 100 kDa monomeric plasma
membrane protein from parsley was shown to bind to the Pep-
13 ligand and thus may be part of the putative receptor complex
(Nennstiel et al., 1998).
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TABLE 1 | Oomycete patterns that activate plant immunity.

Elicitora Source Type (Putative) Receptorb Receptor typec Co-receptorsd Reference

β-Glucans Cell wall Carbohydrate GBP, additional
components required

GH16 Fesel and Zuccaro,
2015

Glucan-chitosaccharides Cell wall Carbohydrate Unknown Nars et al., 2013

Pep-13 Cell wall Peptide Unknown monomeric
100 kDa integral
plasma membrane
protein

Reiss et al., 2011

Eicosapolyenoic acids Membrane Fatty acid Unknown Robinson and
Bostock, 2015

GH12 (XEG1) Secreted protein Protein Unknown SERK3/BAK1 required Ma et al., 2015

nlp20/nlp24 Secreted protein Peptide RLP23 RLP BAK1 and SOBIR1 required Albert et al., 2015

Elicitins Secreted protein Protein ELR RLP BAK1 and SOBIR1 required Du et al., 2015

CBM1/CBEL Secreted protein Protein Unknown partially requires BAK1 Larroque et al.,
2013

OPEL Secreted protein Protein Unknown Chang et al., 2015

aGH12 = glycoside hydrolase family 12; XEG1 = xyloglucanspecific endo-β-1,4-glucanase; nlp = necrosis and ethylene-inducing peptide 1-like protein;
CBM1 = carbohydrate binding module 1; CBEL = cellulose-binding elicitor lectin.
bGBP = Glucan Binding Protein; RLP23 = receptor-like protein 23; ELR = elicitin response.
cGH16 = glycoside hydrolase family 16; RLP = receptor-like protein.
dSERK3 = SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 3; BAK1 = BRI1-ASSOCIATED RECEPTOR KINASE; SOBIR1 = SUPPRESSOR OF BIR1 1.

Eicosapolyenoic Acids
Application of mycelial extracts from P. infestans to potato tubers
led to necrosis and accumulation of phytoalexins, predominantly
rishitin, and lubimin. The molecules responsible for triggering
this response were identified as the eicosapolyenoic acids (EPs),
arachidonic acid (AA), and eicosapentaenoic acid (EPA; Bostock
et al., 1981). Treating potato tuber slices with AA greatly reduced
or even arrested growth of P. infestans (Bostock et al., 1982).
EPs are components of Phytophthora cells and are seemingly
not present in other microbial classes nor are they produced by
higher plants (Robinson and Bostock, 2015). Interestingly, the
downy mildew Hyaloperonospora arabidopsidis has lost the genes
required for AA synthesis (Baxter et al., 2010). It is tempting
to speculate that H. arabidopsidis has lost this ability through
evolution as a way to avoid recognition.

Eicosapolyenoic acids induce the accumulation of
antimicrobial compounds in many plant species, ranging
from many solanaceous species, e.g., potato and tomato, to bean
(Phaseolus vulgaris) and avocado (Persea americana) (Longland
et al., 1987; Romero-Correa et al., 2014; Robinson and Bostock,
2015). Furthermore, in potato application of AA induced
accumulation of reactive oxygen species (ROS), that could be
involved in mediating synthesis of the phytoalexin rishitin from
lubimin (Yoshioka et al., 2001).

EPs are able to trigger systemic acquired resistance in several
plants species to different pathogens. The hormonal regulation
of these responses seems to differ among plant species; in some
the SA pathway is elicited, whereas in other species responses
seem to rely on jasmonic acid (JA) or ethylene. It is postulated
that this may be due to the concentration of EPs in the treatment
(Robinson and Bostock, 2015). For example, Arabidopsis plants
made to produce low levels of EP showed increased resistance
to Botrytis cinerea, P. capsici and aphid feeding, but higher
susceptibility to Pseudomonas syringae pv. tomato (DC3000).

This was associated with higher levels of JA and enhanced
expression of JA-related genes, but decreased SA levels and
reduced expression of SA-related genes. Furthermore, low levels
of AA administered to tomato leaves resulted in increased JA
levels and decreased SA levels and higher resistance against
Botrytis cinerea (Savchenko et al., 2010).

How, exactly, EPs are perceived remains to be resolved. EPs
could be recognized directly by a membrane-bound receptor,
leading to the activation of plant immunity. Another possibility
is that plant membranes that readily incorporate AA (Ricker
and Bostock, 1992), are perturbed leading to the release
of endogenous patterns from the host cell cytoplasm. Or
alternatively, AA can be used as a substrate for lipoxygenases, e.g.,
the potato LOX1, thereby producing oxylipin signals that trigger
plant immunity. In the latter two scenarios recognition would be
independent of plant PRRs (Robinson and Bostock, 2015).

Interestingly, treating potato with a combination of AA and
β-1,3-glucans strongly increased the response to AA. β-glucans
alone, however, did not trigger a response in potato (Preisig and
Kuć, 1988).

