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Metabolomics is an emerging method to improve our understanding of how genetic

diversity affects phenotypic variation in plants. Recent studies have demonstrated that

genotype has a major influence on biochemical variation in several types of plant tissues,

however, the association between metabolic variation and variation in morphological

and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food

and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been

bred for differing phenotypes beneficial for production of grain (food), stem sugar (food,

fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end

products of innate metabolic programming which determines how carbon is allocated

during plant growth and development. Further, sorghum has been adapted among

highly diverse environments. Because of this geographic and phenotypic variation,

the sorghum metabolome is expected to be highly divergent; however, metabolite

variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse

panel of sorghum breeding lines to identify associations between leaf metabolites and

morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21

morpho-physiological traits, as well as broader trends in variation by sorghum type

(grain vs. biomass types). Variation was also observed for cell wall constituents (glucan,

xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of

1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both

univariate and multivariate analyses determined relationships between metabolites and

morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%,

p < 0.05), including many secondary metabolites such as glycosylated flavonoids and

chlorogenic acids. The use of metabolomics to explain relationships between two or more

morpho-physiological traits was explored and showed chlorogenic and shikimic acid to
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be associated with photosynthesis, early plant growth and final biomass measures in

sorghum. Taken together, this study demonstrates the integration of metabolomics with

morpho-physiological datasets to elucidate links between plant metabolism, growth, and

architecture.

Keywords: Sorghum bicolor, GC-MS, LC-MS, biomass, metabolomics, photosynthesis, chlorogenic acid, shikimic

acid

INTRODUCTION

The increasing availability of tools such as transcriptomics,
metabolomics, and proteomics has helped to facilitate the
discovery of previously cryptic connections between genotype
and phenotype. Metabolomics, in particular, provides an
opportunity to examine a more nuanced phenotypic analysis
in that it, while still removed from the visible phenotype, offers
a chance at a more functional or mechanistic interpretation
of species variation or plant responses at the molecular level
(Feussner and Polle, 2015). Additionally, because small molecules
are regulated by upstream gene expression and transcript
formation, their measurement presents a complementary
and functional approach to conventional genomics and
transcriptomics (Bino et al., 2004). In this way, metabolomics
offers benefits to both basic integrative fields such as systems
biology as well as new ways to identify targets for improvement
in applied disciplines such as plant breeding (Fernie and Schauer,
2009).

In recent studies, metabolomics has been used in such
applications as characterization of biochemical variation within
species (e.g., Kusano et al., 2015), discovery of potential metabolic
engineering targets (Tsogtbaatar et al., 2015) and examination
of plant responses to the whole environment (Steinfath et al.,
2010; Heuberger et al., 2014a), as well as responses to individual
biotic (e.g., Scandiani et al., 2015) and abiotic (Ganie et al., 2015;
Sanchez-Martin et al., 2015) stressors. In addition, genome wide
association mapping (GWAS) is being used to explicitly link the
chemical diversity of metabolomic profiles with specific locations
in the genome to help dissect quantitative traits (Riedelsheimer
et al., 2012). Further, metabolic subsets are being explored as
potential front-end tools such as biomarkers or for model-based
prediction of traits that would otherwise require the high time
and resource investments for one or more seasons of field trials
(Meyer et al., 2007; Steinfath et al., 2010; Heuberger et al., 2014b).

Drought is the most costly abiotic stress for agriculture
worldwide. Globally, many regions are expected to experience
even more frequent and severe droughts in the coming
century due to increasing atmospheric temperatures (Dai,
2011), making research on drought resistant crops a crucial
component to improve food security or reduce costly inputs to
biofuel production. Plants with a C4 photosynthetic pathway
are particularly valuable in crop production due to their
physiological advantage under hot and dry conditions (Taylor
et al., 2014).

Sorghum [Sorghum bicolor (L.) Moench] is an internationally
important C4 crop which produces grain, sugar syrup, and
cellulosic biomass and can therefore be diverted to multiple
markets, including food for human and animal consumption,

and feedstock for various methods of biofuel production. This
market flexibility is due to extensive phenotypic variation for
the ways in which sorghum accumulates and allocates biomass
to its leaves, stems, and panicles. Sorghum is also increasingly
used as a model for other C4 species due to its small genome,
available sequence, and annotation resources (Mace et al., 2013;
Mullet et al., 2014). In addition, even within relatively limited
breeding populations, sorghum is genetically diverse (Evans et al.,
2013), with variation for agronomically important traits such
as resistance to drought and tolerance of poor soils (Mace
et al., 2013). Further, sorghum lines vary for photoperiod
sensitivity, a foundational trait that enables breeders to shift
carbon pools away from grain and toward vegetative tissues
in plants well-suited for forage, biofuel feedstocks, or sugar
(Rooney et al., 2007). Varieties that remain vegetative for longer
periods of time maintain higher growth rates and can therefore
accumulate up to 100% more biomass than grain-types that
are quick to reach reproductive maturity (Mullet et al., 2014).
Several morphological factors contribute to end biomass yield
in sorghum, including variation in not only growth rate, but
also allocation to different plant organs (leaves, stems, panicles).
We define this collection of associated phenotypes (e.g., growth
rate, harvest indices, final yield) as the process of “biomass
accumulation.” Despite this morphological variation, sorghum
can be broadly classified into two “types” based on allocation
of carbon pools to major distinct tissues: (1) “grain type”: small
plants bred for dense panicles, or (2) “biomass type”: large plants
bred for total biomass (used as forage, sugar, or biofuels).

