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Symbiotic nitrogen-fixing associations between Casuarina trees and the actinobacteria

Frankia are widely used in agroforestry in particular for salinized land reclamation. The aim

of this study was to analyze the effects of salinity on the establishment of the actinorhizal

symbiosis between C. glauca and two contrasting Frankia strains (salt sensitive; CcI3 vs.

salt tolerant; CeD) and the role of these isolates in the salt tolerance of C. glauca and C.

equisetifolia plants. We show that the number of root nodules decreased with increasing

salinity levels in both plants inoculated with CcI3 and CeD. Nodule formation did not

occur in seedlings inoculated with CcI3 and CeD, at NaCl concentrations above 100

and 200 mM, respectively. Salinity also affected the early deformation of plant root hairs

and reduced their number and size. In addition, expression of symbiotic marker Cg12

gene, which codes for a subtilase, was reduced at 50 mM NaCl. These data suggest

that the reduction of nodulation in C. glauca under salt stress is in part due to inhibition

of early mechanisms of infection. We also show that prior inoculation of C. glauca and

C. equisetifolia with Frankia strains CcI3 and CeD significantly improved plant height,

dry biomass, chlorophyll and proline contents at all levels of salinity tested, depending

on the Casuarina-Frankia association. There was no correlation between in vitro salt

tolerance of Frankia strains and efficiency in planta under salt-stressed conditions. Our

results strongly indicate that increased N nutrition, photosynthesis potential and proline

accumulation are important factors responsible for salt tolerance of nodulated C. glauca

and C. equisetifolia.
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INTRODUCTION

Soil salinization is a major problem worldwide. Indeed, high
levels of salt in soil limit crop production and increase the loss
of arable land. More than 800 million hectares of land worldwide
are salt-affected (Munns and Tester, 2008). By the year 2050,
50% of all arable lands could be affected by salinity (Wang et al.,
2003). There is therefore a need to design strategies to rehabilitate
salinized areas.

Actinorhizal plants belonging to Casuarinaceae family such
as Casuarina glauca and C. equisetifolia are able to grow
under saline environments (El-Lakany and Luard, 1983; Girgis
et al., 1992; Tani and Sasakawa, 2003). They are fast-
growing trees, originated from Australia and Pacific islands,
widely used in agroforestry systems for several purposes
(Diem and Dommergues, 1990). In many tropical and sub-
tropical countries, Casuarina species play a major role in
land reclamation, crop protection and as windbreaks (National
Research Council, 1984). In Senegal, a green barrier of
C. equisetifolia was established on the northern Atlantic fringe
between Dakar and Saint-Louis to stabilize sand dunes and
protect the vegetable and fruit producing so-called “Niayes”
area (Maheut and Dommergues, 1961; Mailly et al., 1994).
C. equisetifolia is also appreciated for source of poles, firewood
and charcoal (Diagne et al., 2013; Potgieter et al., 2014). Thus,
this family of plants is of high importance for salinized land
reclamation.

Casuarina species are pioneer plants, able to colonize
poor and degraded lands and increase their fertility (Duhoux
and Franche, 2003). Therefore, they promote development of
pedogenetic processes leading to the formation of a more
suitable microclimate for the installation of other plants species
(Moiroud, 1996). This property is mainly due to the tremendous
plasticity of their root system allowing them, among other
things, to establish a nitrogen-fixing actinorhizal symbiosis with
a filamentous soil bacterium called Frankia. Nitrogen is one
of the main factors limiting plant growth and crop production
worldwide, despite being the most abundant element in the
atmosphere (80%). Unlike nitrogen-fixing plants, the majority of
plant species are unable to directly utilize atmospheric nitrogen
and rely on poor nitrogen sources in soils for their nutrition
(Santi et al., 2013).

Among Casuarina species, C. glauca and C. equisetifolia
display a high salt tolerance (El-Lakany and Luard, 1983). In
addition, C. glauca is a model tree for basic and fundamental
research in actinorhizal symbiosis with the development of
many tools including genetic transformation of C. glauca and
transcriptome analyses (Smouni et al., 2002; Gherbi et al., 2008;
Tromas et al., 2012; Svistoonoff et al., 2013, 2014; Diédhiou et al.,
2014; Champion et al., 2015). They are therefore good models
to study the mechanisms involved in tolerance to salt stress
in actinorhizal trees. One important question is how salt stress
impacts actinorhizal symbioses establishment. The early steps of
the infection process leading to the development of root nodules
of Casuarina tree starts with the induction of root hair curling by
Frankia, as early as 24 h after inoculation (Callaham et al., 1979;
Perrine-Walker et al., 2011). Frankia hyphae proceed to penetrate

the host plant through a deformed root hair (Franche et al.,
1998) and induce the expression of several plant genes involved
in actinorhizal nodule formation and functioning. Among them
are the CgNIN, encoding a transcriptional factor, expressed at
pre-infection stages in root hairs competent for Frankia infection
(Clavijo et al., 2015) and Cg12, encoding a subtilase, whose
expression is linked to the infection of root hairs and cortical cells
by Frankia (Laplaze et al., 2000; Svistoonoff et al., 2003).