Secreted Proteins
Glycoside Hydrolase 12 Proteins
Recently, the XEG1 (xyloglucanspecific endo-β-1,4-glucanase)
protein was isolated from P. sojae culture filtrates (Ma et al.,
2015). This secreted protein elicits cell death in N. benthamiana,
N. tabacum, pepper (Capsicum annuum), tomato (S. lycopersicon)
and soybean but not in maize (Zea mays) and cotton
(Gossypium hirsutum). Analysis of the XEG1 protein sequence
revealed that it belongs to the glycoside hydrolase GH12
family that is widespread amongst prokaryotic and eukaryotic
microbes, especially in plant-associated microorganisms. Within
the Phytophthora genus many GH12 proteins are found of
which half trigger cell death in N. benthamiana. The downy
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mildew H. arabidopsidis also has three GH12 genes, however,
none of them encode a protein that elicits cell death (Ma
et al., 2015). Previously, it was demonstrated that fungal
GH12 proteins are able to degrade β-glucan (Karlsson et al.,
2002) and xyloglucan, a hemicellulose found in the plant
cell wall (Master et al., 2008). Recombinant XEG1 protein
partially released reducing sugars from both glucans, but was
most active with a xyloglucan substrate. Mutations in the
catalytic site of XEG1 strongly decreased xyloglucanase activity
and abolished β-glucanase activity. In contrast, XEG1 enzyme
activity was not required for the induction of cell death in
N. benthamiana and soybean. Moreover, active and inactive
recombinant XEG1 were able to induce resistance against P. sojae
and Phytophthora parasitica var. nicotianae to a similar extent
in soybean and N. benthamiana, respectively. Silencing as well
as overexpression of XEG1 in P. sojae both led to reduced
virulence on soybean through distinct mechanisms. Silenced
P. sojae lines showed reduced virulence, but did not activate
a stronger defense response in soybean, suggesting that XEG1
has a role in virulence, possibly through breakdown of cell
wall components. XEG1 overexpression transformants induced
more ROS accumulation and callose deposition compared
to wildtype P. sojae, confirming the idea that XEG1 acts
as a MAMP. A XEG1 PRR has not been identified but
XEG1 requires the co-receptor SOMATIC EMBRYOGENESIS
RECEPTOR-LIKE KINASE 3/BRI1-ASSOCIATED RECEPTOR
KINASE (SERK3/BAK1) for triggering cell death, suggesting that
a SERK3/BAK1-associated RLK or RLP recognizes XEG1 (Ma
et al., 2015).

Necrosis and Ethylene-Inducing Peptide 1
(Nep1)-Like Proteins
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins
(NLPs) form a family of secreted proteins mainly found in
plant-associated microorganisms, and cytotoxic members are
well known to induce necrosis and ethylene production in dicot
plants (Bailey, 1995; Oome and Van den Ackerveken, 2014).
Three types of NLPs have been identified: type 1 NLPs are found
in bacteria, oomycetes and fungi, type 2 NLPs are found in fungi
and bacteria and the newly identified type 3 NLPs are only present
in fungi (Oome and Van den Ackerveken, 2014). Although many
members of the NLP family are cytotoxic to plants, in recent
years many non-cytoxic NLPs have been identified in fungal
and oomycete species with a (hemi-)biotrophic lifestyle (Cabral
et al., 2012; Dong et al., 2012; Zhou et al., 2012). In search of
the function of 10 non-cytotoxic NLPs of the obligate biotrophic
downy mildew H. arabidopsidis (HaNLPs) it was found that
NLPs activate plant immunity in Arabidopsis (Oome et al., 2014).
Expression of HaNLPs in Arabidopsis led to a severe growth
reduction and increased resistance to H. arabidopsidis for 7 out
of 10 HaNLPs. Only a small fragment of the tested HaNLP3
protein was sufficient to activate plant defense responses and
immunity to downy mildew. This 20–24 amino acid fragment
(nlp20/nlp24) contains two conserved regions. The second region
is the heptapeptide motif GHRHDWE which is highly conserved
in all NLPs (Oome and Van den Ackerveken, 2014). The first
motif that starts with the AIMY amino acid sequence is highly

conserved in type 1 NLPs (Oome et al., 2014). Treatment of
Arabidopsis plants with synthetic nlp24 peptides corresponding
to an oomycete, fungal and bacterial type 1 NLP resulted in
the increased production of the defense-related phytohormone
ethylene and high resistance to downy mildew. Conversely, a
synthetic peptide of a type 2 NLP from the bacterial pathogen
Pectobacterium carotovorum that lacks the AIMY motif was
unable to elicit a response in Arabidopsis. Taken together, this
demonstrated that the first motif contains the immunogenic part
of nlp24 (Oome et al., 2014). Furthermore, nlp20, a peptide based
on PpNLP, a cytotoxic P. parasitica type 1 NLP, was sufficient
for MAPK activation, production of ROS, and increased callose
deposition in Arabidopsis, but did not have any cytotoxic effect
(Böhm et al., 2014). Other plant species were tested for their
ability to respond to nlp peptides, revealing that nlp-triggered
ethylene production was observed in several closely related
Brassicaceae species, and also in more distantly related lettuce
plants (Lactuca sativa), but not in solanaceous species such as
tomato, potato, and N. benthamiana (Böhm et al., 2014).

In a screen for nlp20 sensitivity, a collection of T-DNA
insertion mutants corresponding to 29 RLKs and 44 RLPs
were tested for loss of nlp20-induced ethylene production.
Furthermore, 135 natural accessions of Arabidopsis were also
tested for the loss of nlp20 sensitivity. Two T-DNA insertion
alleles of RLP23, rlp23-1, and rlp23-2 that were unable to express
the receptor-like protein as well as three Arabidopsis accessions
that carried a frameshift mutation resulting in a premature stop
codon in RLP23 coding sequence were insensitive to nlp20. It
was shown that the RLP23 LRR domain physically interacts
with nlp20 in vitro and in planta (Albert et al., 2015). RLP23
lacks a cytoplasmic signaling domain but was shown to require
the RLK SUPPRESSOR OF BIR1 1 (SOBIR1) for signaling.
RLP23 and SOBIR1 interact in the absence of nlp peptides (Bi
et al., 2014; Albert et al., 2015), whereas a second RLK, BAK1,
was recruited only in presence of the ligand (Albert et al.,
2015). Arabidopsis sobir1 and bak1-5/bkk1 mutants lost nlp20-
responsiveness, indicating that SOBIR1 and BAK1 are required
for RLP23 to function. Moreover, it was demonstrated that RLP23
is required for nlp peptide-induced resistance. Unlike wildtype
Arabidopsis, nlp24-treatment of rlp23 mutants did not result in
an increased resistance to H. arabidopsidis (Albert et al., 2015).