Because of the significant phenotypic variation in sorghum,
it is reasonable to expect that metabolic variation among
sorghum lines should also be high; however, this variation
has yet to be characterized. This study described herein had
two major objectives: (1) To examine and characterize the
metabolic variation in an important set of sorghum breeding
lines via non-targeted GC- and LC-MS analyses and (2) To
explore the association of these metabolite profiles with an
array of measured phenotypes (morphological, physiological,
and structural carbohydrate content) expected to be relevant
to plant growth, biomass accumulation, and biomass quality.
Indeed, we found that both individual metabolites and profiles
varied widely across lines and many small molecules had strong
associations with morphological and physiological phenotypes.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Eleven diploid lines from both “grain” and “biomass” type
sorghums were selected to represent available variation and
genetic tools [e.g., BTx623 which is sequenced (Paterson et al.,
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2009), or RTx430 which can be transformed (Wu et al., 2014)],
making them valuable in pursuit of improved crops. Major
characteristics and select publications related to this panel are
presented in Table 1.

Seeds were germinated (25◦C, dark) in Petri dishes on filter
paper with fungicide solution (Maxim XL, Syngenta) for 1 week
prior to transplanting to pots (3.8 L) filled with Fafard 4P all-
purpose, high-porosity potting mix. Plants were grown in a
controlled greenhouse environment (mean 25/20◦C day/night;
38/51% relative humidity day/night). Five replicates of each line
were randomized tominimize effects of varying conditions across
the bench. Supplemental lighting maintained a 16/8h light/dark
photoperiod andmean daytime PARwas 323± 52µmolm−2s−1.
Plants were checked daily to maintain benign (unstressed)
conditions and watered when the top 2 cm of medium became
dry. Starter nutrients were present in the potting medium but to
avoid limitation, plants were fertilized one additional time at 7
weeks post-germination with Osmocote time release (14-14-14)
at a rate of 18 g per pot.

Phenotyping of Morphological,
Physiological, and Structural Carbohydrate
Traits
Plants were evaluated starting at 28 days post-germination and
growth rates were calculated as the difference between plant
heights in consecutive weeks. At reproductive maturity for each
line, the following measurements were made: plant height was
measured as distance from potting medium surface to tip of
tallest leaf. Stem diameter was measured directly above the first
node on the main tiller with a digital caliper (Neiko). Leaf
length and width were measured on the five most recently fully
expanded leaves, averaged, and used to estimate area. At harvest,
biomass was partitioned into leaves, stems, and panicles before
oven-drying at 93◦C until samples reached constant weight.
Harvest indices were calculated as proportions (dry biomass of
particular tissue type: total dry biomass).

Chlorophyll extraction was performed on the youngest, fully
expanded leaf of 11 week-old plants, which was cut into
pieces and ground into a fine powder under liquid nitrogen.
Chlorophyll was extracted from 300mg ground tissue in 50ml
80% acetone at 4◦C, with shaking at 125 rpm for 30 min in
the dark. Debris were removed with centrifugation at 1280
relative centrifugal force (rcf) for 15 min at 4◦C. Absorbance
of the chlorophyll solution was measured using a Synergy HT
Multi-DetectionMicroplate Reader (BIO-TEK Instruments, Inc.,
Winooski, VT, U.S.A.) at 645 and 663 nm. Chlorophyll content
was estimated using the formula of (Arnon, 1949).

Gas exchange measurements were made in the greenhouse on
vegetative, 6-week-old plants, on the youngest, fully expanded
leaf. Measurements were made in randomized order within a
midday 4-h window on 2 consecutive days using the LI-6400XT
portable photosynthesis system (LI-COR, Inc.) with the leaf
chamber fluorometer attachment. The cuvette was placed at
the midpoint of the leaf, avoiding the midrib. Measurements
were taken under the following conditions: leaf temperature =

25◦C, photosynthetically active radiation (PAR) = 1500 µmol
m−2s−1, CO2 = 400 µmol mol−1, and ambient RH= (38–42%).
CO2 fixation rate, stomatal conductance, and Ci:Ca (ratio of
intercellular to ambient CO2) were recorded and intrinsic water
use efficiency (WUE) was calculated as a ratio of CO2 fixation to
stomatal conductance.

For NIRS analysis, the stem fraction (at harvest) of dry
biomass was ground with a Model 4 Wiley Mill (Thomas
Scientific) to pass through a 2mm screen. Samples were
and analyzed via NIRS and a multiple-feedstock multivariate
calibration model (Wolfrum et al., 2013; Payne and Wolfrum,
2015) was used to generate predicted percentages and
uncertainties for glucan, xylan, lignin, and ash. The calibration
model was developed using primary compositional analysis data
on a wide variety of biomass samples (including corn stovers,
sorghum, miscanthus, cool-season grasses, and switchgrass)
using standard wet chemical techniques (Sluiter et al., 2010;
Templeton et al., 2010). All samples passed quality control,

TABLE 1 | Line, type, characteristics, and associated publications for lines in this study.

Line Type/use Resources and characteristics Selected publications

BTx623 Grain Sequenced; pre-flowering drought tolerant Hart et al., 2001; Brown et al., 2006; Murray et al., 2008b;

Paterson et al., 2009

RTx430 Grain Used for transformation; post-flowering drought susceptible Miller, 1984; MacKinnon et al., 1987; Howe et al., 2006; Liu and

Godwin, 2012; Wu et al., 2014

IS3620C Grain Converted inbred Brown et al., 2006; Burow et al., 2011

BTx642 Grain Sequenced; post-flowering drought tolerant Subudhi et al., 2000; Evans et al., 2013

Tx7000 Grain Elite line; pre-flowering drought tolerant, Sequenced Subudhi et al., 2000; Kebede et al., 2001; Evans et al., 2013

SC56 Grain Stay green; pre-flowering drought susceptible Kebede et al., 2001

SC170 Grain Grain mold research cultivar Little and Magill, 2009

M35-1 Biomass/grain RIL parent Reddy et al., 2012

100M Biomass Photoperiod sensitive NIL(Maturity) Sorrells and Myers, 1982; Childs et al., 1992; Murphy et al., 2011

Rio Biomass/sweet Juicy-stalked; parent line Broadhead, 1972; Murray et al., 2008a,b; Felderhoff et al., 2012

N598 Biomass/forage Low-lignin mutant NIL (BMR) Pedersen et al., 2006

NIL, Near Isogenic Line; RIL, Recombinant Inbred Line; BMR, Brown Mid Rib mutant (low lignin).
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and uncertainties (UC) in predictions of compositional
data were characterized using the empirical U-deviation
method (Zhang and Garcia-Munoz, 2009), which calculates
multivariate confidence intervals (CIs), similar in principal to
95% CIs for linear models. Larger UC values indicate higher
uncertainties in predicted values. Mass of each constituent
was calculated as the decimal percentage multiplied by final
biomass.

