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Endophytes form symbiotic relationships with plants and constitute an important
source of phytohormones and bioactive secondary metabolites for their hosts. To date,
most studies of endophytes have focused on the influence of these microorganisms
on plant growth and physiology and their role in plant defenses against biotic and
abiotic stressors; however, to the best of our knowledge, the ability of endophytes
to produce melatonin has not been reported. In the present study, we isolated and
identified root-dwelling bacteria from three grapevine varieties and found that, when
cultured under laboratory conditions, some of the bacteria strains secreted melatonin
and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-
9 exhibited the highest level of in vitro melatonin secretion and also produced three
intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin,
and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets
exhibited increased plant growth. Additionally, we found that, in grapevine plantlets
exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased
the upregulation of melatonin synthesis, as well as that of its intermediates, but
reduced the upregulation of grapevine tryptophan decarboxylase genes (VvTDCs)
and a serotonin N-acetyltransferase gene (VvSNAT ) transcription, when compared to
the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able
to counteract the adverse effects of salt- and drought-induced stress by reducing
the production of malondialdehyde and reactive oxygen species (H2O2 and O2

−) in
roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in
endophytic bacteria and provide evidence for a novel form of communication between
beneficial endophytes and host plants via melatonin.

Keywords: melatonin, endophytic bacteria, UPLC-MS/MS, grapevine, abiotic stress

Abbreviations: IAA, indole-3-acetic acid; MDA, malondialdehyde; ROS, reactive oxygen species; TEE, tryptophan-ethyl
ester.
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INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine) was first isolated
from the bovine pineal gland (Lerner et al., 1958) and is now
recognized as ubiquitous among living organisms, including
humans, animals, plants, bacteria, fungi, and macroalgae (Tilden
et al., 1997; Rodriguez-Naranjo et al., 2012; Tan et al., 2012). In
vertebrates, the molecule functions as a biological modulator of
mood, sleep, sexual behavior, seasonal reproductive physiology,
and circadian rhythms (Reiter, 1993; Hardeland, 2008; Reiter
et al., 2010); as a potent antioxidant, with free radical-scavenging
activities; and as a stimulator of antioxidant enzyme activities
(Reiter et al., 2005). Meanwhile, the occurrence of melatonin in
higher plants wasn’t documented until almost 50 years later, when
it was reported by both Dubbels et al. (1995) and Hattori et al.
(1995). Since then, melatonin has been recognized to function as
an abiotic antistressor, by protecting plants against ROS that are
produced as a result of harmful abiotic stresses (Posmyk et al.,
2008, 2009; Arnao and Hernández-Ruiz, 2009a; Nawaz et al.,
2016). In addition, melatonin also functions as a plant regulator,
with growth-promoting effects similar to those of IAA, which is
a plant hormone in the auxin class (Hernández-Ruiz and Arnao,
2008).

Since the discovery of melatonin in higher plants, the
factors that influence the endogenous melatonin levels in plants
have remained relatively unexplored. Recently, reports have
demonstrated that different abiotic stressors are able to elevate the
endogenous melatonin levels of plants (Arnao and Hernández-
Ruiz, 2013a,b; Shi et al., 2015; Hernández-Ruiz and Arnao,
2016) and that stress-induced ROS bursts may be the common
factor that triggers the accumulation of melatonin (Arnao and
Hernández-Ruiz, 2015). Under natural conditions, the internal
organs of plants are frequently colonized by a vast number
of diverse microbes that are able to interact with their hosts
and, thereby, modulate plant growth and development (Sturz
et al., 2000). Soil microbes, for example, have been shown to
enter and proliferate within plant roots (Hardoim et al., 2008),
and in grapevines, naturally occurring endophytes have been
isolated from roots, stems, leaves, and various reproductive
tissues (e.g., inflorescences, seeds, and fruits; Compant et al.,
2011). These symbiotic organisms are important in defending
their hosts against phytopathogens (Lindow and Brandl, 2003;
West et al., 2010) and may also promote the growth of their host
plants via nitrogen fixation (Elbeltagy et al., 2001), phosphorus
solubilization (Richardson et al., 2009), and the enhancement of
plant hormones levels (Ali et al., 2009). Therefore, endophytes
are generally recognized as important and beneficial components
of plant micro-ecosystems. In fact, since endophytes often supply
their hosts with plant hormones, we speculate that endophytes are
capable of producing melatonin and that they provide melatonin
to their plant hosts. This conjecture is based on observations
that (i) melatonin has been identified in microorganisms, such as
aerobic photosynthetic bacteria (Tilden et al., 1997), recombinant
E. coli (Byeon and Back, 2016) and some fungi (Manchester
et al., 1995; Hardeland and Poeggeler, 2003); (ii) melatonin
biosynthesis is likely to be evolutionarily conserved (Tan et al.,
2014); (iii) the cellular machinery for melatonin synthesis in