Elicitins
Many oomycete pathogens secrete small 10 kDa proteins called
elicitins. The first proteins from this family identified were
cryptogein and capsicein from Phytophthora cryptogea and
Phytophthora capsici, respectively. These proteins were found to
elicit necrosis, induce resistance, and cause increased production
of ethylene as well as the phytoalexin capsidiol in tobacco plants
(Ricci et al., 1989; Milat et al., 1991). Elicitin responses were
observed in all tested Nicotiana spp., but not in other solanaceous
species, such as tomato and eggplant. Furthermore, some
Brassicaceae species also respond to elicitin; most radish cultivars
(Raphanus sativus) and one turnip cultivar (Brassica campestris),
but not Arabidopsis, showed necrosis after elicitin treatment
(Kamoun et al., 1993). The gene encoding for P. infestans elicitin
INF1 was found to be downregulated during early infection of
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potato. However, in the necrotrophic phase of infection inf1
expression was upregulated (Kamoun et al., 1997). Interestingly,
N. benthamiana, a nonhost of P. infestans, gained susceptibility
after silencing of inf1, demonstrating that the recognition of INF1
contributes to resistance (Kamoun et al., 1998).

Members of the Peronosporales, e.g., Phytophthora spp. and
downy mildews are unable to synthesize sterols and must,
therefore, acquire them during pathogenesis. Elicitin and elicitin-
like sequences are also found in downy mildew pathogens, but no
functional analysis has been performed on these proteins (Baxter
et al., 2010; Cabral et al., 2011; Stassen et al., 2012; Sharma et al.,
2015). Dehydroergosterol binding activity was shown for several
elicitins in vitro. Furthermore, elicitins are able to catalyze sterol
transfer between liposomes (Mikes et al., 1998). However, in vivo
sterol-binding activity of elicitins has not been demonstrated.
Interestingly, the oomycete pathogen A. euteiches is able to
synthesize sterols and seems to lack elicitin genes (Gaulin et al.,
2008, 2010).

The putative elicitin receptor was recently cloned from a
wild potato (Solanum) that responds to the P. infestans elicitin
INF1. A S. microdontum ecotype showed a clear cell-death
response when inf1 was transiently expressed. Crosses with an
unresponsive S. microdontum subspecies and further screening
and genetic mapping resulted in the identification of the RLP
ELR (elicitin response). Stable expression of ELR in S. tuberosum
cv. Désirée conferred the cell death response after expression
of inf1. Furthermore, ELR mediated a broad-spectrum response
to elicitins of oomycetes: most tested elicitins induced a cell-
death response in transgenic ELR potato, even though there is
often low sequence similarity between elicitins (Du et al., 2015).
Recognition might therefore be based on structural similarity
rather than a small conserved peptide. ELR was shown to bind
to SERK3/BAK1, but binding of the putative receptor to the
RLP adaptor protein SOBIR1 or the elicitin ligand was not
tested (Du et al., 2015). Intracellular perception, however, cannot
be ruled out as elicitins have, anecdotally, been reported to
be detected inside plant cells, e.g., the immunocytochemical
localization of the elicitin quercinin in oak (Quercus robur) root
cells infected with P. quercina (Brummer et al., 2002). ELR
is thought to mediate extracellular recognition of elicitins, but
direct binding to confirm the receptor function of ELR still
needs to be demonstrated (Du et al., 2015). Previously, studies in
tobacco suggested that INF1 binds to the cytoplasmic domain of a
lectin RLK from N. benthamiana, NbLRK1 (Kanzaki et al., 2008).
Silencing of NbLRK1 resulted in reduced INF1 responsiveness
suggesting the RLK contributes to defense signaling. Although
no ELR has been identified in tobacco yet, SERK3/BAK1 and
SOBIR1 were found to be required for elicitin-triggered cell death
in N. benthamiana (Chaparro-Garcia et al., 2011; Peng et al.,
2015). It is, therefore, likely that ELR acts similar to RLP23
(Albert et al., 2015) and tomato Cf-4 (Postma et al., 2016), in
that it requires both a BAK1-like RLK and SOBIR1-like RLK for
pattern-triggered immunity.

Cellulose-Binding Elicitor Lectin
A 34 kDa glycoprotein was isolated from P. parasitica var.
nicotianae mycelium that triggered enhanced lipoxygenase

activity as well as accumulation the defense-related cell wall
hydroxyproline-rich glycoproteins in tobacco. This protein was
localized to the internal and external layers of the hyphal cell
wall (Séjalon-Delmas et al., 1997). The protein sequence revealed
two cellulose-binding domains belonging to the carbohydrate
binding module 1 (CBM1) family similar to that of fungal
glycanases (Mateos et al., 1997; Gaulin et al., 2006). This putative
function was corroborated by demonstrating protein binding to
fibrous cellulose and plant cell walls. Furthermore, the protein
was shown to have lectin-like activities; human red blood cells
were readily agglutinated by this protein. Therefore, it was
designated cellulose-binding elicitor lectin (CBEL). Moreover,
CBEL was able to elicit necrosis, activate defense gene expression,
and trigger immunity to P. parasitica var. nicotianae. No
enzymatic activities for CBEL were observed, suggesting it acts
as a pattern (Mateos et al., 1997).

Silencing of CBEL resulted in a severe reduction of adhesive
abilities of P. parasitica var. nicotianae to cellulosic surfaces,
but did not affect pathogenicity. Interestingly, knockdown
mutants showed dispersed abnormal cell wall thickenings,
indicating that CBEL might be involved in cell wall deposition
in the pathogen (Gaulin et al., 2002). CBEL activity as a
pattern is not limited to tobacco, as infiltration of CBEL in
Arabidopsis leaves resulted in defense responses differentially
dependent on the phytohormones SA, JA, and ethylene (Khatib
et al., 2004). CBEL-induced necrosis was lost in JA-insensitive
coi1 and ethylene-insensitive ein2 mutant plants, whereas
PR1 and WAK1 expression, accumulation hydroxyproline-rich
glycoproteins, and peroxidase activity was greatly reduced or
abolished in an Arabidopsis NahG mutant that metabolizes SA
(Khatib et al., 2004). Transient expression of CBEL as well as
infiltration of recombinant CBEL in tobacco leaves resulted in
rapid development of necrotic lesions. Immunocytochemistry
revealed that the delivered CBEL was bound to the plant
cell wall. Substitution of aromatic residues in CBEL that are
possibly involved in cellulose binding reduced the necrosis-
inducing activity. Necrosis-induction in tobacco was lost
for three recombinant CBEL proteins (Y52A, Y188A, and
Y52A_Y188A), that were also unable to induce defense-related
genes at similar concentrations as native CBEL. Recently, it
was shown that CBM1-1 is the main determinant in the
interaction with cellulose; a mutation in CBM1-2 (Y188A)
only showed a slight decrease in cellulose binding compared
to wild type CBEL, whereas a mutation in CBM1-1 (Y52A)
strongly decreased the binding capacity of CBEL and the
double mutant (Y52A_Y188A) entirely lost the ability to bind
cellulose (Martinez et al., 2015). Taken together, these data
show amino acids in the two CBM1s, that were predicted to
be important for cellulose binding, are important for elicitor
activity.