Frankia is a genus of soil actinobacteria (Normand et al.,
2014). These Gram+, aerobic, heterotrophic bacteria are able
to fix nitrogen both under free-living conditions and inside
symbiotic root nodule (Simonet et al., 1989). The first pure
culture of a Frankia strain was isolated fromComptonia peregrina
nodules (Callaham et al., 1978). Since then, several Frankia
strains have been isolated from different actinorhizal species
(Diem et al., 1982, 1983; Gomaa et al., 2008; Gtari et al.,
2015). They are grouped into four major clusters (Normand
et al., 1996). Frankia strains in cluster 1 form nodules either
with members of Betulaceae and Myricaceae (cluster 1a) or
Casuarinaceae (cluster 1c). Cluster 2 includes Frankia strains able
to infect the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus
of the Rhamnaceae. Frankia strains in cluster 3 form effective
nodules with the Myricaceae, Rhamnaceae, Elaeagnaceae, and
Gymnostoma belonging to Casuarinaceae. Cluster 4 includes
atypical Frankia strains, which are non-infective and/or non-
nitrogen-fixing. Casuarina isolates show contrasting responses in
their salt tolerance (Ngom et al., 2016). Indeed, some strains are
more tolerant in vitro to salt stress than others even though they
were isolated from the same host plant (Dawson and Gibson,
1987; Fauzia, 1999; Tani and Sasakawa, 2003; Oshone et al.,
2013). Nevertheless, the symbiotic performance under salt stress
of diverse Frankia strains toward Casuarinaceae species remains
poorly understood.

In this study we aim to analyze (i) the effects of salinity on the
establishment of symbiosis between C. glauca and two Frankia
strains: CcI3 (a salt sensitive strain) vs. CeD (a salt tolerant strain)
and (ii) the role of these isolates in salt tolerance in C. glauca and
C. equisetifolia.

MATERIALS AND METHODS

Bacterial Material and Growth Conditions
Two contrasting Frankia strains were used in this study. CcI3
strain, whose isolation was reported by Zhang et al. (1984) is
sensitive to salt stress while CeD, isolated by Diem et al. (1982) is
salt tolerant in our cultivation conditions. Both Frankia isolates
were grown in liquid BAP medium which contained (at final
concentration) 1.4 mM CaCl2·2H2O, 0.2 mM MgSO4·7H2O,
0.195 mM FeNaEDTA, 5.6 mMKH2PO4, 3.2 mMK2HPO4, trace
elements (H3BO4, MnCl2·4H2O, ZnSO4·7H2O, CuSO4·5H2O,
Na2MO O4·2H2O, and CoSO4·7H2O) and vitamins (thiamine-
HCL, pyridoxine-HCL, folic acid, Ca panthotenate, nicotinic
acid, biotin, and riboflavin) at a final pH of 6.7 (Murry et al.,
1984). Sodium propionate (5 mM) and NH4Cl (5 mM) were
used as carbon and nitrogen sources, respectively. For rapid
hyphal growth, this nutrient BAP medium was modified and

Frontiers in Plant Science | www.frontiersin.org 2 August 2016 | Volume 7 | Article 1331

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Ngom et al. Actinorhizal Symbiosis and Salt-Stressed Response

supplemented with phosphatidyl choline (3.33 g/L) and MES-
Tris buffer (0.5 M, pH 6.8; Schwencke, 1991). Cultures were
maintained at 28± 1◦C, in darkness under stirring conditions.

Plant Material, Plant Transformation
Growth Conditions
C. glauca seeds (seed lot 15,934, ref. 086-5929) were collected
at the Myall Lakes National Park in Australia and provided by
the Australian Tree Seed Centre (ATSC, CSIRO). C. equisetifolia
seeds (seedlot SN/2011/0014/D) were collected in Louga area
in Senegal and provided by the National Tree Seed Program
(PRONASEF).

For experiments with non-trangenic plants, C. glauca and
C. equisetifolia seeds were germinated under semi axenic
conditions in a plastic tray (53.5 × 27.5 cm) containing a
sterile mixture of compost (ref EN 12580) and sandy soil
(v/v; 120◦C, 60min). They were watered daily with a quarter-
strength Hoagland liquid medium (Hoagland and Arnon, 1950)
to promote germination and initial growth of the seedlings.

Genetic transformation of C. glauca was performed using
an Agrobacterium tumefaciens strain containing a ProCg12:GFP
construct (Svistoonoff et al., 2003). Six independent C. glauca
transgenic lines were generated as described previously (Smouni
et al., 2002). For each transgenic line, GFP expression was
analyzed. All plants showed the expression pattern described
in Svistoonoff et al. (2003). The ProCg12:GFP line showing the
highest expression levels of GFP was clonally propagated as
described (Svistoonoff et al., 2010). Similarly for ProCgNIN:GFP,
we used the transgenic line previously described (Clavijo et al.,
2015) which showed the highest GFP expression.

Effect of Salinity on Nodulation of
C. glauca Plants
One month after seed germination, C. glauca seedlings were
uprooted from the soil, gently washed 5 times with distilled
water. Seedlings were individually transferred in hydroponic
conditions, into Gibson glass tubes filled with a 50 mL liquid
BD medium supplemented with KNO3 (5 mM) as nitrogen
source, at pH 6.7 (Broughton and Dilworth, 1971). They were
incubated in a growth chamber at 28 ± 1◦C with 16 h day/8
h night photoperiod and a 74 µmol m−2 s−1 light intensity.
The BD medium was renewed every 2 weeks to avoid nutrient
depletion and pH drift. After 1 month, salt stress was applied
gradually through the weekly increment of one concentration of
NaCl at 0, 50, 100, 200, 300, 400, and 500 mM. When 500 mM
NaCl was reached, the plants were placed in nitrogen free-BD
medium before being inoculated separately either with CcI3 or
CeD Frankia strains.

C. glauca nodulation was performed as described previously
(Ngom et al., 2015). Before inoculation, homogenized cells of
CcI3 and CeD were suspended in sterile water with a final
absorbance of 0.2, measured at λ = 595 nm for each strain. To
establish actinorhizal symbiosis, inoculum of each strain was first
brought into contact with the root system for 2 h. Plants were
replaced back into Gibson tubes replenished with a 45 mL of
nitrogen free-BD medium +5 mL of each bacterial suspension.