Metabolite Extraction
Leaf samples were collected from 4-week-old plants. One leaf
from each of n = 5 plant replicates per breeding line was used.
Tissue was excised from leaves via a cork borer. The tissue
was collected in the same spot on each leaf replicate, from the
middle of the fully developed sixth leaf beside, but not including
the midrib. For each sample, ∼25mg tissue (dry weight) was
immediately placed in a 1.5 mL tube containing stainless steel
grinding balls, frozen in liquid N2, and homogenized using
a paint-shaker. Metabolites were extracted by adding 1mL of
methanol:water (70:30, v:v) and vortexing for 2 h at room
temperature. Samples were centrifuged at high speed (13,500 rcf,
10 min, 4◦C), and 800 µL of supernatant was transferred to new
tubes and stored at−80◦C.

Metabolite Detection using GC-MS
Five hundred microliter of the metabolite extract was dried
using a speedvac. Samples were derivatized by re-suspending
the extract in 50 µL of pyridine containing 15mg/mL
of methoxyamine hydrochloride, incubating at 60◦C for 45
min, sonicating for 10 min, and incubating again at 60◦C
for an additional 45 min. Next, 50 µL of N-methyl-N-
trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane
(MSTFA+1% TMCS, Thermo Scientific) was added and samples
were incubated at 60◦C for 30 min, centrifuged at 3000 × g
for 5 min at 4◦C, cooled to room temperature, and 80 µL of
supernatant was transferred to a 150 µL glass insert. Metabolites
were detected with a Trace GC Ultra coupled to a Thermo DSQ
II (Thermo Scientific), acquiring mass spectra of 50–650 m/z
at 5 scans s−1 in electron impact mode after separation on a
30m TG-5MS column (Thermo Scientific, 0.25 mm i.d., 0.25
µm film thickness). Both inlet and transfer lines were set at
280◦C. Samples were injected in a 1:10 split ratio twice in discrete
randomized blocks with a 1.2 ml min−1 flow rate, following a
program of 80◦C for 30 sec, a ramp of 15◦C per min to 330◦C,
and holding at 330◦C for 8 min.

Metabolite Detection using Ultra
Performance LC-MS
One microliter of metabolite extract was injected into an Acquity
UPLC system (Waters Corporation). Separation was conducted
with an Acquity UPLC T3 column (1.8 µm, 1.0 × 100mm;
Waters Co.), using a gradient from solvent A (water, 0.1% formic
acid) to solvent B (acetonitrile, 0.1% formic acid). Injections were
made in 100% A, which was held for 1 min, a 12 min linear
gradient to 95% B was then applied, and held at 95% B for 3
min, returned to starting conditions over 0.05 min, and allowed
to re-equilibrate for 3.95 min. Flow rate was constant (200 µl

min−1) for the entire run duration. The column was held at
50◦C with samples held at 5◦C. Column eluent was coupled
directly to a Xevo G2 Q-Tof MS (Waters Co.) fitted with an
electrospray source. Data was collected in positive ion mode,
scanning from 50–1200 at 5 scans s−1, alternating between MS
andMSE mode. Collision energy was set to 6 V for MSmode, and
ramped from 15–30 V for MSE mode. Calibration was performed
prior to analysis via infusion of sodium formate solution, with
mass accuracy within 1 ppm. Capillary voltage was held at 2200
V, source temperature at 150◦C, and desolvation temperature at
350◦C at a nitrogen desolvation gas flow rate of 800 L h−1.

Metabolomics Data Analysis
For each sample, a matrix of molecular features defined by
retention time and mass (m/z) was generated using XCMS
software (Smith et al., 2006) using settings as previously described
(Broeckling et al., 2014), independently for GC- and LC-MS data
sets. Samples were normalized to total ion current and relative
quantity of each molecular feature was determined by mean
area of the chromatographic peak among replicate injections
(n = 2). For LC- and GC-MS, mass spectra, and metabolite
quantities were generated using an algorithm that clusters masses
into spectra (“spectral clusters” that represent “compounds”)
based on co-variation and co-elution in the data set (Broeckling
et al., 2014), and were annotated by searching against in-
house and external metabolite databases including NIST
v12 (http://www.nist.gov), Massbank (http://www.massbank.jp),
Golm (gmd.mpimp-golm.mpg.de), and Metlin (metlin.scripps.
edu). Annotations using high resolution mass spectrometry (LC-
MS) involved the identification of precursor ions within∼5 ppm
error of the expected positive ion adduct (e.g., H+ or Na+).
Glycosides were identified by neutral loss of 162.05m/z in LC-MS
spectral clusters.