eukaryotes may have been inherited from bacteria, as a result of
endosymbiosis (Tan et al., 2013); and (iv) bioinformatic analyses
has revealed that enzymes involving in melatonin synthesis occur
in bacterial genomes (Pavlicek et al., 2010; Falcón et al., 2014).
However, to the best of our knowledge, the ability of endophytic
bacteria to produce melatonin has not been reported, and the
synthetic pathway of melatonin in heterotrophic bacteria remains
to be elucidated.

Therefore, in the present study, we used a culture-dependent
method to isolate endophytic bacteria from the roots of three
grapevine varieties and screened the resulting cultures for their
in vitro capacity to produce melatonin. We subsequently used
a promising endophytic strain that produced high levels of
melatonin to investigate the intermediates of the melatonin
biosynthesis pathway, and in addition, we also performed root
colonization experiments, in order to evaluate the effect of the
strain on the endogenous melatonin production of host plants
under abiotic stress. Finally, to examine whether stress-induced
changes in melatonin levels were associated with the induction of
melatonin synthesis, we performed qRT-PCR analysis of VvSNAT
and several VvTDCs genes, both of which play a pivotal role in
regulating melatonin biosynthesis in plants (Byeon et al., 2013;
Zhao et al., 2013).

MATERIALS AND METHODS

Isolation of Endophytic Bacteria from
Grapevine Roots
We selected three grapevine varieties for our experiments,
including the Chinese wild grapevine Vitis amurensis ‘Changbai
9,’ V. vinifera ‘Cabernet Sauvignon,’ and V. labruscana ‘Summer
Black,’ and collected root samples from plants that were cultivated
at the National Grape Germplasm Repository (113◦70′ E; 34◦72′
N), Zhengzhou Fruit Research Institute, Chinese Academy of
Agricultural Sciences, Zhengzhou, Henan, China. The root
samples were collected from one vine of each variety, when the
vines were in flower, and a total of 5 g roots were collected
from five randomly chosen root sections (∼20 cm below ground)
each plant and pooled in sterile 15-mL tubes. The pooled root
samples were then kept in refrigerated boxes and transported
to the laboratory within 1 h of collection for subsequent
processing.

The roots were surface-sterilized in 70% ethanol for 3 min,
followed by soaking in sodium hypochlorite (3% available
chlorine) for 2 min, and were then rinsed three times with sterile
water. Next, each sample was ground and homogenized in 1.5-
mL of PBS using sterile quartz sand in individual mortars. The
resulting homogenate was serially diluted (10−3, 10−4, and 10−5)
and plated on nutrient agar (3 g/L beef extract, 10 g/L tryptone,
5 g/L NaCl, and 20 g/L agar, pH 7.4) with 100 mg/L actidione
to inhibit the growth of fungi, and each dilution was prepared
in triplicate. In parallel, we also checked the efficiency of our
surface sterilization procedure by plating 100 µL of the last
washing solution (i.e., sterile water used for third rinse) onto
nutrient agar. Then, after incubation at 28◦C for 2–3 days, the
number of colony-forming units was counted, and four to six
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representative isolates of each morphology were collected and
purified by streaking onto fresh nutrient agar plates. Each purified
isolate was maintained at −80◦C in 1 mL sterile nutrient broth
that contained 20% glycerol.