Nodulation rate or the percentage of nodulated plants (total
number of nodulated plants/total number of inoculated plants×
100) and the mean nodule number (average number of nodules
per plant) were followed for about 2 months after inoculation. All
experiments were repeated twice and 22 plants were used for each
salt treatment per experiment.

Effect of Salinity on C. glauca Root Hair
Deformation
C. glauca seedlings were placed in hydroponic culture. Salt stress
was applied gradually and plants were inoculated separately with
either Frankia strain CcI3 or Frankia strain CeD, as described
above. Two days after inoculation, root hair deformation was
evaluated through micrographs of small lateral roots acquired
with a Micro Publisher 3.3 RTV digital camera (QImaging) and
a BX50F microscope (Olympus). For each treatment, five plants
were used and three lateral roots were analyzed per plant. A total
of 180 lateral roots and 12,217 root hairs were observed. Root hair
deformation intensity was evaluated as described in Clavijo et al.
(2015). For each micrograph, root hairs were observed and the
following scoring was used: 0, no deformation; 1, straight root
hair with tip swelling; 2, only one change in growth direction; 3,
more than one change in growth direction but no bifurcation; 4,
one or more bifurcations. At least two independent experiments
were performed.

Analysis of CgNIN and Cg12 Activation
under Salinity
Transgenic lines expressing ProCgNIN:GFP or ProCg12:GFP
fusions were propagated and grown hydroponically in BD
medium as described previously (Svistoonoff et al., 2010). Two
NaCl concentrations (0 and 50 mM) were applied for 7 days.
Plants were inoculated either with Frankia strain CcI3 or
CeD, as described above. For each transgenic line, four plants
per treatment were used. Activation of ProCgNIN:GFP was
monitored 24, 48, and 72 h after inoculation. Activation of
ProCg12:GFP was observed 3, 7, and 14 days after inoculation
and nodule sections were examined for GFP fluorescence.
GFP expression was observed using an AZ100 epifluorescence
microscope (Nikon) and a GFP filter.

Effects of Prior Inoculation with Frankia on
the Salt Tolerance of C. glauca
C. glauca seedlings were cultivated in hydroponic conditions
and were nodulated with Frankia strains CcI3 or CeD, as
described above. A batch of 22 uninoculated plants was used
as controls. After inoculation, nodule formation was monitored
weekly. Twenty-five days after inoculation, all of the plants were
nodulated and treatment with NaCl was initiated. Salt stress (0,
50, 100, 200, 300, 400, and 500 mM NaCl) was applied gradually,
as described above, to avoid osmotic shock. Morphological and
physiological parameters of growth such as length of aerial parts,
shoot and root dry weight, chlorophyll, and proline contents were
evaluated as described below. Independent experiments were
performed twice with 22 plants each treatment per experiment.
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Effects of Prior Inoculation with Frankia on
the Salt Tolerance of C. equisetifolia
One month after seed germination, C. equisetifolia seedlings
were transplanted into plastic bags containing sterile sandy
soil (120◦C, 1 h). The experiments were conducted in a
nethouse (Bel-Air experimental station, 14◦44′N–17◦30′W,
Dakar, Senegal). Seedlings were watered daily and inoculation
was applied 1month after transplantation. Suspension of crushed
nodule was used as inoculum. Nodules (20 g) were collected from
C. glauca plants grown in hydroponic conditions and inoculated
separately with Frankia strains CcI3 or CeD. Nodules were
surface-sterilized with 5% sodium hypochlorite for 20 min then
rinsed 3 times in sterile distilled water as described by Ng (1987).
Grounded nodules were resuspended in 500 mL sterile distilled
water. A 5 mL suspension was added into each bag according
to the Frankia strain except for uninoculated plants. A batch
of 8 plants was used for each treatment. As for C. glauca, the
establishment of the symbiosis was monitored before gradually
applying salt stress (0, 50, 100, 200, 300, 400, and 500 mMNaCl),
as described above. Morphological and physiological parameters
of growth such as length of aerial parts, shoot and root dry weight,
chlorophyll, and proline contents were evaluated as described
below.

Growth of Aerial Part and Dry Weight
Determination
Length of aerial parts were measured every 2 weeks. Four months
after inoculation, plants were harvested. Shoot and root systems
were collected, washed in deionized water, surface-wiped with
blotting paper, and dried at 70◦C for 72 h. The dried biomasses of
each samples (C. glauca n= 22, C. equisetifolia n= 8 per sample)
were weighed separately.

Measurement of Chlorophyll Content
Chlorophyll content was determined using Arnon’s method
(1949). Fresh leaves (100 mg) were crushed in 10 mL of acetone
at 80%. Samples were incubated overnight at 4◦C and centrifuged
at 6000 g for 10 min. The absorbance of chlorophyll (a) and (b)
was measured using a UV-1800 spectrophotometer (UVisco) at
λ = 663 and 645 nm, respectively. Total chlorophyll content
(C. glauca n= 5, C. equisetifolia n= 4 per sample) was calculated
according to Arnon (1949).

Extraction and Measurement of Proline
Content
Fresh leaves (100 mg) were crushed in 2 mL of methanol
at 40%, and the samples were immerged in a water bath at
85◦C for 1 h. After cooling, 1 mL of leaf extract was mixed
with 1 mL of ninhydrin at 2.5% and 1 mL of the reaction
mixture (48 mL distilled water, 32 mL acetic acid, and 120 mL
orthophosphoric acid). A second incubation was done in a water
bath at 100◦C for 30 min. Samples were cooled on ice, then
a 5 mL toluene was added to the mixture. The upper phase
was collected after vortexing and dehydrated with anhydrous
sodium sulfate. Absorbance of leave samples was measured
using a spectrophotometer at λ = 520 nm, as described by

Monneveux and Nemmar (1986). Proline contents (C. glauca
n = 5, C. equisetifolia n = 4 per sample) were calculated and
determined through a calibration straight graph constructed
from a standard range of proline concentrations (Monneveux
and Nemmar, 1986).

