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Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The

natural tolerance of barley to stress has led to increasing interest in identification of stress

responsive genes through small/large-scale omics studies, comparative genomics, and

overexpression of some of these genes by genetic transformation. Two major categories

of proteins involved in stress tolerance are transcription factors (TFs) responsible from

the re-programming of the metabolism in stress environment, and genes encoding

Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and

transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding

factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and

WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and

salinity, possibly by effectively altering the expression levels of stress tolerance genes

due to their higher DNA binding affinity. Na+/H+ antiporters, channel proteins, and lipid

transporters can also be the strong candidates for engineering plants for tolerance to

salinity and low temperatures.

Keywords: drought, Hordeum vulgare, LEA proteins, salinity, transcription factors

INTRODUCTION

Drought, salinity, high or low temperatures, frost, flooding, alkaline soil, and excess or deficiency of
minerals like boron and aluminum can have significant adverse effects on agricultural production
(Atkinson and Urwin, 2012). Particularly, drought and soil salinity even threat plant biodiversity
in arid and semi-arid regions.

Plants have various protective mechanisms for coping with abiotic stress conditions. Both
mechanisms based on single genes and complex regulatory pathways involved in stress tolerance
and/or adaptation have been described in plants, and partially resolved by omics approaches of
system biology (Gupta et al., 2013). Knowledge of the molecular basis of stress tolerance and
adaptation is essential to develop crop cultivars with improved stress tolerance.

Barley (Hordeum vulgare L.) is one of the oldest cereal crops known to be cultivated since about
10,000 years in a region located between the Nile (Egypt) and Tigris Rivers (Iraq), also including
Southern Turkey, Israel, Lebanon, Jordan, and Syria. It has a natural tolerance to drought, salinity,
and fungal diseases, thus making it a model organism in stress biology research. Indeed, a barley
plant was shown to complete its life-cycle before using all the available soil water, even in high salt
concentrations and defined as the most salt-tolerant cereal (Munns et al., 2006).

Substantial work has been done to map genetic determinants controlling abiotic stress tolerance,
which was the object of QTLs, meta-analysis that indicated the importance of 2H and 5H
chromosomes (Li et al., 2013). In addition, molecular responses to drought, salinity, boron toxicity,
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cold acclimation, and high temperature have been revealed
by high-throughput transcriptomic analyses (Ozturk et al.,
2002; Svensson et al., 2006; Guo et al., 2009; Mangelsen
et al., 2011; Tombuloglu et al., 2013; Bedada et al., 2014).
Transcriptomic approaches have provided a large amount of
data that enable researchers to identify major pathways and
key proteins contributing to stress tolerance in barley. These
major pathways are controlled by partially overlapping signaling
components including abscisic acid (ABA), salicylic acid (SA),
and jasmonic acid (JA). Major alterations have been detected in
protein biosynthesis, energy metabolism, photosynthesis, protein
folding, detoxification, and cell wall biosynthesis during the stress
response of barley (Sicher et al., 2012; Rollins et al., 2013).

The wealth of knowledge gathered on barley genetics,
genomics, diversity, genetic transformation, and stress responses
makes this crop a platform for dissecting tolerance mechanism
that can be then exploited in other crops, particularly cereals.
Despite the complex nature of abiotic stress tolerance, single
genes from barley can have potential in biotechnological crop
improvement. In this minireview, our aim is to highlight notable
genes from barley that may be used to improve plants for abiotic
stress tolerance, with an emphasis on TFs.

Overview of Stress Adaptation Genes in
Barley
Barley can cope with many abiotic stress factors, single or
combined, and several genes involved have been identified
(Figure 1). One of the factors behind the natural tolerance
of barley to abiotic stresses is early flowering, which ensures
that pollination, seed development, and maturation occur in
an optimum time period. Major genes affecting flowering
time in barley have been identified and shown to be
mainly related with vernalization, photoperiod, and circadian
clock (Turner et al., 2005; von Zitzewitz et al., 2011).
For example, HvCEN and HvLux1 control flowering time,
while the circadian clock gene Ppd-H1 regulates photoperiod-
related output genes (Campoli et al., 2012; Comadran et al.,
2012).

