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Current and emerging plant diseases caused by obligate parasitic microbes such as
rusts, downy mildews, and powdery mildews threaten worldwide crop production and
food safety. These obligate parasites are typically unculturable in the laboratory, posing
technical challenges to characterize them at the genetic and genomic level. Here
we have developed a data analysis pipeline integrating several bioinformatic software
programs. This pipeline facilitates rapid gene discovery and expression analysis of a
plant host and its obligate parasite simultaneously by next generation sequencing of
mixed host and pathogen RNA (i.e., metatranscriptomics). We applied this pipeline to
metatranscriptomic sequencing data of sweet basil (Ocimum basilicum) and its obligate
downy mildew parasite Peronospora belbahrii, both lacking a sequenced genome. Even
with a single data point, we were able to identify both candidate host defense genes and
pathogen virulence genes that are highly expressed during infection. This demonstrates
the power of this pipeline for identifying genes important in host–pathogen interactions
without prior genomic information for either the plant host or the obligate biotrophic
pathogen. The simplicity of this pipeline makes it accessible to researchers with limited
computational skills and applicable to metatranscriptomic data analysis in a wide range
of plant-obligate-parasite systems.

Keywords: metatranscriptomics, RNA-seq, bioinformatics pipeline, de novo assembly, host–pathogen
interaction, obligate biotroph, downy mildew

INTRODUCTION

Many devastating agricultural plant diseases are caused by obligate parasitic microbes. These
parasites include fungi, such as rusts (Hulbert and Pumphrey, 2014) and powdery mildews
(Glawe, 2008), and oomycetes such as downy mildews (Yarwood, 1956; Perfect and Green, 2001).
Obligate parasites are typically recalcitrant to axenic culture, resistant to genetic manipulation, and
require living host plants to survive and propagate (Glazebrook, 2005; Bindschedler et al., 2016).
These characteristics make it challenge to study the pathogenesis using conventional genetics and
molecular biology, thus impeding the development of effective control strategies.

RNA sequencing (or RNA-seq) is a powerful next-generation sequencing technology that
allows researchers to characterize and quantify the active transcriptome of organisms from which
RNA can be extracted (Ozsolak and Milos, 2011). Numerous transcriptomic studies have applied
RNA-seq to plants, plant pathogens, or mixed host–pathogen samples (metatranscriptomics).
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Metatranscriptomics has been used to explore the interaction
between Phytophthora infestans (the late blight causal organism)
and a susceptible tomato cultivar (Solanum lycopersicum, cv.
M82), as well as Septoria tritici blotch (STB) of wheat caused
by Zymoseptoria tritici (Grandaubert et al., 2015; Zuluaga et al.,
2016). However, in each of these pathosystems data from one or
both of the organisms could be compared to a reference genome.

Here, we developed a comprehensive computational pipeline
integrating NGS data processing, de novo assembly, host
and pathogen transcript separation, functional annotation, and
differential gene expression analysis without the need for a
reference genome (see the detailed protocol in Supplementary
Material accompanying this article). The pipeline is compatible
with a broad range of plant-pathogen systems. In this study, we
have tested the pipeline using metatranscriptomic data of sweet
basil (Ocimum basilicum) and its obligate downy mildew parasite
Peronospora belbahrii, both lacking a sequenced genome.

Downy mildew of sweet basil (O. basilicum) is caused by
P. belbahrii, an obligate biotrophic oomycete pathogen that
infects the plant mesophyll tissue under cool, humid conditions
(Garibaldi et al., 2007). Characteristic symptoms of infected
leaves include interveinal chlorosis with gray, downy sporulation
on the abaxial surface of leaves (Belbahri et al., 2005; Garibaldi
et al., 2007; Koroch et al., 2013). In the US regions affected
by the disease, growers have reported up to 100% crop loss
with estimated financial losses in the tens of millions of dollars
(Roberts et al., 2009; Wyenandt et al., 2015). Chemical controls
for basil downy mildew have variable efficacy, and are vulnerable
to the development of pathogen resistance (Pyne et al., 2014).
Both Sweet basil and P. belbahrii have only limited available
genomic resources, despite the use of sweet basil in volatile oil
production research (Gang et al., 2001) and the recent sequencing
of nine oomycete plant pathogen genomes (Pais et al., 2013).

Using our computational pipeline, we have identified nearly
3,000 candidate P. belbahrii genes that are expressed in planta.
We also identified over 1,000 O. basilicum genes expressed
more than 4 times higher during infection as compared to
the control. Most interestingly, these genes are enriched for
biological processes such as biotic and abiotic stress responses,
demonstrating the power of RNA-seq even under the condition
that biological replicates are not available. Using this set of data,
we have demonstrated the utility of our metatranscriptomic
analysis pipeline for studying plant and obligate parasite
interactions.