Acetylene Reduction Assay (ARA)
Nitrogen fixation was measured using the acetylene reduction
assay described by Hardy et al. (1973). C. glauca plants were
placed in tightly closed 150 mL jars. In each jar, 10% of the air
(15 mL) was removed and replaced with acetylene. Plants were
incubated at 28◦C for 3 h. From each jar, 1 mL was withdrawn
and assayed for ethylene using a gas chromatograph (Agilent
6850, GC System). Nodules were removed from plant roots and
dried at 70◦C for 72 h. Nitrogenase activity was calculated per
nodule dry weight and expressed as nmoles ethylene/nodule (g).

Statistical Analysis
Statistical analyses were performed on dry weight, chlorophyll
and proline data. Statistical tests were performed using the
XLSTAT 7.2 software. The Student-Newman–Keuls test at p <

0.05 was used to evaluate the differences between inoculated and
uninoculated plants and between NaCl treatments.

RESULTS

Effects of Salt and Osmotic Stresses on the
Growth of Frankia Strains CcI3 and CeD
First we analyzed the growth of 8 Frankia strains isolated from
several Casuarina species under saline conditions. All of the
strains showed a reduced growth in response to salt treatment
(data not shown). Two Frankia strains (CcI3 and CeD) were
selected on the basis of their different sensitivity to salt and
osmotic stresses. As shown in Figure 1, the growth of both
Frankia isolates was reduced by increasing the NaCl and PEG
concentrations in the medium. At 100 and 200 mM NaCl or
PEG, the growth of CeD was significantly less impacted than
the growth of CcI3 (Figures 1A,B). At high concentrations of
NaCl and PEG (300, 400, and 500 mM), no or reduced growth
was observed for both strains, with a more pronounced effect
in presence of PEG 4000 in the medium. Altogether, our data
indicated that CeD is more tolerant to salt and osmotic stresses
than CcI3.

Salinity Inhibits C. glauca Plant Nodulation
The impact of different NaCl concentrations on the nodulation
of C. glauca plants by Frankia strains CcI3 and CeD was studied
(Table 1). In both plants inoculated with Frankia CcI3 and CeD,
the control plants (0 mMNaCl) had higher mean nodule number
and rate of nodulation than NaCl-treated plants. The number of
nodules formed increased over time at different rates with more
nodules on seedlings inoculated with Frankia strain CeD for 63
days. At 50 mMNaCl, the mean nodule number declined by 66.6
and 60.3% in plants inoculated with CcI3 and CeD, respectively,
compared to control plants. Nodule formation did not occur
in seedlings inoculated with strain CcI3 at NaCl concentrations
above 100 mM, whereas some plants inoculated with strain
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FIGURE 1 | Effect of salt and osmotic stresses on the growth of Frankia strains Ccl3 and CeD. Cultures were grown under several concentrations of NaCl

(A) and Polyethylene Glycol 4000 (B) for 7 days. Growth of each Frankia strain was estimated by measuring the turbidity at λ = 595 nm. The growth of Frankia in

absence of salt and osmotic stresses (100% growth) was compared with those in the presence of NaCl or PEG 4000. Vertical bars indicate the standard error of mean

(2 biological and 8 technical replicates). The absence of error bars indicates that the size of the error does not exceed the size of the symbol.

CeD were still forming nodules at 200 mM NaCl after 49 days
of inoculation. Mean nodule number and nodulation rate of
seedlings were reduced by increasing the salinity level.

Salinity Severely Affects Root Hair
Deformation Response to Frankia

Inoculation
Because salinity inhibited nodulation, the effects of salt
stress during the early stages of the actinorhizal symbiosis

establishment was investigated. Root hair deformation responses

in C. glauca plants treated with several concentrations of NaCl

and inoculated with Frankia strains CcI3 and CeD was first

analyzed. Regardless of the presence of Frankia, salt treatment

reduced the number and size of root hairs in both uninoculated

and inoculated C. glauca plants (Figure 2A). In C. glauca plants

inoculated with Frankia strains CcI3 and CeD, extensive root hair

deformation was detected 2 days after inoculation, in small lateral

roots of no salt-treated plants. Increased salinity reduced the
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FIGURE 2 | Effect of various levels of NaCl on C. glauca root hair deformation. (A) Root hairs under salt-stressed conditions from uninoculated and inoculated

C. glauca plants, observed 2 days after inoculation. White arrows indicate moderate deformation and black arrows swelling root hairs (Bars, 100 µm). (B)

Quantification of root hair deformation showing the proportion of deformed root hairs in short lateral roots 2 days after inoculation with Frankia strains Ccl3 and CeD.

For each treatment, 5 plants were used and 3 lateral roots were observed per plant.

amount of deformation in seedlings inoculated by both strains
with a more pronounced effect for plants inoculated with CcI3
(Figure 2B). Deformation was particularly low at 200 mM NaCl,

which also showed previously the smallest number of nodules
in plants inoculated with CeD and no nodule development
in plants inoculated with CcI3. No or few deformation were
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TABLE 2 | Effect of salt stress on ProCgNIN and ProCg12 genes activation.