Expression of antioxidant enzymes such asHvAPX1, HvMT-2,
and HvGST1, accumulation of osmolytes and synthesis of heat-
shock proteins (e.g., HSP17.8) are among the initial responses
to stress mainly generated by reactive oxygen species (ROS; Guo
et al., 2009; Witzel et al., 2009). By the induction of transcription
factors including MYB, HvDRF1, HvDREB, HvABF1, barley
responds to stress with a large, partially elucidated network of
genes. For instance, the expression of HvCBF genes at the Fr-H2
locus, which is controlled by a vernalisation TF gene, VRN-H1,
affects frost tolerance (Stockinger et al., 2007).

A group of genes, HVA1, HVA22, Dhn3, and Dhn9 encode
proteins that bind to membrane phospholipids, ions and water,
and protect cells by still unknown mechanisms. Overexpression
of Na transporters (HvHKT2;1) were shown to contribute to
the regulation of Na+/K+ homeostasis in barley during high
salinity stress (Mian et al., 2011). In fact, K+ retention ability and
limitation of Na+ uptake partially explains the tolerance of barley
to ion toxicity and high salinity (Adem et al., 2014).

Transcription Factors: Key Players for
Stress Tolerance
Engineering the regulatory machinery through transcription
factors controlling the expression of stress-related genes is a
promising approach to increase abiotic stress tolerance. Many
transcription factors including DREB/CBF, ABF, AP2/ERF, bZIP,
NAC, MYB, MYC, HD-ZIP, bHLH, NF-Y, EAR, and WRKY are
known to be responsible for transcriptional reprogramming in
response to abiotic stress conditions in plants. Several of these
transcription factors have been cloned and characterized both at
the genomic and protein levels in barley, and functionally proven
to be useful for engineering stress tolerance in transgenic plants
(Table 1).

The effectiveness of a TF in regulating many genes at a time
is determined by its affinity to specific DNA sequences and its
binding capacity to the promoter. Most of the promoter binding
sites of barley TFs have been characterized (Table 1), and subtle
changes in these motifs recently appeared to be important in
determination of the binding affinity of TFs (Singh and Laxmi,
2015). As the natural ability of barley in coping with many abiotic
stress factors suggests better DNA-binding specificity of TFs in
transcriptional regulation of stress responsive genes, we believe
barley TFs can be considered as promising candidates to increase
abiotic stress tolerance of other crops.

WRKY TFs are a very large family of zinc finger TFs known to
regulate temporal and spatial expression of specific genes during
development and in response to environmental stimuli such as
wounding, pathogen infection, or abiotic stresses. WRKY TFs
have been studied in detail in numerous plant species including
barley (Li et al., 2014). Constitutive expression of HvWRKY38
in bahiagrass (Paspalum notatum Flugge) caused better water
retention capacity of transgenic plants during dehydration,
and better recovery and rehydration with increased biomass
production (Xiong et al., 2010).

DREB1/CBF and DREB2, induced by cold and dehydration
in barley, respectively, belong to dehydration-responsive element
binding protein/C-repeat binding factor family of TFs regulating
expression of abiotic stress-related genes (Agarwal et al., 2006).
An ortholog of the DREB1A TF isolated from a xeric, wild
barley (H. spontaneum L.) under the transcriptional control
of the stress-inducible HVA1 promoter was shown to enhance
survival and biomass production upon severe salt stress and
repeated cycles of severe dehydration stress in bahiagrass (James
et al., 2008). Similarly, the overexpression of the HvDREB1 gene
isolated from barley leaves increased salt stress tolerance in
Arabidopsis (Xu et al., 2009).

The plant-specific NAC TFs are a major TF family with roles
in regulation of several developmental programs and abiotic and
biotic stress responsive genes (Nakashima et al., 2012; Puranik
et al., 2012). The barley HvNAC6 gene acting as a regulator
of basal resistance against the biotrophic pathogen Blumeria
graminis f. sp. hordei, was shown to mediate ABA-dependent
defense responses in barley (Chen et al., 2013). Overexpression
of the isoform HvSNAC1 in barley increased drought tolerance
(Al Abdallat et al., 2014), suggesting that this gene can be a tool
for increasing barley productivity under drought conditions. A

Frontiers in Plant Science | www.frontiersin.org 2 August 2016 | Volume 7 | Article 1137

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Gürel et al. Barley Genes for Abiotic Stress Tolerance

FIGURE 1 | Abiotic stress factors and main genes involved in adaptation and response in barley.

TABLE 1 | Features of stress-related transcription factors (TFs) cloned and characterized from barley and their use in transgenic approaches.