RESULTS

Metatranscriptome Sequencing and
Assembly
This computational analysis pipeline was designed to enable
metatranscriptomic data analysis, downstream transcript
discovery, and expression analysis in plant-obligate-parasite
pathosystems (Figure 1; Supplementary Material). The
pipeline includes quality control, de novo assembly, transcript
quantification, transcript partition, BLAST search, annotation,
and differential gene expression analysis.

To demonstrate the application of this pipeline, we generated a
test set of RNA-seq data from sweet basil infected with P. belbahrii
(Figure 2). Total RNA was purified from one uninoculated basil
plant (control) and one infected with P. belbahrii 5 days post-
inoculation (dpi). The purified RNA product was sequenced
using the Illumina Hiseq (see MATERIALS AND METHODS).
In total, the RNA-seq experiment generated 24 million (M)
and 37M paired-end reads from the control and infected plant,
respectively. After removing low quality reads and trimming poor
quality bases, a total of 22M and 35M paired-end reads were
retained for the control and infected samples, respectively. High
quality filtered reads were then pooled and assembled de novo
using Trinity (Grabherr et al., 2011), yielding a total of 44,643
genes, which were designated the “pooled reference.”

To calculate transcript abundance, filtered infected and
control reads were mapped back to the pooled reference
separately. FPKM (fragment per kilobase of exon per million
fragments mapped), a numerical value representing relative gene
expression, was estimated using RSEM (RNA-seq by expectation
maximization; Li and Dewey, 2011). Comparison of transcripts
from infected and control plant samples placed all transcripts
into one of three categories: control-unique, shared, and infected-
unique transcripts (see next section for details). Based on the
FPKM distribution of shared transcripts, the average coverage of
RNA-seq reads was approximately 12X for the uninoculated plant
and 6X for the infected plant (Figure 2), despite the fact that more
sequence reads were generated for the infected sample. The two-
fold difference could be attributed to the different composition
of sequence reads in the infected sample (mixture of host and
pathogen reads) and the control sample (solely host reads).
Indeed, the infected sample had almost twice the number of
unique transcripts compared to the control sample (discussed
below).

P. belbahrii Transcript Discovery
To differentiate basil and P. belbahrii genes, we collected 43,477
and 21,654 genes with non-zero expression values from infected
and uninoculated basil, and further divided them into three
categories: genes unique to uninoculated basil (876), genes
unique to infected basil (22,699), and genes shared by infected
and uninoculated basil (20,778). Genes uniquely present in
the infected sample are likely composed of P. belbahrii genes
and basil genes only expressed during infection. This division
narrowed the search for candidate P. belbahrii genes to within
a smaller subset of 22,699 genes.

To identify putative P. belbahrii genes, we performed a local
BLAST search of the 22,699 infection-unique genes against a
customized oomycete genome database (see MATERIALS AND
METHODS). Using a stringent E-value threshold (E-value < 1e
− 50), we identified 2,934 (13%) oomycete homologous genes,
defined as PBC (P. belbahrii candidate) genes. PBC genes had
wide ranging FPKM values, ranging from less than 1 to greater
than several thousand (Figure 3A). Interestingly, increasing the
FPKM cutoff to 512 FPKM was used, 60% (27) were PBC genes
(Figure 3B).

PBC genes have a wide range of biological functions.
Among PBC genes 2,711 (92%) have a homolog (sequence
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FIGURE 1 | Diagram summarizing the data analysis pipeline to analyze host–pathogen metatranscriptomes and key methodological steps.
A step-by-step protocol of this pipeline is available (Supplementary Material). After quality filtering, RNA-seq reads are assembled de novo using Trinity. For
pathogen transcript discovery, a “pooled reference” is assembled combining control and infected plant reads, which are further divided into control-unique,
infected-unique, and shared groups. For plant differential gene expression analysis, shared transcripts are used as a reference, against which control and infected
reads are mapped by RSEM. A = DGE analysis for pathogen transcripts are subject to availability of a reference sample.
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FIGURE 2 | Transcript comparison between control and infected plants. (A) Total number and overlap between transcripts discovered in infected sweet basil
5 dpi (Basil + Peronospora belbahrii) and uninoculated plants (Basil Control). (B) Distribution of the base 2 logarithm of FPKM (fragment per kilobase of exon per
million fragments mapped) for shared transcripts under infected (left) and control (right) conditions. Note that shared transcripts (plant genes) have a higher
(approximately twice as much) average read coverage in the control condition compared to the infected condition.