Statistical Analysis
Analysis of Variance (ANOVA) for morphological and
physiological traits was performed in JMP Pro 10 (SAS
Institute). Prior to analysis, data were Box-Cox transformed to
improve normality. For metabolites, Pearson’s and Spearman’s
correlations, ANOVA, and hierarchical clustering were
conducted using cor, aov, and hclust functions in R, respectively
(R Core Team, 2012). ANOVA p-values were adjusted for
false discovery rate (FDR) using the p.adjust function in R
(Benjamini and Hochberg, 1995). Heat maps were generated
using the corrplot package in R (Wei, 2010). Z scores were
calculated using the mean value of a metabolite compared to
the mean and standard deviation of the metabolite for the
control variety (BTx623). Principal component analysis (PCA)
on morpho-physiological and structural traits was performed
on data that was mean-centered and scaled to unit variance
(UV). PCA on metabolites was performed on data that was
mean-centered and Pareto-scaled using SIMCA v14.0 (Umetrics,
Umea, Sweden). The O2PLS model was performed in SIMCA
and was a regression of morphology and physiology traits (y
variables, scaled to unit variance) against metabolites (x variables,
scaled to unit variance).
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RESULTS

Significant Metabolite Variation was
Observed in Sorghum Leaf Extracts
Among Sorghum Lines and between
“Grain” and “Biomass” Types
Biochemical variation was investigated among the 11 lines of
the sorghum panel in order to explore relationships of primary
and secondary metabolites to morphological, physiological,
and structural carbohydrate traits. Additionally, the sorghum
panel was also analyzed by sorghum type, with respect
to size/use as (a) grain sorghum (smaller stature) or (b)
forage/sweet/biomass sorghum (larger; referred to as “biomass
sorghum”).

A non-targeted metabolomics approach was used to
evaluate the extent of variation among diverse genotypes
without the need to assign compound names to mass
spectra. For this study, metabolites were annotated if they
correlated to a morpho-physiological trait, described below
(for annotation procedures, see Materials and Methods
Section “Metabolomics data analysis”). Overall, 6494 and
10,957 molecular features were detected in LC- and GC-MS
datasets, respectively. After clustering features, 487 and 694
spectral clusters were generated for LC- and GC-MS datasets,
respectively, for a total of 1181 estimated compounds in the
sorghum leaf extracts. Of the 1181 compounds, 584 of 694
compounds detected by GC-MS (84.1%), and 372 of 487
(76.3%) detected by LC-MS varied among the 10 sorghum
lines (ANOVA, FDR adjusted p < 0.05). When grouped by
size type, (biomass or grain) 188 of 694 GC-MS-detected
and 132 of 487 LC-MS-detected compounds (27.1% for
both methods) were significantly different between types
(Supplementary Table 1).

Z-score and Principal component analysis (PCA) were
conducted on these compounds and characterized significant
metabolic variation across lines. Nine principal components
explained 69.8% of the variation (Table 2). The first two principle
components (PCs) are depicted in Figure 1; Although the PCA
does not appear to show larger metabolomics trends grain vs.
biomass lines, this is likely to be due to a larger influence of
“line” on metabolite composition than sorghum “type.” ANOVA
was conducted on each PC to determine if metabolites differed
among lines and/or sorghum types. All nine PCs varied among
sorghum lines (p < 0.05) and PCs 2, 5, 6, and 7 varied
between sorghum types (“grain” vs. “biomass”; Table 2). As an
alternative method to characterize metabolic variation within
this sorghum population, all spectral clusters were z-transformed
using the breeding line BTx623 as the control. The z-scores
were plotted as a heat map and organized with hierarchical
clustering (Figure 2). The heat map provides an overview of the
data and indicates metabolic similarity and variation among the
breeding lines. Taken together, the metabolomic profiling data
indicates significant variation in sorghum leaf metabolite profiles.
Multivariate and univariate analyses demonstrate that most
metabolites vary by sorghum line and type, and such variation
allows for the discovery of associations to morpho-physiological
traits.

TABLE 2 | ANOVA on metabolite principal components, by line, and by

type.

Principal component % Variation p-value by p-value by

explained line typea

1 22.1 <0.0001 0.9181

2 11.4 <0.0001 0.0005

3 7.6 <0.0001 0.1732

4 6.5 <0.0001 0.9971

5 5.8 0.0008 0.0039

6 5.1 <0.0001 0.0044

7 4.2 0.0198 0.0168

8 3.7 <0.0001 0.6501

9 3.4 <0.0001 0.5176

atype, “biomass” vs. grain.

Morphological, Physiological, and
Cell-Wall Structural Traits Varied by
Sorghum Line and Type
Multiple morphological, physiological, and structural traits were
measured in the sorghum panel (Table 1). Significant variation
among lines was identified for most traits, although effect sizes
varied widely. A summary of the mean morphological and
physiological trait values and ANOVA by line is available in
Table 3. Variation in growth rate and reproductive maturity
impact the duration of sorghum biomass accumulation; partial
growth curves for the sorghum panel are presented in Figure 3.
The tallest line (M35-1) had highest overall growth rates in
early, but not later weeks, and also produced most total dry
biomass (83.5 g/plant), most of which derived from stems. In
contrast, IS3620C produced least biomass, though it was mid-
range in height; however, it also had smallest stem diameters
(Table 3).

Structural components of plant tissue have important
relationships with biomass quality and quantity; therefore NIRS
analysis and a calibration model based on wet chemistry
were used to examine composition of stem tissue (Table 4).
Composition of glucan, xylan, lignin, and ash ranged from 26.8
to 31.3, 16.4 to 19.7, 14.8 to 17.3, and 4.5 to 7.2%, respectively.
Total mass/plant of each constituent ranged from 18.9 to 22.5,
9.6 to 15.2, 9.0 to 13.3, and 2.9 to 4.5 g/plant for xylan, glucan,
lignin, and ash, respectively.