Genomic DNA Extraction and Species
Assessment
DNA extraction was performed using the TIANamp bacteria
DNA Kit (Tiangen, Beijing, China), according to the manufac-
turer’s instructions, and in order to identify each of the isolates,
we amplified the 16S rRNA sequence, using the primers 8F
(5′-AGAGTTTGATCCTGGCTCAG-3′) and 1063R (5′-ACGGG
CGGTGTGTRC-3′) (Wang and Qian, 2009), as well as the gyrB
sequence, which encodes the B subunit of the type II topoiso-
merase DNA gyrase, using the degenerate primers UP-1 (5′-
GAAGTCATCATGACCGTTCTGCAYGCNGGNGGNAARTTY
GA-3′) and UP-2r (5′-AGCAGGATACGGATGTGCGAGCCRTC
NACRTCNGCRTCNGTCAT-3′) reported by Yamamoto and
Harayama (1995). The resulting PCR products were purified and
bi-directionally sequenced, using the same primers that were
used for PCR amplification. The sequences were then compared
with reference sequences in GenBank, using the online Blastn
software1, and identification was considered valid when the
identity of a contiguous sequence was ≥99%.

Screening for Melatonin-Producing
Endophytic Bacteria
After determining the identities of the individual isolates to
the lowest possible taxonomic level (i.e., species or genus), we
randomly selected individual strains to represent each taxon.
The selected strains were inoculated into 10 mL lysogeny broth
medium, and incubated for 24–36 h, until they reached an
OD600 of ∼1.0–1.5. Once this concentration was achieved, the
liquid medium was removed by centrifugation at 8000 × g
and 4◦C for 10 min, and the resulting pellets were washed
once with 10 ml sterile PBS and re-suspended in 10 mL
minimal medium (Voigt et al., 2007). The cultures were then
incubated at 28◦C for 8 h to allow for the depletion of
amino acids, after which the cell concentration of the cultures
was determined using a Petroff–Hausser counting chamber
and the cultures were standardized to 108 cells/mL. Next,
1 mL of each of the standardized bacterial cultures was
inoculated into individual brown bottles (250 mL) that contained
100 mL of nutrient broth with 200 mg/L tryptophan, and the
cultures were incubated in a rotary shaker at 28◦C with a
rotational speed of 150 rpm in the dark. Cell viability was
quantified using the plate counting method with appropriate
dilutions. After 36 h, the bacterial cultures were centrifuged
and the supernatants were diluted 1:1 with methanol, and
the resulting mixtures were passed through a 0.22-µm filter
and used for preliminary screening of melatonin and TEE
production.

To investigate the potential conversion of L-tryptophan to
melatonin in the bacterial strain that produced the highest

1http://www.ncbi.nlm.nih.gov/BLAST

concentration of melatonin, we measured the concentrations of
several intermediate molecules of melatonin biosynthesis in its
culture medium. The strain was cultivated using the procedure
described above. In addition, every 6 h, we sampled the bacterial
cultures, centrifuged the samples at 8000 × g for 10 min,
and diluted the supernatant 1:1 with methanol. Then, after
being passed through a 0.22-µm filter, the resulting mixtures
were analyzed for tryptamine, 5-hydroxytryptophan, serotonin,
N-acetylserotonin, and melatonin contents using UPLC-MS/MS.

Colonization Assay
To determine whether the melatonin-producing endophytic
bacteria could influence the endogenous melatonin level in
roots, grapevine plantlets were inoculated with a bacterial
isolate that produced the highest amount of melatonin. The
bacterial inoculum was prepared by inoculating the strain into
100 mL nutrient broth, incubating the culture for 24–36 h
at 28◦C, centrifuging the culture at 6000 × g for 10 min,
and re-suspending and standardizing the inoculum to 107–108

cells/mL with 0.9% sterilized saline solution. The standardized
inoculum was then used to inoculate 6-week-old tissue-cultured
V. labruscana ‘Summer Black’ plantlets. The roots of the
experimental plantlets were immersed in the bacterial inoculum
for 1 min, whereas the roots of the control plantlets were
treated with 0.9% sterile saline solution, and afterward, all
the plantlets were transferred to 500 mL culture bottles that
contained 150 g sterile nutrient soil (Pindstrup, Ryomgaard,
Denmark) and 40 mL nutrient-rich water that was prepared
with the MS (Murashige and Skoog) basic nutrient medium
(Cat# M519; Phytotechnology2). The plants were randomly
distributed in a greenhouse with a 16-h light/8-h dark cycle
at 26◦C and irrigated with distilled water (5 mL) every
2 days.