similarity > 60%, E-value < 1e − 20) in the genome of
P. infestans, a well-studied plant pathogenic oomycete.
PANTHER (Protein Analysis Through Evolutionary
Relationships; Thomas et al., 2003) analysis of P. infestans
homologs suggests that many homologs code for nucleotide-
binding proteins, transferases, hydrolases, enzyme modulators,
oxidoreductases, proteases, lyases, kinases, and transcription
factors (Figure 3D). Interestingly, all four histone core
proteins and components of ribosomal complexes are
among the most highly expressed PBC genes. Gene Ontology
(GO) enrichment analysis showed that highly expressed
PBC genes (Log2FPKM > 7) were enriched for fatty-acid
oxidation, translation, regulation of translation, and other
biosynthetic processes (Figure 3C), indicating that P. belbahrii is
physiologically active.

We have also identified several PBC transcripts that
are homologous to known virulence factors in P. infestans,

including the secreted RXLR effectors (Kamoun, 2006).
Specifically, we identified two PBC genes encoding putative
P. belbahrii RXLR effectors, named PbRX1 (Trinity
assembly: comp66055_c2) and PbRX2 (Trinity assembly:
comp59755_c0), homologous to PITG_03155 (E-value:
9e − 101) and PITG_09585 (E-value: 2e − 124) in
P. infestans, respectively. Whether the two P. belbahrii
RXLR effectors contribute to downy mildew pathogenesis
as typical RXLR proteins remains to be confirmed.
A comprehensive expression study can be implemented
to monitor the expression profiles of these candidate
effectors and to identify functional importance during
host–pathogen interaction. Both housekeeping proteins
and these candidate RXLR effectors could be used to develop
biomarkers to study pathogen population structure and to
monitor the presence of pathogen in field or greenhouse
production.
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FIGURE 3 | Basil downy mildew (P. belbahrii) gene discovery and functional annotations. (A) Gene count distribution of the base 2 logarithm of FPKM
(Log2FPKM) among 2,934 P. belbahrii candidate (PBC) genes. (B) Frequency of PBC genes (0–1) in infected-unique transcripts filtered by series of Log2FPKM
threshold (-3 to 10). (C) Functional classification of highly expressed PBC genes (Log2FPKM > 7), performed by PANTHER (Protein Analysis Through Evolutionary
Relationships) gene list analysis using Phytophthora infestans homologs. Blue and yellow bars represent significantly enriched biological processes under FDR (false
discovery rate) cutoff of 0.05 and 0.001, respectively. (D) A pie-chart of protein class analysis for all PBC genes that have homologs in P. infestans.

Basil Genes Responding to P. belbahrii
Infection
Understanding that some plant genes are only turned on in
responding to P. belbahrii infection, we searched the infection-
unique transcripts against the Plant genome database PlantGDB1.
A search with high stringency (E-value > 1e − 50) identified
1,667 or 40 infection-unique transcripts only mapped to plant
genes with a FPKM value greater than 0 or greater than 10,
respectively. Among the 40 plant transcripts with high FPKM
values, 30 of them have homologous sequences in Arabidopsis
genome and the most significantly enriched GO annotation is
“response to external stimulus” (P = 1.5e − 05 with a false
discovery rate of 0.00089).

Important, but still relatively smaller proportion of infection-
unique transcripts (<2% transcripts with a FPKM value greater
than 10) are plant genes, which indicates that most plant genes are
expressed in both control and infected samples. Genes expressed
differently during infection can also be important to understand
plant defense against parasites. Various software packages are
available for differential gene expression analysis such as edgeR,
DESeq, and limma. In our pipeline, we have implemented edgeR

1http://www.plantgdb.org

for the discovery of differentially expressed genes using data with
biological replicates (Supplementary Protocol).