As expected, biomass varied between the two size types
(Figure 4), although interestingly, there was no significant
difference between panicle biomass of grain and biomass
sorghums. However, it should be noted that the line 100M
influenced certain otherwise consistent trait trends between
sorghum types; this is discussed at the end of this section. The
remaining traits varied significantly between sorghum grain and
biomass types, except for the measured or calculated chlorophyll
metrics (Table 5). Biomass sorghums were taller and produced
more mass; grain sorghums had greater stem diameters, but
allocated less overall biomass to stems. Biomass sorghums
allocated a large proportion of mass to stems (stem harvest index,
SHI) and had highest absolute stem biomass. Grain sorghums
had higher leaf harvest indices (LHI), but biomass sorghums
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Turner et al. Sorghum Metabolome Relationship to Biomass

FIGURE 1 | Scores plot from PCA of the metabolomic analysis of 11 sorghum lines. Data from GC- and LC- MS analyses were combined. Biomass types are

shown with open symbols and grain types with closed symbols.

TABLE 4 | Predicted percentages of biomass constituents, uncertainties, and estimated grams/plant for the stem fraction of each line.

Glucan Xylan Lignin Ash

(%)a UC (g/plant)b (%)a UC (g/plant)b (%)a UC (g/plant)b (%)a UC (g/plant)b

100M 28.3 3.7 20.4 19.7 2.3 14.2 16.3 2.5 11.7 4.5 3.0 3.2

BTx623 30.0 3.3 21.6 16.9 2.1 11.2 16.0 2.2 10.6 5.9 2.7 3.9

BTx642 28.3 3.8 20.4 17.7 2.5 11.2 16.1 2.6 10.2 4.5 3.1 2.9

IS3620C 31.1 3.7 22.4 18.7 2.3 10.9 15.5 2.4 9.0 6.1 3.0 3.5

M35-1 26.8 4.1 19.3 18.2 2.6 15.2 15.9 2.7 13.3 4.6 3.4 3.8

N598 26.3 5.1 18.9 18.0 3.2 13.1 14.8 3.4 10.8 5.8 4.2 4.2

Rio 27.1 3.8 19.5 18.8 2.4 15.1 16.0 2.5 12.9 5.0 3.1 4.0

RTx430 29.2 3.4 21.0 16.4 2.2 9.6 16.7 2.3 9.8 6.4 2.8 3.7

SC170 31.3 2.9 22.5 16.6 1.9 10.5 15.4 2.0 9.7 7.2 2.4 4.5

SC56 30.4 3.7 21.9 19.5 2.3 11.5 17.3 2.4 10.2 4.9 3.0 2.9

Tx7000 29.8 3.9 21.4 17.0 2.5 11.1 15.0 2.6 9.8 6.5 3.2 4.3

UC, Uncertainty of predicted % Glucan, Xylan, Lignin, and Ash composition (see Materials and Methods). Higher UCs reflect greater uncertainty of the predicted percentage.
aPredictions determined via NIRS and mixed feedstock calibration model.
bEstimations based on predicted percentage and actual dry biomass.

produced more overall leaf biomass; Grain sorghum had higher
panicle harvest indices (PHI).

Significant differences in physiological traits were also found
between types (Table 5). Smaller grain sorghums had higher
rates of photosynthesis, stomatal conductance, and higher Ci:Ca.
Biomass sorghums had higher intrinsic water use efficiency
(WUE). In addition, PCA was conducted on NIR spectra for

stems, and the first two components explained 40 and 19% of
variation, respectively. PC1 and PC2 largely separated grain and
biomass (Figure 5), indicating cell wall composition profiles to be
relatively consistent with sorghum type.

As noted above, line 100M displayed certain morphological
characters which differed from its type (“biomass”). Therefore,
for these traits, ANOVA was done both with and without
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Turner et al. Sorghum Metabolome Relationship to Biomass

FIGURE 2 | Z-scores of metabolite abundance. The relative abundance of each cluster (metabolite) in each line is normalized to line BTx623 (in which z-scores are

set to zero and shown in white). Increased abundance relative to control is shown in red and decreased abundance is shown in blue.

FIGURE 3 | Growth of 11 sorghum lines over 8 weeks post-transplant,

12 weeks post-germination. Biomass types are shown with open symbols

and dotted lines, grain types with closed symbols and solid lines.

100M (Table 5). Without 100M, biomass lines had smaller
leaves than grain lines; inclusion of 100M skewed the trend
significantly in the opposite direction for both leaf area and

LHI. Additionally, only one of eight 100M replicates produced a
panicle. Therefore, when analysis included 100M, panicle weight
for biomass sorghum was significantly smaller. However, when
100M was excluded, no difference existed between absolute
panicle weights of biomass and grain-type sorghums, though PHI
remained significantly different. Aside from these traits, 100M
was consistent with other biomass types.

The co-variation of morpho-physiological traits in this
panel was investigated using Spearman’s rank correlation
(Figure 6, Supplementary Table 2). Photosynthesis and stomatal
conductance were negatively associated with biomass and other
growth traits and physiological processes were correlated with
one another. Photosynthesis was positively correlated with
stomatal conductance (rs = 0.95), Ci/Ca ratios (rs = 0.48), and
negatively with WUE (rs = −0.66). Plant height and growth
rate were also negatively correlated with photosynthesis (rs
= −0.69, −0.49). Chlorophyll A (ChlA) and B (ChlB) were
positively correlated with one another (rs = 0.90) and ChlA
and total chlorophyll (ChlT) were negatively correlated with
stem biomass (rs = −0.66 and −0.56, respectively). Percent
glucan was negatively correlated with total dry biomass (rs =
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TABLE 5 | Physiological and morphological trait means, standard errors, and results of ANOVA by type.