After 20 days of endophyte colonization, we randomly selected
12 plantlets from each of the inoculated and control plantlets, in
order to compare their growth, which we assessed by measuring
root length, root fresh weight (FW), plant height, and chlorophyll
content. The chlorophyll content of fully expanded leaves was
analyzed using a chlorophyll ELISA Kit, according to the
manufacturer’s instructions (Lvyuan, Beijing, China). In addition,
the roots were also sampled to determine counts of viable bacteria
in the roots of inoculated and control plants, as described in the
“Isolation of endophytic bacteria from grapevine roots” section
above, and the plate counts of viable bacteria were considered an
indicator of bacterial invasion capacity.

Meanwhile, the rest of plantlets were assigned to one of four
experimental treatment groups: (i) inoculated plantlets subject
to salt stress; (ii) control plantlets subject to salt stress; (iii)
inoculated plantlets subject to drought stress; and (iv) control
plantlets subject to drought stress. Briefly, 20 mL NaCl solutions
(60 or 120 mM) were applied to a series of inoculated and control
plantlets in order to simulate salt stress, and 20 mL 10% PEG-
6000 solution was added to another series of inoculated and
control plantlets in order to simulate drought stress, with 12
plantlets per treatment. After 4 days, the roots were sampled

2http://www.phytotechlab.com/
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from each plantlet at 9–10:00 AM and ground into powder
using liquid nitrogen in individual mortars, and 0.5 g of each
root powder was extracted with 2 mL of methanol, as described
previously (Boccalandro et al., 2011). The resulting extracts were
mixed with 2 mL ultrapure water, centrifuged, passed through
a 0.22-µm filter, and stored in amber vials for analysis of 5-
hydroxytryptophan, tryptamine, serotonin, N-acetylserotonin,
and melatonin via UPLC-MS/MS.

The H2O2 levels of the roots were measured according to
Patterson et al. (1984), and superoxide production was estimated
using the method of Elstner and Heupel (1976). In addition, we
assessed the extent of lipid peroxidation in the roots by measuring
the MDA content as described by Zhao et al. (2013) with little
modification. Briefly, 0.1 g of each root powder was extracted
with 1 mL of 10% (w/v) trichloroacetic acid (TCA), vortexed,
and centrifuged at 8000 × g for 10 min. Then, 0.2 ml of each
supernatant was mixed with 0.2 ml 0.5% (w/v) thiobarbituric
acid (TBA) in 20% (w/v) TCA. The mixtures were heated at
100◦C for 20 min, cooled, and centrifuged at 8000 × g for
10 min. Absorbances were read at 440, 532, and 600 nm, and
the MDA concentration (nmol/g FW) was calculated according
to the formula: [6.45 × (A532 – A600) – 0.56 × A450] × V/W,
where V (mL) is the volume of the tissue extract, and W (g) is
the FW.

RNA Extraction and Quantitative
Real-Time PCR Analysis
Total RNA was isolated from the root tissue of stress-induced
plantlets, following the CTAB method (Reid et al., 2006), and the
resulting RNA was treated with DNase I and converted to cDNA
using the PrimeScript RT reagent Kit with gDNA Eraser (Takara,
Dalian, China).