Exploring the test datasets generated from the sweet basil
and its obligate biotrophic pathogen downy mildew P. belbahrii
pathosystem, we created a “shared reference” transcript set
using the 20,778 genes present in both the control and the
infected plants. The expression of each basil gene was then re-
estimated using RSEM by mapping control and infected plant
reads to the shared reference independently. After applying
an FPKM threshold (FPKM > = 1), 17,943 transcripts were
used for differential gene expression analysis. Lacking biological
replicates, we wanted to be stringent in selecting plant genes
potentially differentially expressed under pathogen challenge.
Using a fourfold change cutoff, we identified 1,267 (7.0%)
up-regulated, and 2,798 (16.6%) down-regulated transcripts in
inoculated versus uninoculated plants, respectively (Figure 4A).
Local BLAST (sequence similarity >60% and E-value < 1e− 20)
against the Arabidopsis thaliana genome identified 565 up-
and 523 down-regulated A. thaliana homologs. Interestingly,
GO enrichment (adjusted P-value < 0.05) of these A. thaliana
homologs using AgriGO (Du et al., 2010) suggested distinct
biological functions for up- versus down-regulated transcripts.
While up-regulated transcripts were significantly enriched for
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FIGURE 4 | Sweet basil genes are regulated in response to downy mildew infection. (A) Scatterplot of basil gene expression levels (Log2FPKM) detected in
both control and infected conditions. Note that plotted are only genes with FPKM larger than 1 for both conditions. Red points, representing 13,878 genes with
comparable expression levels in two conditions (unchanged), are separated by dashed lines from blue dots representing 1,267 and 2,798 transcripts that are at least
four times higher or lower in the infected plants compared to the control sample. (B) GO enrichment analysis using Arabidopsis thaliana homologs of the 1,267
up-regulated and 2,798 down-regulated genes using AgriGO. Each row shows whether a biological process is either significantly or insignificantly enriched in
up-regulated and down-regulated genes, as indicated by an adjusted P-value (cutoff: 0.05).

biotic and abiotic stress response, response to external stimuli,
and metabolic processes, down-regulated transcripts were
significantly enriched for photosynthesis, generation of precursor
metabolites, energy production, transport, and localization
(Figure 4B). Distinct GO term enrichment reflects a metabolic
physiological switch from an active growth to an energy
preservation response under biotic stress conditions.

Among the up-regulated sweet basil genes, we found several
with high fold changes ranging from 15 to 40. These highly
up-regulated genes included one beta-glucanase gene (BG3),
two lipoxygenases genes (LOX1 and LOX2), the WRKY
transcription factor WRKY33, the heat-shock protein HSP70-1,
a cytochrome P450 (CYP81D1), and the elicitor-activated gene
ELI3-1 (Table 1). Many of these genes have well-characterized
roles in the plant defense response against various pathogens,
including BG3, which has been reported to respond to infection
by the bacterial pathogen Pseudomonas syringae pv. maculicola
(Dong et al., 1991). LOX1 and LOX2 are involved in the
jasmonic acid response signaling pathway triggered by pathogen
infection (Melan et al., 1993; Bell et al., 1995). WRKY33
has been reported as a key transcription factor induced by
fungal (Zheng et al., 2006) and oomycete infections (Merz
et al., 2015). In addition to homologs of well-characterized
genes, 6 receptor-like kinases, a mitogen-activated protein kinase
(AtMPK4), and 17 transcription factors likely involved in
pathogen sensing and downstream signaling were identified,
suggesting that fundamental plant defense-signaling pathways
are induced during downy mildew infection. These defense genes
could be useful during routine plant screening for disease prior
to visible symptom development.

DISCUSSION

We have developed a computational pipeline composed of
freely available software for analyzing metatranscriptomic data.
This pipeline has clear advantages for analyzing systems
without reference genomes, and is friendly designed to support
researchers lacking bioinformatic training. Using this pipeline, we
identified about 3,000 actively transcribe genes from P. belbahrii,
when this obligate downy mildew pathogen infecting its host
sweet basil at 5 dpi. This is consistent with reference genome
based RNA sequencing of Hyaloperonospora arabidopsidis,
which was shown to express 2,293 and 6,858 genes in planta
at 1 and 3 dpi (Asai et al., 2014). These transcripts covered
a wide range of GO functions including nucleic acid binding,
transferases, hydrolases, calcium binding, transcription factors,
and chaperones. We also identified two homologs to P. infestans
RXLR effector proteins.

In addition to the identification of pathogen transcripts, we
tentatively discovered 4,065 differentially expressed candidate
plant transcripts. The identification of up-regulated transcripts
involved in biotic and abiotic stresses and the response to
external stimuli likely indicates a host response to pathogen
attack. Fundamental to the success of this pipeline is the
inclusion of a sample completely lacking pathogen nucleic acid
(uninoculated control). This control reference allows for the
identification of both host transcripts in response to pathogen
attack and transcripts unique to infected plants, of which
pathogen transcripts are a subset. Transcripts assembled from
either the control or the infected samples may include sequences
from commensal microbes present in soil samples. As these
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TABLE 1 | Sweet basil biotic stress response genes induced by Peronospora belbahrii infection and their putative functional annotation.