Trait Biomass sorghum Grain sorghum F-ratio p Adj. R2

Mean ± SEM Mean ± SEM

Plant height (cm) 189.8 ± 6.828 121.6 ± 2.834 106.6 < 0.0001 0.57

Stem diameter (mm) 12.2 ± 0.239 14.6 ± 0.437 13.43 0.0004 0.14

Average Individual leaf area (mm2) 323.2 ± 19.02 (276.5 ± 9.52)* 300.7 ± 5.997 4.99 0.0287 0.01

Panicle harvest index 0.29 ± 0.022 0.4 ± 0.004 85.13 < 0.0001 0.53

Leaf harvest index 0.26 ± 0.014 (0.23 ± 0.005)* 0.2 ± 0.003 4.28 0.0423 0.01

Stem harvest index 0.45 ± 0.012 0.3 ± 0.004 122.5 < 0.0001 0.62

Growth rate, weeks 1–2 (cm/week) 30.6 ± 2.249 18.4 ± 1.070 26.30 < 0.0001 0.24

Growth rate, weeks 3–4 (cm/week) 21.4 ± 2.697 8.0 ± 0.971 29.25 < 0.0001 0.27

Ci/Ca 0.297 ± 0.016 0.341 ± 0.009 6.44 0.0118 0.02

gs (mmol H2O m−2s−1) 0.134 ± 0.006 0.196 ± 0.006 57.25 < 0.0001 0.20

A (µmol CO2 m−2s−1) 20.19 ± 0.730 28.36 ± 0.606 78.76 < 0.0001 0.26

WUE 162.9 ± 4.083 150.3 ± 2.319 6.26 0.0131 0.02

ChlA (mg/g) 0.582 ± 0.025 0.632 ± 0.024 1.99 0.1648 –

ChlB (mg/g) 0.159 ± 0.008 0.168 ± 0.007 0.738 0.3942 –

ChlT (mg/g) 0.749 ± 0.033 0.810 ± 0.030 1.7173 0.196 –

A/T 0.777 ± 0.004 0.781 ± 0.004 0.4636 0.4991 –

A/B 3.716 ± 0.096 3.809 ± 0.080 0.5427 0.4647 –

*Starred values calculated with 100M removed as an outlier. Ci/Ca = ratio of intercellular (leaf) [CO2 ]to ambient [CO2 ]; gs, stomatal conductance; A, photosynthesis; WUE, Water Use

Efficiency; ChlA, B, Tot, Chlorophylls A, B, and Total, respectively; A/B and A/T, ratio of chlorophyll A to B and A to Total, respectively.

FIGURE 4 | Histogram of dry biomass according to “biomass” vs. grain

types of sorghum. Grain types are shown in brown, “biomass” types in

green. p-values are from ANOVA by type as referenced in “Materials and

Methods.”

−0.78), plant height (rs = −0.72), and total stem biomass
(rs = −0.80) and percent ash was negatively correlated with SHI
(rs =−0.82).

Leaf Metabolic Variation Is Associated with
Morpho-Physiological Phenotypes
Associations among metabolites and morpho-physiological
phenotypes were investigated using univariate and multivariate
methods. Spearman’s rank correlation was used and
characterized 384 of 1181 clusters (32.5%) as associated

FIGURE 5 | Scores plot from PCA of the near-infrared spectra of 11

sorghum lines. Data from NIRS were averaged (n = 5–8 per line). Biomass

types are shown with green symbols and grain types with brown symbols.

with at least one morpho-physiological trait (rs > |0.5|). Of the
386 metabolites, 36 (∼10%) could be annotated by matching
mass spectra to several metabolite databases, and are displayed
as a heat map following hierarchical clustering with correlations
to all measured traits (Figure 7A, Supplementary Table 3).

Frontiers in Plant Science | www.frontiersin.org 9 July 2016 | Volume 7 | Article 953

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Turner et al. Sorghum Metabolome Relationship to Biomass

FIGURE 6 | Heat map of trait to trait correlations. Heat map of correlations for 29 morphological and physiological traits was created following hierarchical

clustering on the spearman rs-value. Color and ellipse eccentricity denote Spearman’s rank correlation rs between traits. Correlations with an r > |0.602| were

significant (p < 0.05).

The data indicate sets of metabolites are associated with
sets of morpho-physiological traits. The most notable trend
was the positive association of glycosylated flavonoids with
photosynthesis-related traits (e.g., photosynthesis, stomatal
conductance). Organic acids, including erythronic/threonic
acid (two compounds with identical mass spectra), lactic
acid, and a pentose sugar acid were negatively correlated
with photosynthesis. Further, mass spectra that matched to
chlorogenic acid (CGA) were detected at three distinct elution
times, indicating the presence of three structural isomers. CGA
isomer 1 was correlated with both photosynthesis (positive),
biomass (negative), and growth rates (negative for both weeks
1–2 and 3–4).

These data were further integrated using O2PLS, a
multivariate regression technique based on orthogonal
projection to latent structures (OPLS), is a method to integrate
two different multivariate datasets (Bylesjo et al., 2007). Here,
O2PLS regressed the 20 morpho-physiological traits against 1181
LC- and GC-MS spectral clusters (Trygg, 2002; Figure 8). The
O2PLS model resulted in four components that explained 82%
of the variation. The O2PLS (Figure 8) indicates associations
among morpho-physiological traits, and highlights metabolites
that co-vary with these trends. For example, a positive correlation
exists between total dry biomass, stem biomass, and HI-stems,
and these traits were negatively associated with HI-Panicles.
This supports that sorghum biomass is largely driven by carbon
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FIGURE 7 | Correlation of metabolites with morphological and physiological traits. (A) Heat map with hierarchical clustering of 36 metabolites associated with

morphology or physiology in sorghum. Color and ellipse eccentricity denote Spearman’s rank correlation rs between metabolites and traits. Correlations with an r >

|0.602| are significant (p < 0.05). Numerical values, including rs and p-values, are given in Additional file 4. (B–D) Scatterplots of mean relative abundance for three

chlorogenic acid isomers plotted against mean photosynthetic rate for each sorghum line. (E,F) Scatterplots of mean abundance for shikimic and quinic acid plotted