(A)

Transgenic line Frankia strains NaCl treatments (mM) Hours after inoculation

24 48 72

ProCgNIN: GFP CcI3 0 + + +

50 + + +

CeD 0 + + +

50 + + +

(B)

Transgenic line Frankia strains NaCl treatments (mM) Days after inoculation

3 7 14

ProCg12: GFP CcI3 0 − − + + +

50 − − +

CeD 0 − − + + +

50 − − +

Activation of ProCgNIN:GFP (A) and ProCg12:GFP (B) genes in presence of 0 and 50 mM of NaCl. Reporter gene expression (GFP) was detected using an epifluorescence microscopy.

More sign + indicate more fluorescent spots observed per plant in transgenic lines.

+, gene activation; −, inactivation of gene.

observed on uninoculated plants treated with various levels
of NaCl.

Effects of Salinity on CgNIN and Cg12

Expression
To further investigate the effects of salinity during the early stages
of the establishment of symbiosis, we studied the impact of salt
stress on the expression of two early symbiotic marker genes:
CgNIN (Clavijo et al., 2015) and Cg12 (Svistoonoff et al., 2003)
using transgenic plants of C. glauca expressing ProCgNIN:GFP
and ProCg12:GFP. CgNIN gene is a pre-infection marker which
is early expressed in root hairs competent for Frankia infection
(Clavijo et al., 2015) and Cg12, an infection marker associated
with root hairs and cortical cells infection by Frankia (Svistoonoff
et al., 2003).

Observations revealed that ProCgNIN:GFP was activated in
both control and 50 mM NaCl treated plants, from 24 to 72 h
after inoculation with Frankia strains CcI3 and CeD (Table 2A),
suggesting that CgNIN expression was not repressed by salt
treatment (50 mM NaCl). Expression of ProCg12:GFP was
observed 14 days after inoculation in both control and 50 mM
NaCl treated plants. A lower number of fluorescent spots per
plant were detected in NaCl treated plants (Table 2B), pointing
to a possible inhibition of infection and ProCg12 expression by
salinity. We were not able to detect any differences regarding
the pattern or the intensity of ProCg12 activation in prenodules
or nodules when comparing control and NaCl-treated plants, as
shown in Figure 3.

Nodulated C. glauca and C. equisetifolia

Plants are More Tolerant to Salt Stress
In addition to C. glauca, C. equisetifolia was studied because
it is the most introduced Casuarina species worldwide for
land reclamation and reforestation programs including Senegal

(LADA, 2003; National Research Council, 1984). Furthermore,
C. equisetifolia is also highly tolerant to salt stress (El-Lakany
and Luard, 1983). The effects of prior inoculation with Frankia
strains CcI3 and CeD on the salt tolerance of C. glauca and
C. equisetifolia was studied to see if these nitrogen-fixing bacteria
could be used to increase the salt tolerance of Casuarina species.
Both Frankia strains CcI3 and CeD improved the growth of
C. glauca at all concentrations of NaCl tested compared to the
control plants (Figure 4A). In control plants, growth decreased
with increased NaCl concentrations. There was no growth above
50 mM NaCl, 12 weeks after inoculation. Positive effect of
inoculation with Frankia CcI3 and CeD on plant height started
to be observed 4 weeks after inoculation. Plant height increased
progressively at all NaCl concentrations in inoculated plants
compared to the control, but growth gradually decreased with
increasing NaCl concentrations. For instance, an increase by
65.5 and 44.5% was observed in 500 mM NaCl treated plants
inoculated with Frankia strains CcI3 and CeD, respectively
compared to controls. In contrast, in C. equisetifolia plants
only Frankia strain CeD increased plant growth at all NaCl
concentrations as compared to the control (Figure 4B).

Inoculation with Frankia strains CcI3 and CeD improved
C. glauca shoot and total biomass significantly in all NaCl
treatments compared to control (Table 3A). Compared to
control, Frankia strains CcI3 and CeD significantly increased
root biomass in all NaCl treatments except for 0, 50, and 100
mM salt-treated plants inoculated with CeD. In both control
and inoculated plants, root, shoot, and total biomass decreased
with increasing salt concentration, but the change was not
significant in plants inoculated with strain CeD and in root dry
biomass of control plants. On the other hand, only CeD increased
significantly shoot and total dry biomass of C. equisetifolia plants
for some NaCl treatments (0–200 mM) compared to the control
and the plants inoculated with CcI3 (Table 3B). As observed for
C. glauca plants, root, shoot, and total dry biomass decreased
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FIGURE 3 | ProCg12 is active in saline condition during infection by Frankia. Salt stress (50 mM NaCl) was first applied then C. glauca plants were inoculated

separately with Frankia strains Ccl3 (A–D) and CeD (E,F). ProCg12 is activated in prenodules (A,B) and nodules (C–F) of control and NaCl treated C. glauca plants,

14 days after inoculation. (C–F) Sections of matures nodules expressing green fluorescent protein (GFP). White arrows indicate reporter gene expression. (C,E) Bright

field microscopy. (A,B,D,F) Epifluorescence microscopy. Bars 100 µm.

with increasing salt concentration in both control and inoculated
plants. The change was significant between NaCl treatments in
general and between low (0 and 50 mM NaCl) and high salinity
(300 and 500mM NaCl) in particular.

Chlorophyll and proline contents were determined in order
to appreciate physiological state of non-nodulated and nodulated
plants in saline conditions. The chlorophyll content (a, b, and
total) was significantly increased in C. glauca plants inoculated
with Frankia strains CcI3 and CeD, as compared to control
(Figures 5A–C). However, there was no significant difference
between NaCl treatments in C. glauca plants. In C. equisetifolia
plants, the chlorophyll a was significantly increased by strain
CeD only in no salt-treated plants (Figures 5D–F). No significant
difference was observed between NaCl treatments. However,
Frankia strain CeD increased the total chlorophyll content in 0,
50, 100, and 200 mM NaCl treated plants, compared to control
and plants inoculated with CcI3.