Assembled Basil
genes

Arabidopsis
genes

TAIR Gene_ID BLAST∗

E-value
Log2FC Functional annotation

comp48041_c2 BG3 AT3G57240.1 5.00e − 29 5.45 β-1,3-glucanase 3

comp51245_c2 HSC70-1 AT5G02500.1 2.00e − 77 2.42 Heat shock cognate protein 70-1

comp49399_c0 WRKY33 AT2G38470.1 4.00e − 25 5.55 WRKY transcription factor

comp50532_c0 CYP81D1 AT3G28740.1 1.00e − 73 3.29 Cytochrome p450

comp50896_c0 AGB1 AT4G34460.4 4.00e − 53 3.03 Heterotrimeric G-protein beta subunit

comp47595_c0 ELI3-1 AT4G37980.1 3.00e − 32 4.12 Elicitor-activated gene 3-1

comp40515_c0 NHL25 AT5G36970.1 4.00e − 65 2.20 NDR1/HIN1-like protein

comp51070_c3 HSPRO2 AT2G40000.1 6.00e − 62 2.44 Arabidopsis ortholog of sugar beet HS1 pro-1 2

comp46635_c0 LOX1 AT1G55020.1 3.00e − 40 2.46 Lipoxygenase 1

comp35556_c0 LOX2 AT3G45140.1 2.00e − 76 2.02 Lipoxygenase 2

comp50754_c0 ATMRP4 AT2G47800.1 9.00e − 62 2.42 A. thaliana multidrug resistance-associated protein 4

comp50993_c1 ATOSM34 AT4G11650.1 4.00e − 66 2.79 Osmotin-like protein osmotin 34

comp48666_c0 NHO1 AT1G80460.1 3.00e − 50 2.42 Non-host resistance to P. s. phaseolicola 1

TAIR, The Arabidopsis Information Resource; Log2FC, the base 2 logarithm of fold change.
∗ The E-value cut-off used for the BLAST search is 1e − 20.

transcripts should have similar presentation in both samples,
comparative study between two data sets could remove most
sequences belonging to these categories.

To make this pipeline user-friendly, we have simplified the
steps involved in the data analysis. The use of pooled reads
from both samples for the generation of the initial reference
assembly adds one additional step, but removes a complicated
downstream BLAST step normally needed when data sets
are mapped to separate references. This process makes the
identification of shared, control-specific, and infection-specific
transcripts significantly easier. The subsequent use of the shared
transcript reference to map both the control sample and the
infected sample allows for more accurate FPKM normalization,
fixing an error generated when using the pooled reference and
leading to a more precise calculation of host plant differential
gene expression.

To achieve greater levels of statistical confidence, it is advised
that a minimum of three biological replicates per condition be
used. Biological replicates strengthen differential gene expression
analysis between samples. Additionally, multiple replicates aid in
the discovery of pathogen and host genes with low FPKM values,
which are potentially overlooked when using a single data set.
A protocol for the use of this pipeline with multiple replicates is
available in the Supplementary Material.

This pipeline has been effective in analyzing the interaction
between two organisms, but it does have potential drawbacks.
First, genes not expressed during host–pathogen interaction will
not be detected; however, this is a limitation of RNA-sequencing
in general and not specific to this pipeline. Second, functional
characterization of genes that lack homologous sequences in
public domains may be difficult. We have used BLAST to
assay the relatedness of assembled transcripts to known plant
or oomycete genes. While this will theoretically generate fewer
ambiguous genes, some level of uncertainty is unavoidable,
especially if sequences from close relatives are unavailable.

As sequencing technology improves, some fields may reap
the benefits more than others. Genomic research on obligate

biotrophic pathogens, though rapidly progressing (Hacquard
et al., 2013; Zhang et al., 2014; Rudd et al., 2015), still lags behind
other phytopathological research. This pipeline streamlines
the process of analyzing metatranscriptomic data from plant–
pathogen interactions while delivering reliable and meaningful
results. Until such time as a complete reference genome is
available for each interacting organism, researchers will need to
rely upon a combination of careful experimental planning and
meticulous data processing and analysis.

MATERIALS AND METHODS

Plant Growth and Infection Assay
Sweet basil ‘Genovese’ seed (Johnny’s Seeds, Lot 48104)
was germinated in soil-less growing media (Premier Tech
Horticulture PRO-MIXr BX MycorrhizaeTM) in a greenhouse
propagation room (75◦F, 50–60% humidity). Seedlings were
transplanted and propagated in 4” pots in a plastic house with
daytime temperatures reaching 80◦F and low relative humidity
averaging 20%.