To define the minimum CBEL pattern that triggers immunity,
synthetic peptides of CBM1-1 and CBM1-2 were generated.
CBM1-1synt and CBM1-2synt were sufficient to activate plant
defense in tobacco and Arabidopsis, respectively. Intriguingly,
recombinant CBEL but not recombinant CBEL_Y52A_Y188A,
induced calcium fluxes in tobacco cells but not in protoplasts.
This demonstrates that the plant cell wall and unmodified
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CBM1s are important for CBEL perception (Gaulin et al.,
2006).

CBM1s are probably not essential for pathogens with an
obligate biotrophic lifestyle; only one was detected in the Albugo
laibachii genome and no clear CBM1-encoding genes were found
in H. arabidopsidis, whereas Pythium ultimum and Phytophthora
spp. contain multiple CBM1-encoding genes (Larroque et al.,
2012). It has been proposed that adhesion of CBEL or its CBM1s
perturb the cellulose status, and the perception of this disturbance
leads to defense activation, but this remains to be proven
(Dumas et al., 2008). The fact that BAK1 and RESPIRATORY
BURST OXIDASE HOMOLOGUE (RBOH) D and F proteins
are required for some of the CBEL-induced defense responses
suggests that a PRR might be involved (Larroque et al., 2013).
The oxidative burst triggered by pattern recognition is mediated
by the NADPH oxidases RBOH D and F (Suzuki et al., 2011).
Necrosis-induction by CBEL in bak1-4 and the rbohD/F double
mutant was similar to the Col-0 Arabidopsis wildtype. However,
no ROS production was detected in bak1-4 and rbohD/F and
activation of MAP kinases was reduced in bak1-4 and delayed
in rbohD/F compared to Col-0. The expression of JA-responsive
genes WRKY11 and PDF1.2, but not the expression of the SA-
responsive gene PR1, was also reduced in these mutant lines
(Larroque et al., 2013). The dependence of some CBEL-induced
responses on BAK1 suggests a role for an RLK or RLP in the
perception of CBEL. Three Arabidopsis accessions were found
that are unresponsive to CBEL, and may therefore offer a way to
decipher CBEL-triggered immunity (Larroque et al., 2013).

OPEL
A secreted apoplastic protein from P. parasitica called OPEL was
recently discovered to trigger a plant immune response (Chang
et al., 2015). OPEL contains a thaumatin-like domain, a glycine-
rich domain, and a glycosyl hydrolase (GH) domain that has a
putative laminarinase active site. OPEL seems to be oomycete
specific; homologues were only found in Phytophthora spp. and
other oomycetes such as H. arabidopsidis, Py. ultimum and
A. laibachii. OPEL is expressed during early infection stages of
P. parasitica, rapidly increasing transcript levels within 12 hours
after inoculation on N. benthamiana. Furthermore, infiltration
of N. tabacum with recombinant OPEL protein resulted in cell
death, increased callose deposition, ROS accumulation, induction
of defense-related genes and systemic acquired resistance against
several pathogens. Moreover, transient expression of OPEL in

N. benthamiana enhanced resistance to P. parasitica. It was
shown that the GH domain was essential for the increased
callose deposition and increased accumulation of ROS in
N. tabacum. Although the OPEL GH domain contains a
laminarinase signature active site motif, no laminarin or β-1,3-
glucan enzymatic activity was detected in OPEL recombinant
protein. Mutation of the putative laminarinase active site motif
in the predicted GH domain abolished elicitor activity of OPEL,
which suggests enzymatic activity of OPEL is required for
triggering the defense response (Chang et al., 2015). The OPEL
substrate has not been identified but is likely a polysaccharide in
the plant cell wall. OPEL-released degradation products might,
therefore, be perceived by plants as DAMPs.

ENDOGENOUS PATTERNS

Next to exogenous patterns, host-derived molecules that are
released upon pathogen infection can serve as danger signals
(Table 2). Several endogenous patterns, also known as DAMPs,
have been described that are plant cell wall derived or that are
released from the host cytosol (Boller and Felix, 2009; Yamaguchi
and Huffaker, 2011). The release of these patterns is promoted by
a plethora of hydrolytic enzymes that are produced by pathogens
(Baxter et al., 2010; Blackman et al., 2015). Interestingly, the
downy mildew H. arabidopsidis has fewer hydrolases than the
hemibiotrophic Phytophthora spp., probably as adaptation to its
obligate biotrophic lifestyle (Baxter et al., 2010).

Oligogalacturonides (OGs) are released from the plant cell
wall after mechanical damage or by pathogen-secreted hydrolytic
enzymes through degradation of homogalacturonan (Ferrari
et al., 2013). OGs bind to several members of the cell wall-
associated kinase (WAK) family, which consequently leads to
the activation of immunity (Brutus et al., 2010; Ferrari et al.,
2013). Also cutin, the main constituent of the plant cuticle
(Heredia, 2003), can be degraded to cutin monomers by pathogen
released cutinases. Cutin monomers are potent elicitors of
defense in several plant species (Schweizer et al., 1996; Fauth et al.,
1998). However, it remains unknown how cutin monomers are
recognized by plants.