against mean total biomass for each sorghum line. (G) Scatterplot of mean abundance for shikimic acid plotted against mean abundance for quinic acid for each

sorghum line. Closed circles, low biomass sorghum lines; open circles, high biomass sorghum lines; closed squares, low photosynthesis sorghum lines; open

squares, high photosynthesis sorghum lines. Dashed lines indicate best fit line for linear regression performed on metabolite-trait relationships.
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FIGURE 8 | Association of sorghum leaf metabolome to

photosynthesis and biomass. Spearman’s correlation values for the

metabolite-photosynthesis relationship plotted against correlation values for

the metabolite-biomass relationship. Best fit line for linear regression is used to

display the overall trend. (A) Scatterplot of correlations for only the 36

annotated metabolites described in Figure 7. (B) Scatterplot of correlations

for all 1181 detected spectral clusters.

allocation toward stems (vs. panicles), and that there are
metabolites that follow similar trends.

Shikimic and Chlorogenic Acid Are
Potential Mediators of Carbon
Assimilation, Growth Rate, and Final Dry
Biomass Phenotypes in Sorghum
An interesting trend was observed between photosynthesis,
growth rates, and final dry biomass. In this study, the lines with
the highest photosynthesis (carbon assimilation rates measured
at an early time point) had the lowest growth rates in weeks 1–
2 and 3–4, as well as the lowest total dry biomass at the end
of the experiment. While counterintuitive, several other studies
have found negative associations between early photosynthetic
measurements and plant growth phenotypes (Wassom et al.,
2003; Jahn et al., 2011).

The metabolites that co-varied with these morpho-
physiological traits included both primary and secondary
metabolites. Of the three CGA isomers, one isomer was
negatively correlated to growth rates (1–2 and 3–4 weeks) and
total dry biomass (Figure 7B); the other two had slight negative
correlations (Figures 7C,D). Shikimic and quinic acid were
positively correlated with biomass (Figures 7E,F). In addition,
abundances of shikimic and quinic acid within all sorghum
lines were highly correlated (Figure 7G). Relative abundances
of shikimic, quinic, and chlorogenic acid (isomer 1) among
lines are presented in Supplementary Figure 1. Interestingly,
metabolites positively correlated to photosynthesis also tended
to be negatively correlated to biomass (Figure 8A). When this
relationship was explored in the full metabolomics dataset (all
1181 spectral clusters), a significant trend was also observed
(Figure 8B).

Taken together, these data indicate shikimate and CGA
are associated with the relationship between carbon allocation
(photosynthesis) and plant growth (early-developmental growth
rates and final dry biomass). This is supported by the associations
for these metabolites in both univariate and multivariate
statistical models.

DISCUSSION

Recent research has shown increasing use of both targeted
and non-targeted metabolomic approaches to characterize a
molecular level of phenotypic variation in both model species
such as Arabidopsis (e.g., Sulpice et al., 2010) as well in crops such
as tomato (Tikunov et al., 2005) and rice (Kusano et al., 2015). In
addition to defining a species metabolome, this characterization
of variation is also used as a “top-down” approach to better
comprehend the complexities of metabolic pathways (Fernie
and Klee, 2011). Further, metabolomics are being used to find
biomarkers that are indicative of valuable traits in crops such as
potato (Steinfath et al., 2010) and barley (Heuberger et al., 2014a)
and to examine changes in metabolite profiles as plant immune
responses to biotic influence (e.g., the influence of Fusarium on
soybean root profiles as in Scandiani et al., 2015) as well as in
response to abiotic stresses such as drought, as in oats (Sanchez-
Martin et al., 2015) or wheat (Bowne et al., 2012). The global
profiles of small molecules and subsets therein are also being used
in attempts to predict complex traits in the model, Arabidopsis
(Meyer et al., 2007), although it is becoming increasingly clear
that these profiles are likely to be subject to a great deal of
environmental influence (Sulpice et al., 2013).

Because of existing genetic tools, the lines examined in this
study represent avenues for further discovery and valuable trait
exploitation [e.g., sequenced sorghum line BTx623 (Paterson
et al., 2009), re-sequenced lines Tx7000 and BTx642 (Evans et al.,
2013), or RTx430, which is the only commonly transformed
sorghum line in this recalcitrant species (Howe et al., 2006; Liu
and Godwin, 2012; Wu et al., 2014)].

This study sought to (1) characterize the metabolome
variation in this important set of sorghum breeding lines and (2)
explore its relationship to morpho-physiological traits related to
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plant growth and biomass accumulation. Indeed, the data showed
that in a phenotypically and genetically diverse species such as
sorghum, the metabolome follows suit, exhibiting great variation
in small molecule profiles among lines (Figure 3). In addition,
correlative relationships among morphological, physiological,
and structural traits related to biomass, as well as between
metabolite traits and biomass were identified (Figures 6, 7A). It is
also of note that certain subsets and whole metabolome patterns
demonstrated interesting opposing relationships with biomass,
growth rates and photosynthesis (Figures 7B–G, 9) as well as
relationships with other physiological and morphological traits
(Figures 7A, 8).

The relationship between photosynthetic measurements and
subsequent carbon allocation to the accumulation of biomass
is notoriously complex. Alteration of photosynthesis is often
discussed as a potential mode of crop improvement (Murchie
et al., 2009; Zhu et al., 2010), however, relationships between
physiological traits and biomass are not necessarily positive
(Wassom et al., 2003; Jahn et al., 2011), nor straightforward.