As what was observed in chlorophyll content, there were
significant changes in proline content between control and

inoculated plants (Figure 6). Frankia strains CcI3 and CeD
increased the proline content of C. glauca at all concentrations of
salt tested (Figure 6A). Proline content increased with increasing
salt concentrations in the control and inoculated plants, but
the change was not significant in C. glauca plants inoculated
with strain CeD. Similarly, in C. equisetifolia plants, proline
content increased with increasing salinity (Figure 6B). There
were significant differences between NaCl treatments in both
control and plants inoculated with strains CcI3 and CeD. Only
Frankia strain CeD increased proline contents significantly in 0,
50, and 300 mM NaCl treated plants.

DISCUSSION

Among Casuarina tree species, C. glauca and C. equisetifolia
have been shown to be highly salt-tolerant (Hyland, 1983; Luard
and El-Lakany, 1984; Aswathappa and Bachelard, 1986; Van
der Moezel et al., 1989) and are widely planted outside of
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FIGURE 4 | Shoot growth of non-nodulated and nodulated C. glauca (A) and C. equisetifolia (B) plants treated with various salt concentrations. Plants

were inoculated separately with Frankia strains Ccl3 and CeD. Salt stress was applied gradually after the establishment of symbiosis. For each treatment, height

growth was measured every 2 weeks from the day of inoculation and the increased growth was calculated from this time (0% of growth). Each value represents the

mean of plants used in each treatment (C. glauca n = 22, C. equisetifolia n = 8).

their native habitat (National Research Council, 1984). However,
salinity could affect plant growth and the establishment of
actinorhizal symbiosis which could be thus a limit to salinized
land reclamation (Reddell et al., 1986). In this study, we first
investigated the effect of salinity on the symbiotic relationship
between C. glauca and two contrasting Frankia strains CcI3 (salt
sensitive) and CeD (salt tolerant).

Our results indicate that nodule formation in C. glauca is
inhibited by salt stress regardless of the salt tolerance of the
Frankia strain. However, the most salt tolerant strain, CeD,
is still able to infect C. glauca up to 200 mM NaCl while
the salt-sensitive strain CcI3 is not. Nitrogen fixation was not
measured in this study, although it has been reported a significant
correlation between nodule number per plant in C. glauca and
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TABLE 3 | Mean comparison of shoot and root dry weight of

non-nodulated and nodulated C. glauca (A) and C. equisetifolia (B) plants

treated with several salt concentrations.

(A) C. glauca

NaCl Dry weight (g)

treatments (mM) Control CcI3 CeD

Shoot 0 0.449 c A 1.322 a A 0.876 b A

50 0.364 c AB 1.103 a AB 0.800 b A

100 0.320 c B 1.111 a AB 0.694 b A

200 0.347 c AB 0.924 a B 0.708 b A

300 0.330 c B 0.920 a B 0.660 b A

400 0.291 c B 0.921 a B 0.661 b A

500 0.244 c B 0.836 a B 0.697 b A

Root 0 0.238 b A 0.422 a A 0.272 b A

50 0.222 b A 0.359 a AB 0.264 b A

100 0.204 b A 0.354 a AB 0.241 b A

200 0.192 b A 0.284 a B 0.258 a A

300 0.190 b A 0.291 a B 0.259 a A

400 0.177 c A 0.309 a B 0.230 b A

500 0.174 b A 0.256 a B 0.272 a A

Total biomass 0 0.687 c A 1.744 a A 1.148 b A

50 0.586 c AB 1.462 a AB 1.064 b A

100 0.524 c AB 1.465 a AB 0.935 b A

200 0.539 c AB 1.208 a BC 0.966 b A

300 0.520 c AB 1.211 a BC 0.919 b A

400 0.468 c B 1.230 a BC 0.891 b A

500 0.418 b B 1.092 a C 0.969 a A

(B) C. equisetifolia

Shoot 0 2.813 b A 3.220 b A 5.252 a A

50 2.336 b AB 2.351 b B 3.432 a B

100 2.159 b ABC 2.106 b BC 2.804 a BC

200 1.828 b BC 1.882 b CD 2.518 a CD

300 1.538 a BC 1.790 a CD 1.918 a D

400 1.531 a BC 1.496 a D 1.838 a D

500 1.349 a C 1.384 a D 1.696 a D

Root 0 1.136 a A 1.375 a A 1.249 a A

50 0.730 b B 1.026 ab B 1.170 a A

100 0.850 a B 0.778 a C 0.940 a B

200 0.614 a B 0.689 a CD 0.788 a B

300 0.553 a B 0.595 a CD 0.544 a C

400 0.595 a B 0.544 a CD 0.503 a C

500 0.575 a B 0.395 a D 0.464 a C

Total biomass 0 3.949 b A 4.595 b A 6.501 a A

50 3.066 b B 3.377 b B 4.602 a B

100 3.009 b BC 2.884 b C 3.744 a BC

200 2.442 b BC 2.571 b CD 3.306 a CD

300 2.091 a BC 2.385 a CD 2.462 a DE

400 2.126 a BC 2.040 a DE 2.341 a DE

500 1.924 a C 1.779 a E 2.160 a E

Each value represents the mean of plants used in each treatment (C. glauca n = 22, C.

equisetifolia n = 8). For each salt concentration, different lowercase letters (a–c) indicate

significant difference between control and plants inoculated separately with Frankia CcI3

and CeD. For each condition (control/plants inoculated with each strain), different capital

letters (A–E) indicate significant difference between NaCl treatments according to the