Damage patterns could also be released from the plant
cytosol during oomycete infection. These include members of
the plant elicitor peptide (Pep) family. The cytosolic precursors
of Peps, PROPEPS are released and cleaved when the plant
cell is damaged, resulting in the production of endogenous

TABLE 2 | Plant-derived patterns that trigger plant immunity.

Elicitora Type Receptorb Receptor typec Source Reference

Oligogalacturonides Carbohydrate WAK1 EGF-like Cell wall Ferrari et al., 2013

Cutin monomers Fatty alcohol Unknown Cell wall Fauth et al., 1998

Peps Peptide PEPR1/PEPR2 RLK Cytosol Bartels and Boller, 2015

Extracellular ATP Nucleoside triphosphate DORN1/LecRK-I.9 LecRK Cytosol Choi et al., 2014

aATP = Adenosine triphosphate.
bWAK1 = CELL WALL-ASSOCIATED KINASE 1; PEPR1/PEPR2 = PEP1 RECEPTOR 1/PEP1 RECEPTOR 2; DORN1 = Does Not Respond to Nucleotides 1; LecRK-
I.9 = lectin receptor kinase clade 1.9.
cEGF = epidermal growth factor; RLK = receptor-like kinase; LecRK = lectin receptor kinase.
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patterns. The receptors for Peps have been identified, the RLKs
PEP1 RECEPTOR 1 (PEPR1) and PEP1 RECEPTOR 2 (PEPR2)
recognized Peps and contributed to immune responses against
several pathogens (Yamaguchi et al., 2006, 2010; Krol et al., 2010;
Yamaguchi and Huffaker, 2011; Albert, 2013; Bartels et al., 2013;
Bartels and Boller, 2015).

Furthermore, extracellular adenosine triphosphate (eATP)
could be perceived as a damage pattern. Treatment of Arabidopsis
with ATP induced a similar set of genes as wounding did (Choi
et al., 2014). In a screen for ATP-insensitivity, a dorn1 (Does
Not Respond to Nucleotides 1) mutant was identified that is
defective in the lectin receptor kinase LecRK-I.9. LecRK-I.9 binds
to ATP with high affinity and is required for the activation
of several ATP-induced responses, demonstrating it is an ATP
receptor (Choi et al., 2014). Previously, lecrk-I.9 mutants were
shown to be more susceptible to two Phytophthora species than
wildtype Arabidopsis. Conversely, overexpression of LecRK-1.9
led to increased resistance to P. brassicae (Bouwmeester et al.,
2011).

Finally, it has been proposed that recognition of the exogenous
pattern β-1,3-glucan could have evolved as an endogenous danger
signal; callose could be degraded by host or pathogen-derived
β-1,3-glucanases, thereby eliciting a defense response (Klarzynski
et al., 2000).

PUTATIVE RECEPTOR PROTEINS

Plant genomes encode many RLKs and RLPs. The Arabidopsis
genome, for example, encodes more than 600 RLKs and 57
RLPs (Shiu et al., 2004; Wang et al., 2008). For most of these
proteins the function is unknown. We expect that several of
these receptor proteins have a role in the perception of oomycete
pathogens. Recently, it was shown that many RLP genes are
upregulated after treatment with P. infestans and the P. infestans
NLP NPP1, suggesting a role for these RLPs during oomycete
infection (Wu et al., 2016). Several RLKs are also reported to
affect the interaction with oomycete pathogens. For example,
other LecRKs, next to the aforementioned LecRK-I.9 and
NbLRK1, influence the defense response against Phytophthora
in Arabidopsis, tomato and N. benthamiana (Wang et al.,
2014, 2015b,a). Silencing of several LecRKs in tomato and
N. benthamiana led to increased susceptibility to P. capsici
and P. infestans, respectively (Wang et al., 2015b). Two
Arabidopsis LecRKs from the same clade (IX) were shown to
affect Phytophthora resistance in a similar way (Wang et al.,

2015a). Finally, the Arabidopsis LecRK-VI.2A positively regulates
the MAMP-triggered immunity response (Singh et al., 2012).
Although, some RLKs and RLPs partly regulate the defense
response against oomycetes, the patterns or molecules that are
recognized by these proteins are still largely unknown.

CONCLUSIONS AND PERSPECTIVES

Recent discoveries in extracellular recognition of oomycete
patterns have provided new insight in how plants detect early
infection of these (hemi-)biotrophic pathogens. Novel PRRs
for elicitins and NLPs have been identified and mechanisms
of how these exogenous patterns are perceived by plants have
been elucidated. The scientific progress described in this review
provides interesting leads for resistance breeding of crops. For
example, transgenic expression of the PRRs ELR and RLP23 in
cultivated potato resulted in increased resistance to the late blight
pathogen P. infestans that is known to produce elicitins and NLPs
(Haas et al., 2009; Albert et al., 2015; Du et al., 2015). Classical
resistance breeding has mainly focused on the introgression of
resistance genes encoding cytoplasmic NB-LRR receptors, which
are rapidly broken by new emerging strains of the pathogen.
The use of PRRs, many of which recognize conserved microbial
patterns, for breeding a new generation of disease resistant crops
could offer a more durable solution, especially if PRRs and
resistance genes are stacked (Dangl et al., 2013; Schwessinger
et al., 2015). A great example is the expression of the Arabidopsis
PRR EFR in tomato that resulted in broad spectrum resistance to
different bacterial pathogens that all produce the EF-Tu pattern
that is recognized by EFR (Lacombe et al., 2010). As many of the
described oomycete patterns are broadly distributed, expression
of the cognate PRRs in crops could reduce plant disease and aid
in securing our future food.
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Bostock, R. M., Laine, R. A., and Kuć, J. A. (1982). Factors affecting the
elicitation of sesquiterpenoid phytoalexin accumulation by eicosapentaenoic
and arachidonic acids in potato. Plant Physiol. 70, 1417–1424. doi:
10.1104/pp.70.5.1417