Three TDC homologs, which shared conserved functional
domains and >30% homology with the amino acid sequence of
rice tryptophan decarboxylase (GenBank No. XP_015648768),
were identified by searching the non-redundant protein and
nucleotide sequence data of grapevine (Vitis Vinifera L.) at
the National Center for Biotechnology Information (National
Institutes of Health, Bethesda, MD, USA), using the tBLASTn,
BLASTp, and PSI-BLAST programs (Altschul et al., 1997);
and sequence of the grapevine serotonin N-acetyltransferase
gene (VvSNAT; GenBank No. XM_002266325) was previously
predicted by Byeon et al. (2014a). The expression levels of
all four genes in the roots of stress-induced plantlets were
determined using quantitative real-time PCR (qRT-PCR) analysis
with a Roche 480 light cycler System and SYBR Fast qPCR
Mix (TaKaRa, Dalian, China). All primers were designed using
the NCBI Primer-BLAST service3 (Table 1), and the qRT-PCR
amplification was performed with the following conditions: 95◦C
for 5 min, followed by 40 cycles of 95◦C for 5 s, 60◦C for 10 s, and
72◦C for 15 s; and melting curve analysis was performed using
95◦C for 5 s, 60◦C for 1 min, 97◦C continuously, and then 40◦C
for 30 s. All the qRT-PCR reactions were performed in triplicate,
and the expression levels of the target genes were normalized
using the EF1-α gene as an internal reference.

3http://www.ncbi.nlm.nih.gov/tools/primer-blast/

TABLE 1 | Primers used for quantitative real-time PCR.

Gene Primers sequences (5′–3′)

EF-1α F: GAACTGGGTGCTTGATAGGC

R: AACCAAAATATCCGGAGTAAAAGA

VvSNAT F: GCCCGTGCTACATCAGATCA

R: TTTGATGCCCTCTGGGTCAG

VvTDC1 F: CTGCCAGATTCCGCACCTAA

R: TCGCCGCAGGAGAAGTAATC

VvTDC2 F: CGGAGCTATGGTGTCGTCAA

R: TCCCCCAACAATGGCATGAG

VvTDC3 F: CCAGAGAAGAAGGGGAAAGCA

R: GGCTCCTGCAGTACGAGTTG

UPLC-MS/MS Analysis of Metabolites
Tryptophan-ethyl ester, tryptamine, 5-hydroxytryptophan,
serotonin, N-acetylserotonin, and melatonin were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water
was produced using a Millipore Milli-Q ultrapure water
purification unit (Millipore, Bedford, MA, USA). Other solvents,
including methanol and formic acid (HPLC grade), were
purchased from Merck (Darmstadt, Germany). Stock solutions
were prepared by dissolving 10 mg of each standard in 1 mL
methanol under low light conditions; the solutions were
then stored at −80◦C to prevent degradation. Fresh working
solutions were prepared in a methanol:water solution (50:50,
v/v).

Quantitative detection was conducted using a UHPLC-
ESI-QQQ-MS (Agilent 1290 and 6460 triple quadrupole mass
spectrometry series; Agilent Corporation, Santa Clara, CA,
USA). In the solvent system, Milli-Q water that contained
0.1% (v/v) formic acid was used as eluent A, and methanol
was used as eluent B. The analytes were separated using an
Agilent ZORBAX Eclipse XDB-C18, Rapid Resolution HT
column (1.8 µm, 3.0 mm × 50 mm) at 42◦C with linear
elution gradient protocols of 0–6 min, 5–55% B, 6–15 min,
55–100% B, at 0.2 mL/min flow rate. Next, 100% B was kept
constant for 2 min and the column was re-equilibrated for
5 min using the initial solvent composition. The injection
volume was 1 µL. The metabolites were quantitatively detected
using the multiple reactions monitoring mode under unit
mass-resolution conditions (tryptamine m/z 161→144, 5-
hydroxytryptophan m/z 221→204, serotonin m/z 177→160,
N-acetylserotonin m/z 219→160, and melatonin and TEE m/z
233→174) in positive ion mode. To quantify the analytes,
we constructed eight-point calibration curves, using diluted
working solutions of external standards. All points on
the curves represented the average of three independent
determinations. The linearity of the calibration graphs
was determined using regression analysis. The limits of
detection (LOD) were calculated based on the S/N ratio
of 3:1. The limits of quantitation (LOQ) were defined as
the lowest level that had an S/N ratio of 10:1. All the
investigated analytes displayed excellent linearity, with
correlation coefficients (R2) ranging from 0.9975 to 0.9988
(Table 2).
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TABLE 2 | UPLC-MS/MS quantitation data for six analytes.