Student-Newman-Keuls (SNK) test at P < 0.05.

the acetylene reduction activity (ARA) under salt stress (Girgis
et al., 1992). A decrease in nodulation under saline conditions
has been previously reported for C. equisetifolia (Ng, 1987; Tani
and Sasakawa, 2003) andC. obesa (Reddell et al., 1986) depending
on the Frankia source, culture conditions and duration of
the experiment. Nodulation did not occur in C. equisetifolia
inoculated with Ceq1 strain and cultured in 500 mM NaCl for
6 weeks (Tani and Sasakawa, 2003), while nodules were formed
in C. equisetifolia seedlings cultured for 24 weeks at 500 mM
NaCl and inoculated with a nodule suspension (Ng, 1987). With
C. obesa, increased salinity reduced nodule dry weight with
both Casuarina–Frankia associations having a more pronounced
effect with one of the inoculum source (Reddell et al., 1986).

The effects of salinity on C. glauca nodulation could be
due to an inhibition of nodule initiation and/or infection
processes. These processes leading to the development of root
nodules of Casuarina involve various responses such as root
hair deformation (Torrey, 1976) and early expression of several
genes like CgNIN and Cg12 (Laplaze et al., 2000; Svistoonoff
et al., 2003; Clavijo et al., 2015). Extensive deformation of root
hairs occurs in the zone of root hair elongation within the first
24 h after inoculation (Torrey, 1976). Frankia hyphae infect
plants through the intracellular infection pathway in Casuarina
trees (Callaham et al., 1979; Perrine-Walker et al., 2011). We
observed that an increase in salt concentration reduced the
percentage of root hairs deformed in C. glauca plants, 48 h after
inoculation with both strains and with a more pronounced effect
in plants inoculated with the salt-sensitive strain CcI3. Root hair
deformation is dependent on the production of diffusible signals
by Frankia (Cérémonie et al., 1999). The observed results might
be due to the fact that the salt tolerant strain CeD is able to
maintain growth and production of symbiotic factors at higher
salt concentration than CcI3. This effect could explain in part the
impact of salt on nodule formation. Indeed, there is a positive
correlation between the extent of root hair deformation and the
number of nodules which subsequently developed (Callaham
et al., 1979). In addition, salt stress decreased the number and size
of root hairs regardless of the presence of Frankia, which could
reduce their availability and susceptibility. Therefore, Frankia
colonizationmay decrease and the establishment of the symbiosis
is thus impaired. A similar reduction in root hair deformation by
salt stress was reported in legumesVicia faba (Zahran and Sprent,
1986), Glycine max (Tu, 1981), and Medicago sativa (Lakshmi-
Kumari et al., 1974) in response to rhizobial inoculation. The
extent of the deformation depends on the association Rhizobium-
Legume and was correlated to the number or dry weight of
nodules. Morphological symptoms of damage by NaCl such as
reduction in the number and size of root hairs was observed in
Medicago sativa (Lakshmi-Kumari et al., 1974).

CgNIN is a transcription factor which plays a central role in
the nodulation of actinorhizal hosts and is induced by diffusible
symbiotic signals produced by Frankia (Clavijo et al., 2015;
Chabaud et al., 2016). Cg12 is a subtilisin gene isolated from
C. glauca and its expression is associated with Frankia infection
(Laplaze et al., 2000; Svistoonoff et al., 2003). In this study, we
showed that CgNIN was activated in both control and 50 mM
NaCl treated plants (Supplementary Figure 1), from 24 to 72
h after inoculation. This effect suggests that the production of
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FIGURE 5 | Mean comparison of chlorophyll contents in non-nodulated and nodulated C. glauca (A–C) and C. equisetifolia (D–F) plants under saline

conditions. Each value represents the mean of plants used in each treatment (C. glauca n = 5, C. equisetifolia n = 4). For each salt concentration, different lowercase

letters (a–c) indicate significant difference between control and plants inoculated separately with Frankia Ccl3 and CeD. For each condition (control/plants inoculated

with each strain), different capital letters (A,B) indicate significant difference between NaCl treatments according to the Student-Newman-Keuls (SNK) test at P < 0.05.

symbiotic diffusible signals by Frankia or its perception is not
perturbed by mild salt stress for both strains. On the other hand,
expression ofCg12was observed 14 days after inoculation in both
treatments with low number of fluorescent spots in NaCl treated
plants. This effect suggests Cg12 expression is negatively affected
by salinity that is possibly related to a perturbation of plant
cell infection. This result is in accordance with those of Duro
et al. (2016) which showed that Cg12 was down-regulated with
increasing salt concentration. However, this study used higher

levels of NaCl (200, 400, and 600 mM) that what we used in this
experiment (50 mM).

Altogether, our results indicate that salt stress alters
actinorhizal symbiosis formation in C. glauca. This effect could
be due at least in part to a negative impact of salt stress on the
infection process that might be related to a reduction of potential
infection sites (root hairs) or reduced perception of infection
signals. Furthermore, the salt-tolerant strain CeD is able to infect
at higher concentrations of salt than the salt sensitive strain
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FIGURE 6 | Mean comparison of proline contents in non-nodulated and

nodulated C. glauca (A) and C. equisetifolia (B) plants treated with

several salt concentrations. Each value represents the mean of plants used

in each treatment (C. glauca n = 5, C. equisetifolia n = 4). For each salt

concentration, different lowercase letters (a–c) indicate significant difference

between control and plants inoculated separately with Frankia Ccl3 and CeD.