Bouwmeester, K., de Sain, M., Weide, R., Gouget, A., Klamer, S., Canut, H., et al.
(2011). The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance
component and a potential host target for a RXLR effector. PLoS Pathog.
7:e1001327. doi: 10.1371/journal.ppat.1001327

Brummer, M., Arend, M., Fromm, J., Schlenzig, A., and Oßwald, W.
(2002). Ultrastructural changes and immunocytochemical localization of the
elicitin quercinin in Quercus robur L. roots infected with Phytophthora
quercina. Physiol. Mol. Plant Pathol. 61, 109–120. doi: 10.1006/pmpp.2002.
0419

Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. (2010).
A domain swap approach reveals a role of the plant wall-associated kinase 1
(WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. U.S.A. 107,
9452–9457. doi: 10.1073/pnas.1000675107

Cabral, A., Oome, S., Sander, N., Küfner, I., Nürnberger, T., and Van den
Ackerveken, G. (2012). Nontoxic Nep1-like proteins of the downy mildew
pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing
activity by a surface-exposed region. Mol. Plant Microbe Interact. 25, 697–708.
doi: 10.1094/MPMI-10-11-0269

Cabral, A., Stassen, J. H. M., Seidl, M. F., Bautor, J., Parker, J. E., and
Van den Ackerveken, G. (2011). Identification of Hyaloperonospora
arabidopsidis transcript sequences expressed during infection reveals
isolate-specific effectors. PLoS ONE 6:e19328. doi: 10.1371/journal.pone.00
19328

Chang, Y.-H., Yan, H.-Z., and Liou, R.-F. (2015). A novel elicitor protein from
Phytophthora parasitica induces plant basal immunity and systemic acquired
resistance. Mol. Plant Pathol. 16, 123–136. doi: 10.1111/mpp.12166

Chaparro-Garcia, A., Wilkinson, R. C., Gimenez-Ibanez, S., Findlay, K.,
Coffey, M. D., Zipfel, C., et al. (2011). The receptor-like kinase

SERK3/BAK1 is required for basal resistance against the late blight pathogen
Phytophthora infestans in Nicotiana benthamiana. PLoS ONE 6:e16608. doi:
10.1371/journal.pone.0016608

Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., et al. (2014).
Identification of a plant receptor for extracellular ATP. Science 343, 290–294.
doi: 10.1126/science.343.6168.290

Cline, K., Wade, M., and Albersheim, P. (1978). Host-pathogen interactions: XV.
Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the
accumulation of phytoalexins in other plants. Plant Physiol. 62, 918–921. doi:
10.1104/pp.62.6.918

Cook, D. E., Mesarich, C. H., and Thomma, B. P. H. J. (2015). Understanding plant
immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol.
53, 541–563. doi: 10.1146/annurev-phyto-080614-120114

Cosio, E. G., Feger, M., Miller, C. J., Antelo, L., and Ebel, J. (1996). High-affinity
binding of fungal ß-glucan elicitors to cell membranes of species of the plant
family Fabaceae. Planta 200, 92–99. doi: 10.1007/BF00196654

Dangl, J. L., Horvath, D. M., and Staskawicz, B. J. (2013). Pivoting the plant
immune system from dissection to deployment. Science 341, 746–751. doi:
10.1126/science.1236011

Dodds, P. N., and Rathjen, J. P. (2010). Plant immunity: towards an integrated
view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548. doi:
10.1038/nrg2812

Dong, S., Kong, G., Qutob, D., Yu, X., Tang, J., Kang, J., et al. (2012). The
NLP toxin family in Phytophthora sojae includes rapidly evolving groups that
lack necrosis-inducing activity. Mol. Plant Microbe Interact. 25, 896–909. doi:
10.1094/MPMI-01-12-0023-R

Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L. C. P., Zhou, J.,
et al. (2015). Elicitin recognition confers enhanced resistance to Phytophthora
infestans in potato. Nat. Plants 1:15034. doi: 10.1038/nplants.2015.34

Dumas, B., Bottin, A., Gaulin, E., and Esquerré-Tugayé, M.-T. (2008). Cellulose-
binding domains: cellulose associated-defensive sensing partners? Trends Plant
Sci. 13, 160–164. doi: 10.1016/j.tplants.2008.02.004

Fauth, M., Schweizer, P., Buchala, A., Markstädter, C., Riederer, M., Kato, T.,
et al. (1998). Cutin monomers and surface wax constituents elicit H2O2
in conditioned cucumber hypocotyl segments and enhance the activity of
other H2O2 elicitors. Plant Physiol. 117, 1373–1380. doi: 10.1104/pp.117.
4.1373

Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and Lorenzo,
G. D. (2013). Oligogalacturonides: plant damage-associated molecular patterns
and regulators of growth and development. Front. Plant Sci. 4:49. doi:
10.3389/fpls.2013.00049

Fesel, P. H., and Zuccaro, A. (2015). β-glucan: crucial component of the fungal
cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90, 53–60. doi:
10.1016/j.fgb.2015.12.004

Fliegmann, J., Mithöfer, A., Wanner, G., and Ebel, J. (2004). An ancient enzyme
domain hidden in the putative ß-glucan elicitor receptor of soybean may
play an active part in the perception of pathogen-associated molecular
patterns during broad host resistance. J. Biol. Chem. 279, 1132–1140. doi:
10.1074/jbc.M308552200

Gaulin, E., Bottin, A., and Dumas, B. (2010). Sterol biosynthesis in oomycete
pathogens. Plant Signal. Behav. 5, 258–260. doi: 10.4161/psb.5.3.10551

Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-
Torregrosa, C., et al. (2006). Cellulose binding domains of a Phytophthora cell
wall protein are novel pathogen-associated molecular patterns. Plant Cell 18,
1766–1777. doi: 10.1105/tpc.105.038687

Gaulin, E., Jauneau, A., Villalba, F., Rickauer, M., Esquerré-Tugayé, M.-
T., and Bottin, A. (2002). The CBEL glycoprotein of Phytophthora
parasitica var. nicotianae is involved in cell wall deposition and adhesion
to cellulosic substrates. J. Cell Sci. 115, 4565–4575. doi: 10.1242/jcs.
00138