It should also be noted there are limitations to measuring
photosynthesis in a controlled environment and on a per-leaf
area, and these relationships may change at the whole-plant
and whole-canopy levels in the field. However, despite this
complexity, the results of this study do demonstrate a negative
relationship of early growth rates and final biomass to leaf-
area based photosynthesis measurements (Figure 6) and are
further supported by the relationships of these traits to the
leaf metabolome (Figures 7–9). Therefore, our data indicate
that the relationship between physiological rates and biomass
accumulation may be mediated through both primary and
secondary metabolism. Indeed, biomass and photosynthetic
rate were among traits with strongest correlations to leaf
metabolic profile, highlighting the utility of a metabolomics
approach to understand the mechanisms behind biomass
regulation.

Specific identified metabolites included Chlorogenic acid
(CGA) which was found to be associated with photosynthesis
(positive), growth rate (negative), and biomass (negative). CGA

FIGURE 9 | Prediction of physiological and morphological traits based on metabolic variation. O2PLS integrated datasets and overlaid trends in metabolites

and traits. The y-axis represents relative contribution of metabolites to the model (loadings), or relative contribution of traits to the model (scores). Higher or lower

loadings or scores denote metabolites and traits with largest contributions to the model and loadings in red were considered to significantly contribute to the model

(see z-thresholds described in Materials and Methods). The x-axis is an ordered list of the 1181 metabolites from highest (left side of x-axis) to lowest contributors

(right side of x-axis). Traits are listed at the right side of the x-axis. The positive or negative direction of metabolites and traits indicate co-variation (e.g., stem and leaf

biomass co-varies with metabolites 1, 3, 7, 10, etc., and negatively correlate to photosynthesis). The 36 metabolites correlated to at least one trait are denoted.
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is a highly abundant compound and has been demonstrated
to have important roles in multiple plant organs including
leaves (Sheen, 1973; Mondolot et al., 2006; Clé et al., 2008;
Leiss et al., 2009), roots, and root hairs, (Narukawa et al.,
2009; Franklin and Dias, 2011), and has roles in diverse
processes such as wound response (Ramamurthy et al., 1992;
Campos-Vargas and Saltveit, 2002) and cell-wall building
(Aerts and Baumann, 1994; Mondolot et al., 2006). In our
study, three CGA isomers were identified in leaf extracts.
These isomers have been previously described as containing
identical MS/MS fragmentation (Xue et al., 2013), but were
here separated chromatographically, allowing for independent
measurements. One of these three detected isomers had the
strongest positive correlation to photosynthesis (Figure 7B);
the others were weakly negative. As in this work, other
studies have also found isomer-specific metabolite relationships.
For example, Xue et al. demonstrated that only one of
three chlorogenic acid isomers responded to heat stress and
subsequent changes to photosynthesis in Arabidopsis (Xue et al.,
2013).

CGA is a product of the phenylpropanoid pathway (an
intermediate in the lignin pathway), and is a fairly well-
characterized scavenger of reactive oxygen species (ROS). In
young plant leaves, CGA has been found to localize to
chloroplasts (Mondolot et al., 2006); evidence for a protective
role against light damage. Further, in green pepper, chlorogenic
acid rescued photosynthesis from paraquat-induced inhibition
(Laskay and Lakos, 2011). Interestingly, phenolics and spefically
CGA, are often inhibitors of plant growth (Einhellig and
Kuan, 1971; Li et al., 1993). Thus, these data support that
sorhgum lines exhibiting higher rates of carbon assimilation also
have high abundances of partiulcar CGA, isomers subsequently
inhibiting early growth rates that affect final quantitaties of
biomass.

Shikimic acid is another compound involved in important
leaf and stem processes, as seen in many studies (e.g., Ossipov
et al., 2003; Chaves et al., 2011; Dizengremel et al., 2012;
Zhang et al., 2013). Of the metabolites identified in this study,
shikimic acid also had one of the strongest positive correlations
to biomass. Shikimic acid is a precursor for aromatic amino acids
leading into the phenylpropanoid pathway, which is responsible
for synthesis of lignin and other secondary metabolites and
although it may seem intuitive that more lignin is necessary
to support increased biomass, the relationship between them is
variable (Hu et al., 1999; Chen and Dixon, 2007; Jahn et al.,
2011). Interestingly, shikimic acid has also been observed to be
an inhibitor of the Phosphoenolpyruvate Carboxylase (PEPC)
enzyme (Colombo et al., 1998) which plays a critical role in the
fixation of carbon in C4 organisms. While it remains unclear
why a reduction in the amount of photosynthetically fixed carbon
would sometimes be associated with an increase in biomass,
the competitive inhibition of PEPC may also help to explain
why larger sorghums (with more shikimic acid) exhibit lower
leaf-level rates of photosynthesis.

Quinic acid, also a constituent of the phenylpropanoid
pathway, had a similar correlation profile to shikimic acid
(Figure 7G) and is a precursor to CGA.However, in high biomass

plants, higher quinic acid levels likely reflect lignin and not
chlorogenic acid biosynthesis, as evidenced by lower levels of
chlorogenic acid in these lines. A study in Arabidopsis found
shikimic acid and several other phenylpropanoid metabolites
to increase in mutants deficient in lignin biosynthetic enzymes,
perhaps as an attempt to recover lignin content (Vanholme et al.,
2012). In sorghum, it is therefore likely that increased synthesis
of shikimic and quinic acid provide the lignin content necessary
to support increased biomass.

This study examined the metabolic variation of an important
set of sorghum breeding lines via non-targeted GC- and LC-
MS analyses and explored the association of these metabolites
and profiles with many measured phenotypes (morphological,
physiological, and structural carbohydrate content) relevant
to biomass and quality. The sorghum panel exhibited high
metabolic variation, some of which co-varied with phenotypic
traits; in particular, patterns of and specific metabolites that
appear to influence the relationship between carbon assimilation,
early stage growth, and final biomass. Because of these notable
associations, future research should explore the potential utility
of early phenotype prediction via the metabolome to circumvent
resource-intense greenhouse and field evaluation of phenotypic
traits.
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