For each condition (control/plants inoculated with each strain), different capital

letters (A,B) indicate significant difference between NaCl treatments according

to the Student-Newman-Keuls (SNK) test at P < 0.05.

CcI3. This result indicates that the use of appropriate strains is
necessary for efficient nodulation of trees in salinized soils.

The impact of Frankia inoculation on salt tolerance in
C. glauca and C. equisetifolia was tested. Our results indicate that
inoculation of C. glauca and C. equisetifolia by Frankia strains
CcI3 and CeD significantly improved plants growth under salt
stress, depending on the specific Casuarina-Frankia association.
For C. glauca, both Frankia strains significantly increased plant
height, shoot, root and total dry weight at all concentrations of
NaCl, as compared to uninoculated plants. This positive effect
was more pronounced in plants inoculated with strain CcI3.
In contrast, only Frankia strain CeD increased C. equisetifolia
height at all NaCl treatments, and significantly elevated plant
shoot, root, and total dry weight from 0 to 200 mM NaCl, as
compared to control. These results suggest that the effectiveness
of the symbiosis in saline conditions depends on the appropriate
Casuarina-Frankia association. Indeed, according to Girgis et al.
(1992), there is no correlation between in vitro salt tolerance
of Frankia strains and their effectiveness in association with

plants under salt-stressed conditions. However, it is important
to emphasize that the experiment with C. glauca was conducted
in hydroponic conditions, whereas C. equisetifolia was grown
in soil. The improvement of morphological parameters (height,
shoot, root and total dry weight) may be due to the increased N
nutrition and photosynthesis potential in Casuarina inoculated
with Frankia compared to the uninoculated controls. This
conclusion was supported by our results for chlorophyll (a,
b, and a + b) content and nitrogenase activity under saline
conditions. Under all NaCl concentrations, chlorophyll content
was significantly increased in C. glauca plants inoculated with
both strains, as compared to control. With C. equisetifolia,
only CeD increased significantly total chlorophyll content from
0 to 200 mM NaCl. Salinity decreased nitrogenase activity
in C. glauca (Supplementary Figure 2). However, N2 fixation
occurred even at the highest NaCl concentration (Supplementary
Figure 2). This implies that increased N nutrition and potential
photosynthesis allow inoculated Casuarina plants to grow better
than uninoculated controls plants under saline conditions. These
results are in agreement with a previous report showing that
the actinorhizal tree Alnus glutinosa inoculated with Frankia and
cultivated in alkaline and saline anthropogenic sediment, had
better plant growth, leaf N and chlorophyll a + b content than
the control (Oliveira et al., 2005). Several studies have shown
that inoculation with selected microsymbionts like Frankia
can enhance the development of actinorhizal plants and their
resistance to other abiotic stresses such as heavy metals and
extreme pH and temperature (Reviewed by Ngom et al., 2016).
Symbiotic associations with arbuscular mycorrhizal fungi (AMF)
and nitrogen-fixing bacteria called rhizobia can also enhance
plant salinity tolerance, leading to better plant growth and yield,
nutrient acquisition and chlorophyll content in several species
including Medicago sativa (Azcon and El-Atrash, 1997), Acacia
nilotica, Leucaena leucocephela, Prosopis juliphora (Bala et al.,
1990), Phaseolus vulgaris (Dardanelli et al., 2008), and soybean
(Elsheikh andWood, 1995), under saline conditions. The benefits
of these microsymbionts in saline environments depend also on
the symbiotic associations.

Compatibles solutes or osmolytes such as glycine betaine,
mannitol, or proline are accumulated in organisms in response
to salt and osmotic stresses (Delauney and Verma, 1993; Wang
et al., 2003). They play important roles in maintaining cell turgor
and thus the driving gradient for water (Wang et al., 2003).
Compatible solutes can also act as free-radical scavengers or
chemical chaperones by directly stabilizing membranes and/or
proteins (Lee et al., 1997; Bohnert and Shen, 1998; McNeil et al.,
1999; Diamant et al., 2001). Proline, an amino acid, is the most
common osmolyte accumulated under salinity and drought stress
in plants (Watanabe et al., 2000; Tani and Sasakawa, 2003). In
our study, a significantly higher proline content was observed
in all inoculated C. glauca plants at all NaCl concentrations,
as compared to the control. Significant improvement of proline
content was also observed in 0, 50, and 300 NaCl treated C.
equisetifolia plants inoculated with strain CeD. In both control
and inoculated plants, proline content increased with increasing
salinity. These results suggest that, in addition to better N
nutrition and potential photosynthesis, proline accumulation
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adjusts the osmotic pressure and maintain cell homeostasis in
inoculated C. glauca and C. equisetifolia plants, under saline
conditions. These results are in agreement with those of Diouf
et al. (2005) which showed that inoculation with both Rhizobium
and AMF induced higher proline content in legumes such
as Acacia auriculiformis and Acacia mangium, compared to
uninoculated plants, at all levels of salinity tested (0, 50, and
100 mM NaCl). Proline accumulation under salt stress has been
previously described in C. equisetifolia seedlings not infected by
Frankia (Tani and Sasakawa, 2006).

In conclusion, our results strongly indicate that the beneficial
effects of Frankia inoculation are due to improved N nutrition,
photosynthesis potential and proline accumulation in inoculated
plants under salt stress conditions. There was no correlation
between in vitro salt tolerance of Frankia strains and efficiency
in planta in salt stress conditions. Hence, the success of planting
Casuarina in saline sites will require appropriate salt-tolerant
Casuarina-Frankia associations that will form an efficient N2-
fixing symbiosis. In vitro salt tolerance of Frankia strains should
be considered if they are introduced in saline soils, otherwise, the
screening should be done with both symbiotic partners.
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