Gaulin, E., Madoui, M.-A., Bottin, A., Jacquet, C., Mathé, C., Couloux, A.,
et al. (2008). Transcriptome of Aphanomyces euteiches: new oomycete putative
pathogenicity factors and metabolic pathways. PLoS ONE 3:e1723. doi:
10.1371/journal.pone.0001723

Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano,
L. M., et al. (2009). Genome sequence and analysis of the Irish potato famine
pathogen Phytophthora infestans. Nature 461, 393–398. doi: 10.1038/nature
08358

Frontiers in Plant Science | www.frontiersin.org 9 June 2016 | Volume 7 | Article 906

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00906 June 21, 2016 Time: 15:58 # 10

Raaymakers and Van den Ackerveken Extracellular Oomycete Recognition

Hahlbrock, K., Scheel, D., Logemann, E., Nürnberger, T., Parniske, M., Reinold, S.,
et al. (1995). Oligopeptide elicitor-mediated defense gene activation in
cultured parsley cells. Proc. Natl. Acad. Sci. U.S.A. 92, 4150–4157. doi:
10.1073/pnas.92.10.4150

Halim, V. A., Hunger, A., Macioszek, V., Landgraf, P., Nürnberger, T., Scheel, D.,
et al. (2004). The oligopeptide elicitor Pep-13 induces salicylic acid-dependent
and -independent defense reactions in potato. Physiol. Mol. Plant Pathol. 64,
311–318. doi: 10.1016/j.pmpp.2004.10.003

Hein, I., Gilroy, E. M., Armstrong, M. R., and Birch, P. R. J. (2009). The zig-
zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 10, 547–562. doi:
10.1111/j.1364-3703.2009.00547.x

Heredia, A. (2003). Biophysical and biochemical characteristics of cutin, a plant
barrier biopolymer. Biochim. Biophys. Acta 1620, 1–7. doi: 10.1016/S0304-
4165(02)00510-X

Inui, H., Yamaguchi, Y., and Hirano, S. (1997). Elicitor actions of
N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase
and L-phenylalanine ammonia-lyase induction in rice suspension culture.
Biosci. Biotechnol. Biochem. 61, 975–978. doi: 10.1271/bbb.61.975

Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. Nature 444,
323–329. doi: 10.1038/nature05286

Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D.,
et al. (2015). The Top 10 oomycete pathogens in molecular plant pathology.
Mol. Plant Pathol. 16, 413–434. doi: 10.1111/mpp.12190

Kamoun, S., van West, P., de Jong, A. J., de Groot, K. E., Vleeshouwers, V. G. A. A.,
and Govers, F. (1997). A gene encoding a protein elicitor of Phytophthora
infestans is down-regulated during infection of potato. Mol. Plant Microbe
Interact. 10, 13–20. doi: 10.1094/MPMI.1997.10.1.13

Kamoun, S., van West, P., Vleeshouwers, V. G. A. A., de Groot, K. E., and Govers, F.
(1998). Resistance of Nicotiana benthamiana to Phytophthora infestans is
mediated by the recognition of the elicitor protein INF1. Plant Cell 10, 1413–
1426. doi: 10.2307/3870607

Kamoun, S., Young, M., Glascock, C. B., and Tyler, B. M. (1993). Extracellular
protein elicitors from Phytophthora: host-specificity and induction of resistance
to bacterial and fungal phytopathogens. Mol. Plant Microbe Interact. 6, 15–25.
doi: 10.1094/MPMI-6-015

Kanzaki, H., Saitoh, H., Takahashi, Y., Berberich, T., Ito, A., Kamoun, S.,
et al. (2008). NbLRK1, a lectin-like receptor kinase protein of Nicotiana
benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates
INF1-induced cell death. Planta 228, 977–987. doi: 10.1007/s00425-008-
0797-y

Karlsson, J., Siika-aho, M., Tenkanen, M., and Tjerneld, F. (2002). Enzymatic
properties of the low molecular mass endoglucanases Cel12A (EG III)
and Cel45A (EG V) of Trichoderma reesei. J. Biotechnol. 99, 63–78. doi:
10.1016/S0168-1656(02)00156-6

Khatib, M., Lafitte, C., Esquerré-Tugayé, M.-T., Bottin, A., and Rickauer, M. (2004).
The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence
in Arabidopsis thaliana via three different signalling pathways. New Phytol. 162,
501–510. doi: 10.1111/j.1469-8137.2004.01043.x

Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B., et al.
(2000). Linear ß-1,3 glucans are elicitors of defense responses in tobacco. Plant
Physiol. 124, 1027–1038. doi: 10.1104/pp.124.3.1027

Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., et al.
(2010). Perception of the Arabidopsis danger signal peptide 1 involves
the pattern recognition receptor AtPEPR1 and its close homologue
AtPEPR2. J. Biol. Chem. 285, 13471–13479. doi: 10.1074/jbc.M109.
097394

Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van
Esse, H. P., et al. (2010). Interfamily transfer of a plant pattern-recognition
receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28, 365–
369. doi: 10.1038/nbt.1613

Larroque, M., Barriot, R., Bottin, A., Barre, A., Rougé, P., Dumas, B., et al.
(2012). The unique architecture and function of cellulose-interacting proteins
in oomycetes revealed by genomic and structural analyses. BMC Genomics
13:605. doi: 10.1186/1471-2164-13-605

Larroque, M., Belmas, E., Martinez, T., Vergnes, S., Ladouce, N., Lafitte, C.,
et al. (2013). Pathogen-associated molecular pattern-triggered immunity and
resistance to the root pathogen Phytophthora parasitica in Arabidopsis. J. Exp.
Bot. 64, 3615–3625. doi: 10.1093/jxb/ert195

Longland, A. C., Slusarenko, A. J., and Friend, J. (1987). Arachidonic and
Linoleic acids elicit isoflavonoid phytoalexin accumulation in Phaseolus vulgaris
(French bean). J. Phytopathol. 120, 289–297. doi: 10.1111/j.1439-0434.1987.tb
00492.x