Barley transcription ABA-induction Binding site Use for transgenics/ Tolerance to References

factor (Cis-element) promoter

HvDRF1 + T(T/A)ACCGCCTT No Drought, salinity Xue and Loveridge, 2004

HvCBF4 − CRT/DRE1/DRE2 Yes/Ubi Drought, salinity cold Oh et al., 2007

HvDREB1 − DRE/CTE Yes/CaMV 35S Salinity Xu et al., 2009

HvDREB1A nd DRE/CTE Yes/CaMV 35S Drought, salinity James et al., 2008

HvRAF − GCC-box, CRT/DRE Yes/CaMV 35S Salinity Jung et al., 2007

HvSNAC1 + – Yes/Ubi Drought Al Abdallat et al., 2014

HvWRKY38 + W-box[(T)(T)TGAC(C/T)] Yes/CaMV 35S Dehydration Xiong et al., 2010

nd, not determined.

very recent study indicated the potential of overexpression of the
same gene to enhance resistance of barley to Ramularia leaf spot
(McGrann et al., 2015).

One of the earliest reports on isolation of a low-temperature
induced AP2 domain and C-repeat/dehydration responsive
element containing proteins identified HvCBF1 and HvCBF2,
transcriptional activators of cold-responsive genes in barley
(Xue, 2002, 2003). Indeed, CRF/DREBs mainly regulate freezing
tolerance (Jeknić et al., 2014). Overexpression of HvCBF4 in rice
resulted in enhanced tolerance to drought, salt, and cold stresses
at the seedling level (Oh et al., 2007).

HvRAF (barley root abundant factor), an ethylene response
factor (ERF)-type TF, was shown to regulate transcriptional

induction of various stress-responsive genes including PDF1.2,
JR3, PR1, PR5, KIN2, and GSH1, and to confer higher seed
germination and root growth with high salinity in transgenic
Arabidopsis, in addition to enhanced resistance to Ralstonia
solanacearum (Jung et al., 2007).

Modifying Transporter Activity for Stress
Tolerance
Plants have developed efficient strategies to maintain ion
concentration in the cytoplasm at low levels. Transporters such as
Na+/H+ and K+/H+ antiporters (NHXs), sucrose transporters
and amino acid transporters have important roles to keep this
balance. A group of transporters including NHXs, high affinity
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K+ transporters (HKTs), and salt overly sensitive 1 (SOS1) have
been shown to maintain intracellular ion and pH homeostasis,
and also contribute to the regulation of a wide variety of
physiological processes associated with growth and development
(Bassil et al., 2012).

Transgenic barley lines overexpressing a subfamily HKT
transporter (HvHKT2;1) showed improved biomass production
under salt stress (100mMNaCl) probably throughNa+ exclusion
or accumulation of excessive Na+ in the leaves (Mian et al.,
2011). The HvNHX2 gene driven by the CaMV 35S promoter
was introduced into two cultivars of potato, resulting in improved
NaCl tolerance of one of the cultivars (Bayat et al., 2010). Bayat
et al. (2011) also introducedHvNHX2 inArabidopsis thaliana and
showed that transgenic plants grew normally at 200 mM NaCl.

In acid soils, aluminum (Al3+) can be toxic for plants.
Over expression of the barley HvAACT1 encoding a citrate
transporter enhanced the Al3+ tolerance in barley and wheat
(Triticum aestivum; Zhou et al., 2013). Besides, Fujii et al. (2012)
showed that 1kb-insertion upstream of the coding region altered
expression patterns of HvAACT1, leading to enhancement of
Al3+ tolerance in barley cv. Morex.

Boron toxicity can severely limit crop production worldwide
and is best combated by using tolerant varieties. Sutton et al.
(2007) demonstrated that increased copy number of Bot1
encoding a boron efflux transporter is the base of boron-toxicity
tolerance in an African barley landrace containing four copies of
the gene.

Iron deficiency is a major cause of reduced plant productivity
in alkaline soils. Constitutive expression of a barley iron-
phytosiderophore transporter (HvYS1) in transgenic rice
increased iron uptake from alkaline soil (Gómez-Galera et al.,
2012).

A Well-Known Success Story: The Hva1

Gene for Drought Tolerance
LEA proteins are a well-known group of proteins characterized
by hydrophilic nature, large size, and high accumulation during
seed desiccation and in response to abiotic stresses (Bhatnagar-
Mathur et al., 2008). HVA1, a 22kDA group 3 LEA protein
expressed in the barley aleurone, is the first characterized and
most studied barley LEA protein, having the potential to enhance
abiotic stress tolerance through transgenic approaches.