The pathogen P. belbahrii was maintained by inoculating basil
plants weekly. Basil plants with three sets of true leaves (4–
6 weeks old) were inoculated by spraying the leaves thoroughly
with water and brushing fresh sporangia from diseased plants
onto the wetted abaxial leaf surfaces of new plants. Uninoculated
plants were sprayed with distilled water only. Plants were then
subjected to 100% humidity by enclosing individual plants in thin
plastic for 48 h or until sporulation was visible on inoculated
plants. One inoculated plant and one uninoculated plant were
randomly selected for RNA-seq analysis.

RNA Sequencing and Data Analysis
A complete protocol of using the pipeline is attached as
Supplementary Material. Total RNAs were extracted from leaves
of healthy and infected basil plants using Trizol reagent
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(Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s protocol. After removal of genomic DNA by
DNase I (New England Biolabs, Ipswich, MA, USA) treatment,
RNA samples were quantified using NanoDrop 1000 (Thermo
Fisher Scientific, Waltham, MA, USA) and assessed for integrity
using Agilent Bioanalyzer 2100 (Agilent, Holbrook, MA, USA).
Library construction was conducted using Illumina TruSeq
mRNA library preparation kit (Illumina, San Diego, CA, USA),
followed by sequencing using Illumina HiSeq2000 platform
following manufacturer’s protocol. RNA-seq reads quality was
examined using FastQC2 to determine the necessity of trimming
low-quality reads. BAM (Binary SAM) format of RNA-seq data
were converted to FASTQ format using bamTofastq command
of Bedtools3. Paired-end read trimming was conducted by
Trimmomatic 0.32 (Bolger et al., 2014) using a sliding window
4 (nucleotide window size):30 (quality score threshold) and
excluding reads below a minimal length of 36. The trimmed
paired-end reads were examined by FastQC again to confirm
improvement of read quality. Trimmed paired-end RNA-seq
reads from inoculated and uninoculated plants were pooled
and assembled using Trinity in a single run, using 10 Gigabyte
of memory on a 10-core CPU computer. The assembled total
transcripts (Trinity.fasta) were used as a reference transcriptome.
Transcript abundance was estimated for each sample using
run_RSEM_align_n_estimate.pl in RSEM_util of Trinity package
(RSEM: RNA-seq by Expectation Maximization) (Li and Dewey,
2011) by using trimmed paired-end reads of each sample.

BLAST and GO Enrichment Analysis
Local BLAST (Basic Local Alignment Search Tool) search
was performed using Blast plus (NCBI: National Center for
Biotechnological Information4) version 2.2.24. A customized
oomycete genome database was composed of multiple
species including P. infestans, P. parasitica, P. sojae, and
Hyaloperonospora arabidopsidis genomes downloaded from
NCBI. Arabidopsis thaliana genome TAIR10 was downloaded
from TAIR (The Arabidopsis Information Resource)5. The
genome database was created using the formatdb command.
Pathogen Gene Ontology (GO) enrichment analysis was
conducted using the PANTHER6 online gene analysis tool.

2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3 http://bedtools.readthedocs.org/en/latest/
4 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.24/
5 https://www.arabidopsis.org/
6 http://www.pantherdb.org/

Plant GO enrichment analysis was performed using AgriGO 1.2
following user’s manuals7.

Data and Source Code Access
The RNA-seq data used in this work can be accessed at
NCBI GEO (Gene Expression Omnibus) with accession number
GSE79807.

AUTHOR CONTRIBUTIONS

The project and pipeline were conceived and designed by LG and
L-JM. The experiments were performed by LG and AM. Data
analysis was performed by LG, YZ, and L-JM. The manuscript
was written and revised by LG, GD, KA, AM, RW, and L-JM. The
final manuscript was approved by all authors.

FUNDING

This project was funded by the United States Department of
Agriculture Specialty Crops Research Initiative project award
2011-51181-30646 “Strategies for Improving the U.S. Responses
to Fusarium, Downy Mildew and Chilling Injury in Production
of Sweet Basil (Ocimum basilicum L.) to RW and L-JM. LG and
LM are also supported by a seed grant from MGHPCC and the
National Research Initiative Hatch Grants Program Grant no.
MAS00441.

ACKNOWLEDGMENT

The authors would like to thank the Massachusetts Green
High Performance Computing Center (MGHPCC) for providing
computational resources essential for implementing the data
analysis for this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00925

SUPPLEMENTARY MATERIAL | A complete protocol for performing
metatranscriptomic data analysis using the pipeline.