Lorand, L., and Graham, R. M. (2003). Transglutaminases: crosslinking enzymes
with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156. doi:
10.1038/nrm1014

Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., et al. (2015). A Phytophthora
sojae Glycoside Hydrolase 12 protein is a major virulence factor during
soybean infection and is recognized as a PAMP. Plant Cell 27, 2057–2072. doi:
10.1105/tpc.15.00390

Martinez, T., Texier, H., Nahoum, V., Lafitte, C., Cioci, G., Heux, L., et al. (2015).
Probing the functions of carbohydrate binding modules in the CBEL protein
from the Oomycete Phytophthora parasitica. PLoS ONE 10:e0137481. doi:
10.1371/journal.pone.0137481

Martins, I. M., Matos, M., Costa, R., Silva, F., Pascoal, A., Estevinho,
L. M., et al. (2014). Transglutaminases: recent achievements and new
sources. Appl. Microbiol. Biotechnol. 98, 6957–6964. doi: 10.1007/s00253-014-
5894-1

Master, E. R., Zheng, Y., Storms, R., Tsang, A., and Powlowski, J. (2008).
A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger:
recombinant expression, purification and characterization. Biochem. J. 411,
161–170. doi: 10.1042/BJ20070819

Mateos, F. V., Rickauer, M., and Esquerré-Tugayé, M. T. (1997). Cloning
and characterization of a cDNA encoding an elicitor of Phytophthora
parasitica var. nicotianae that shows cellulose-binding and lectin-like activities.
Mol. Plant Microbe Interact. 10, 1045–1053. doi: 10.1094/MPMI.1997.10.
9.1045

Ménard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B., et al.
(2004). ß-1,3 glucan sulfate, but not ß-1,3 glucan, induces the salicylic acid
signaling pathway in tobacco and Arabidopsis. Plant Cell 16, 3020–3032. doi:
10.1105/tpc.104.024968

Mikes, V., Milat, M. L., Ponchet, M., Panabières, F., Ricci, P., and Blein, J. P.
(1998). Elicitins, proteinaceous elicitors of plant defense, are a new class of
sterol carrier proteins. Biochem. Biophys. Res. Commun. 245, 133–139. doi:
10.1006/bbrc.1998.8341

Milat, M. L., Ricci, P., Bonnet, P., and Blein, J. P. (1991). Capsidiol and ethylene
production by tobacco cells in response to cryptogein, an elicitor from
Phytophthora cryptogea. Phytochemistry 30, 2171–2173. doi: 10.1016/0031-
9422(91)83608-N

Mithöfer, A., Fliegmann, J., Neuhaus-Url, G., Schwarz, H., and Ebel, J. (2000). The
hepta-ß-glucoside elicitor-binding proteins from legumes represent a putative
receptor family. Biol. Chem. 381, 705–713. doi: 10.1515/BC.2000.091

Nars, A., Lafitte, C., Chabaud, M., Drouillard, S., Mélida, H., Danoun, S.,
et al. (2013). Aphanomyces euteiches cell wall fractions containing novel
glucan-chitosaccharides induce defense genes and nuclear calcium
oscillations in the plant host Medicago truncatula. PLoS ONE 8:e75039.
doi: 10.1371/journal.pone.0075039

Nennstiel, D., Scheel, D., and Nürnberger, T. (1998). Characterization and partial
purification of an oligopeptide elicitor receptor from parsley (Petroselinum
crispum). FEBS Lett. 431, 405–410. doi: 10.1016/S0014-5793(98)00800-X

Nürnberger, T., Nennstiel, D., Hahlbrock, K., and Scheel, D. (1995). Covalent
cross-linking of the Phytophthora megasperma oligopeptide elicitor to its
receptor in parsley membranes. Proc. Natl. Acad. Sci. U.S.A. 92, 2338–2342. doi:
10.1073/pnas.92.6.2338

Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., and Scheel, D.
(1994). High affinity binding of a fungal oligopeptide elicitor to parsley
plasma membranes triggers multiple defense responses. Cell 78, 449–460. doi:
10.1016/0092-8674(94)90423-5

Oome, S., Raaymakers, T. M., Cabral, A., Samwel, S., Böhm, H., Albert, I., et al.
(2014). Nep1-like proteins from three kingdoms of life act as a microbe-
associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111,
16955–16960. doi: 10.1073/pnas.1410031111

Oome, S., and Van den Ackerveken, G. (2014). Comparative and functional analysis
of the widely occurring family of Nep1-like proteins. Mol. Plant Microbe
Interact. 27, 1081–1094. doi: 10.1094/MPMI-04-14-0118-R

Parker, J. E., Schulte, W., Hahlbrock, K., and Scheel, D. (1991). An extracellular
glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin

Frontiers in Plant Science | www.frontiersin.org 10 June 2016 | Volume 7 | Article 906

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00906 June 21, 2016 Time: 15:58 # 11

Raaymakers and Van den Ackerveken Extracellular Oomycete Recognition

synthesis in cultured parsley cells and protoplasts. Mol. Plant Microbe Interact.
4, 19–27. doi: 10.1094/MPMI-4-019

Parniske, M. (2000). Intracellular accommodation of microbes by plants: a
common developmental program for symbiosis and disease? Curr. Opin. Plant
Biol. 3, 320–328. doi: 10.1016/S1369-5266(00)00088-1

Peng, K.-C., Wang, C.-W., Wu, C.-H., Huang, C.-T., and Liou, R.-F. (2015).
Tomato SOBIR1/EVR homologs are involved in elicitin perception and
plant defense against the oomycete pathogen Phytophthora parasitica.
Mol. Plant Microbe Interact. 28, 913–926. doi: 10.1094/MPMI-12-14-
0405-R

Postma, J., Liebrand, T. W. H., Bi, G., Evrard, A., Bye, R. R., Mbengue, M.,
et al. (2016). Avr4 promotes Cf-4 receptor-like protein association with the
BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant
immunity. New Phytol. 210, 627–642. doi: 10.1111/nph.13802
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