HVA1 expression increased drought tolerance of spring
wheat, conferring higher biomass production and water use
efficiency under greenhouse drought conditions (Sivamani et al.,
2000). Bahieldin et al. (2005) reported improvement in drought
tolerance in four independent T4 transgenic lines tested in nine
field experiments over six growing seasons, and indicated that the
field performance of lines was correlated with the level of HVA1
transgene expression. Constitutive overexpression of HVA1 in
rice cv. Nipponbare increased tolerance to water deficit and
salinity as shown by delayed damage symptoms and improved
recovery (Xu et al., 1996). Further analysis of the T2 generation of
these transgenic lines under prolonged drought stress indicated
the possibility of better cell membrane protection with HVA1
overexpression (Babu et al., 2004). Similarly, analysis of third
generation transgenic rice plants (cv. Pusa Basmati 1) revealed
improved cell integrity in transgenic plants under salt and

drought stress conditions (Rohila et al., 2002). HVA1 expression
by an ABA/stress-inducible promoter resulted in improved root
architecture and better tolerance to osmotic, salt, drought and
cold stresses in transgenic rice (Chen et al., 2015). In a recent
study, expression of HVA1 in transgenic maize plants conferred
survival under strong drought and tolerance to 100–300 mM
NaCl in the T3 generation (Nguyen and Sticklen, 2013). The
same group reported that co-expression of HVA1 with E. coli
mtlD (mannitol-1-phosphate dehydrogenase) in maize was more
effective under drought stress, and capable to enhance shoot and
root growth under salt stress when compared to transgenic plants
expressing either gene, and underlined the potential of their co-
expression for improvement of abiotic stress tolerance (Nguyen
et al., 2013).

Transformation of HVA1 into three oat (Avena sativa L.)
cultivars resulted in better tolerance to osmotic (salt and
mannitol) stresses compared to non-transgenic control plants
(Maqbool et al., 2002). Constitutive or stress-inducible HVA1
expression in drought-intolerant creeping bentgrass (Agrostis
stolonifera var. palustris) resulted in higher turf quality and lower
leaf wilting under water deficiency (Fu et al., 2007). Protection
of stability of plasma and chloroplastic membranes under
drought and salt stress conditions were observed in mulberry
(Morus indica) transformed HVA1 under the constitutive actin1
promoter (Lal et al., 2008). The same transgenic mulberry
lines also showed better cold tolerance (Checker et al., 2012).
Seedlings of common bean (Phaseolus vulgaris L) transgenic
lines expressing HVA1 under the control of the 35S promoter
displayed enhanced drought tolerance and increased root length
(Kwapata et al., 2012).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Abiotic stress tolerant crops will probably be key for food security
by helping agriculture to cope with climatic change (IPCC,
2015). Barley can provide a significant source of genes for stress
tolerance due to its high diversity and adaptability.

Exploiting TFs in the design of stress tolerant transgenic plants
has been proposed as a more effective tool than expressing single
genes (Cominelli et al., 2013). In fact, overexpression of barley
HvWRKY38, HvDREB1, HvSNAC1, and HvCBF4 has proven to
be very effective in conferring abiotic stress tolerance to other
species, and provided tolerance to multiple stresses via both
ABA-dependent and -independent pathways (Table 1). Complete
functional analyses of barley TFs are still needed to understand
regulatory networks related to abiotic stress responses and to
reveal the cross-talk between different signaling pathways during
stress adaptation.

Single gene transformation, however, can provide good results
as indicated by the performance of wheat and rice plants
expressing the barley HVA1 LEA protein: in field conditions
they have shown improved tolerance to salinity and drought.
A less investigated group of genes from barley are membrane
transporters that regulate ionic homeostasis in cells, and may
have a high potential for creating cultivars with better tolerance
to salinity and other mineral toxicities in various crops.
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In conclusion, despite our knowledge toward resolving
barley’s high survival and adaptability in stressful environment
is still limited, several stress tolerance genes have been
characterized well enough to move them from basic research
to implementation in crops. The wild relatives of barley can
be of particular interest (Shavrukov et al., 2010; Uçarlı et al.,
2016), by providing a range of allelic variants that could
explain the degree of adaptive competence and plasticity of
Hordeum and be used in plant breeding efforts for stress
tolerance.
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