7 http://bioinfo.cau.edu.cn/agriGO/index.php

REFERENCES
Asai, S., Rallapalli, G., Piquerez, S. J. M., Caillaud, M.-C., Furzer, O. J.,

Ishaque, N., et al. (2014). Expression profiling during Arabidopsis/downy
mildew interaction reveals a highly-expressed effector that attenuates
responses to salicylic acid. PLoS Pathog. 10:10. doi: 10.1371/journal.ppat.
1004443

Belbahri, L., Calmin, G., Pawlowski, J., and Lefort, F. (2005). Phylogenetic
analysis and real time PCR detection of a presumably undescribed

Peronospora species on sweet basil and sage. Mycol. Res. 109, 1276–1287. doi:
10.1017/S0953756205003928

Bell, E., Creelman, R. A., and Mullet, J. E. (1995). A chloroplast lipoxygenase is
required for wound-induced jasmonic acid accumulation in Arabidopsis.
Proc. Natl. Acad. Sci. U.S.A. 92, 8675–8679. doi: 10.1073/pnas.92.
19.8675

Bindschedler, L. V., Panstruga, R., and Spanu, P. D. (2016). Mildew-omics: how
global analyses aid the understanding of life and evolution of powdery mildews.
Front. Plant Sci. 7:123. doi: 10.3389/fpls.2016.00123

Frontiers in Plant Science | www.frontiersin.org 8 July 2016 | Volume 7 | Article 925

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bedtools.readthedocs.org/en/latest/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.24/
https://www.arabidopsis.org/
http://www.pantherdb.org/
http://journal.frontiersin.org/article/10.3389/fpls.2016.00925
http://bioinfo.cau.edu.cn/agriGO/index.php
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00925 July 8, 2016 Time: 15:59 # 9

Guo et al. Metatranscriptomic Data Analysis Pipeline

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi:
10.1093/bioinformatics/btu170

Dong, X., Mindrinos, M., Davis, K. R., and Ausubel, F. M. (1991). Induction
of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae
strains and by a cloned avirulence gene. Plant Cell 3, 61–72. doi:
10.1105/tpc.3.1.61

Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis
toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70. doi:
10.1093/nar/gkq310

Gang, D. R., Wang, J., Dudareva, N., Nam, K. H., Simon, J. E., Lewinsohn, E., et al.
(2001). An investigation of the storage and biosynthesis of phenylpropenes in
sweet basil. Plant Physiol. 125, 539–555. doi: 10.1104/pp.125.2.539

Garibaldi, A., Bertetti, D., and Gullino, M. L. (2007). Effect of leaf wetness duration
and temperature on infection of downy mildew (Peronospora sp.) of basil.
J. Plant Dis. Prot. 114, 6–8. doi: 10.1007/BF03356196

Glawe, D. A. (2008). The powdery mildews: a review of the world’s most familiar
(yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46, 27–51. doi:
10.1146/annurev.phyto.46.081407.104740

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic
and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. doi:
10.1146/annurev.phyto.43.040204.135923

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I.,
et al. (2011). Full-length transcriptome assembly from RNA-seq data without a
reference genome. Nat. Biotechol. 29, 644–652. doi: 10.1038/nbt.1883

Grandaubert, J., Bhattacharyya, A., and Stukenbrock, E. H. (2015). RNA-seq
based gene annotation and comparative genomics of four fungal grass
pathogens in the genus Zymoseptoria identify novel orphan genes and species-
specific invasions of transposable elements. G3 (Bethesda). 5, 1323–1333. doi:
10.1534/g3.115.017731

Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., and
Van Themaat, E. V. L. (2013). Mosaic genome structure of the barley
powdery mildew pathogen and conservation of transcriptional programs
in divergent hosts. Proc. Natl. Acad. Sci. U.S.A. 110, E2219–E2228. doi:
10.1073/pnas.1306807110

Hulbert, S., and Pumphrey, M. (2014). A time for more booms and fewer busts?
unraveling cereal–rust interactions. . Mol. Plant Microbe Interact. 27, 207–214.
doi: 10.1094/MPMI-09-13-0295-FI

Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic
oomycetes. Annu. Rev. Phytopathol. 44, 41–60. doi: 10.1146/annurev.phyto.
44.070505.143436

Koroch, A. R., Villani, T. S., Pyne, R. M., and Simon, J. E. (2013). Rapid staining
method to detect and identify downy mildew (Peronospora belbahrii) in basil.
Appl. Plant Sci. 1, 1–4. doi: 10.3732/apps.1300032

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from
RNA-seq data with or without a reference genome. BMC Bioinform. 12:1–323.
doi: 10.1186/1471-2105-12-323

Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M., and Peterman,
T. K. (1993). An Arabidopsis thaliana lipoxygenase gene can be induced by
pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 101, 441–450.
doi: 10.1104/pp.101.2.441

Merz, P. R., Moser, T., Höll, J., Kortekamp, A., Buchholz, G., Zyprian, E., et al.
(2015). The transcription factor VvWRKY33 is involved in the regulation of
grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara
viticola. Physiol. Plant. 153, 365–380. doi: 10.1111/ppl.12251

Ozsolak, F., and Milos, P. M. (2011). RNA sequencing: advances, challenges and
opportunities. Nat. Rev. Genet. 12, 87–98. doi: 10.1038/nrg2934

Pais, M., Win, J., Yoshida, K., Etherington, G. J., Cano, L. M., Raffaele, S.,
et al. (2013). From pathogen genomes to host plant processes: the power
of plant parasitic oomycetes. Genome Biol. 14, 211. doi: 10.1186/gb-2013-
14-6-211

Perfect, S. E., and Green, J. R. (2001). Infection structures of biotrophic and
hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2, 101–108. doi:
10.1046/j.1364-3703.2001.00055.x

Pyne, R. M., Koroch, A. R., Wyenandt, C. A., and Simon, J. E. (2014). A rapid
screening approach to identify resistance to basil downy mildew (Peronospora
belbahrii). HortScience 49, 1041–1045.

Roberts, P. D., Raid, R. N., Harmon, P. F., Jordan, S. A., and Palmateer, A. J.
(2009). First report of downy mildew caused by a Peronospora sp. on basil
in Florida and the United States. Plant Dis. 93, 199. doi: 10.1094/PDIS-93-2-
0199B

Rudd, J. J., Kanyuka, K., Hassani-Pak, K., Derbyshire, M., Andongabo, A.,
Devonshire, J., et al. (2015). Transcriptome and metabolite profiling of
the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic
interaction with plant immunity involving differential pathogen chromosomal
contributions and a variation on the hemibiotrophic lifestyle definition. Plant
Physiol. 167, 1158–1185. doi: 10.1104/pp.114.255927

Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R.,
et al. (2003). PANTHER: a library of protein families and subfamilies
indexed by function. Genome Res. 13, 2129–2141. doi: 10.1101/gr.
772403

Wyenandt, C. A., Simon, J. E., Pyne, R. M., Homa, K., Mcgrath, M. T.,
Zhang, S., et al. (2015). Basil downy mildew (Peronospora belbahrii): discoveries
and challenges relative to its control. Phytopathology 105, 885–894. doi:
10.1094/PHYTO-02-15-0032-FI

Yarwood, C. E. (1956). Obligate parasitism. Annu. Rev. Plant Physiol. 7, 115–142.
doi: 10.1146/annurev.pp.07.060156.000555

Zhang, H., Yang, Y., Wang, C., Liu, M., Li, H., Fu, Y., et al. (2014). Large-
scale transcriptome comparison reveals distinct gene activations in wheat
responding to stripe rust and powdery mildew. BMC Genomics 15:1–898. doi:
10.1186/1471-2164-15-898

Zheng, Z., Qamar, S. A., Chen, Z., and Mengiste, T. (2006). Arabidopsis WRKY33
transcription factor is required for resistance to necrotrophic fungal pathogens.
Plant J. 48, 592–605. doi: 10.1111/j.1365-313X.2006.02901.x

Zuluaga, A. P., Vega-Arregun, J. C., Fei, Z., Ponnala, L., Lee, S. J., Matas, A. J., et al.
(2016). Transcriptional dynamics of Phytophthora infestans during sequential
stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 17, 29–41. doi:
10.1111/mpp.12263

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Guo, Allen, Deiulio, Zhang, Madeiras, Wick and Ma. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Plant Science | www.frontiersin.org 9 July 2016 | Volume 7 | Article 925

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	A De Novo-Assembly Based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies
	Introduction
	Results
	Metatranscriptome Sequencing and Assembly
	P. belbahrii Transcript Discovery
	Basil Genes Responding to P. belbahrii Infection

	Discussion
	Materials And Methods
	Plant Growth and Infection Assay
	RNA Sequencing and Data Analysis
	BLAST and GO Enrichment Analysis
	Data and Source Code Access

	Author Contributions
	Funding
	Acknowledgment
	Supplementary Material
	References