Analyte Linearity
range (ng/mL)

R2 LOD
(ng/mL)

LOQ
(ng/mL)

Tryptamine 0.24–24 0.9975 0.08 0.24

5-Hydroxytryptophan 0.45–45 0.9984 0.15 0.45

Serotonin 0.36–360 0.9988 0.12 0.36

N-acetylserotonin 0.18–18 0.9985 0.06 0.18

Melatonin 0.12–1.2 0.9984 0.04 0.12

Tryptophan-ethyl ester 0.1–10 0.9979 0.03 0.1

LOD, limit of detection; LOQ, limit of quantification.

Statistical Analysis
For each experiment, the results were expressed as the
mean ± standard deviation of data from 3–12 replicates.
Statistical evaluation was performed using one-way ANOVA,
followed by Tukey’s test for the data of preliminary screening of
melatonin production and Student’s t-test for the colonization
assay. All the statistical analyses were performed using SPSS
(version 19.0; IBM, Armonk, NY, USA), and a P-value of <0.05
was considered statistically significant.

RESULTS

Melatonin and TEE Production by
Endophytic Bacteria from Grapevine
Roots
No colonies grew on the plates that were inoculated with
water from the final washing step of the root sterilization
procedure, suggesting that the surface sterilization procedure
was effective. For the remaining plates, the highest bacterial
count (5.75 ± 0.26 log10 CFU/g FW) was detected on
those inoculated with the homogenized roots of V. labruscana
‘Summer Black,’ followed by those inoculated using V. vinifera
‘Cabernet Sauvignon’ roots (5.23 ± 0.18 log10 CFU/g FW) and
V. amurensis ‘Changbai 9’ roots (4.89 ± 0.22 log10 CFU/g
FW). A total of 98 endophytic bacteria strains were isolated
from the surface-sterilized roots, and 16S rRNA sequences
were amplified from each strain, whereas gyrB sequences were
only amplified from 64. Based on comparison with related
sequences deposited in the GenBank DNA database, we identified
seven different bacterial genera, which included Agrobacterium,
Bacillus, Variovorax, Pseudomonas, Streptomyces, Sphingomonas,
and Ensifer.

The Streptomyces strains were excluded from the screening
of melatonin- and TEE-producing abilities, owing to their
abnormal growth and low biomass in nutrient broth. We
randomly screened eight endophytic bacterial strains that
represented eight species (Table 3). With the exception of
B. cereus CS-17 and Sphingomonas sp. VA-16, all the investigated
strains secreted tryptophan derivatives into the medium and
exhibited species-specific levels of production (Figure 1A). Five
of the strains secreted melatonin in vitro, and the highest
level (7.75 ng/1012 cells; 0.87 ng/mL; cell count, 11.15 log10
CFU/mL) was produced by B. amyloliquefaciens SB-9, followed

by B. thuringiensis CS-9 (3.33 ng/1012 cells; 0.53 ng/mL; cell
count, 11.20 log10 CFU/mL) and Agrobacterium tumefaciens
CS-30 (2.90 ng/1010 cells; 0.22 ng/mL; cell count, 10.88 log10
CFU/mL). TEE has previously been considered as one of the
melatonin isomers, and this compound produced the same
fragmentation pattern of melatonin using the triple quadrupole
mass spectrometry (Figure 1B). We found that six strains,
including all the melatonin-producing isolates, were able to
produce TEE, with amounts ranging from 0.24 to 19.83 ng/1012

cells.

Characterization of Melatonin Formation
in B. amyloliquefaciens SB-9
The melatonin synthetic pathways of animals and plants
have been reported previously (Figure 2A); however, the
mechanism of melatonin synthesis in bacteria is currently
unknown. We detected 5-hydroxytryptophan, serotonin,
N-acetylserotonin, and melatonin after 6 h of incubation;
however, we did not find tryptamine during the incubation.
The concentrations of 5-hydroxytryptophan, serotonin,
and N-acetylserotonin increased throughout the incubation
period, and reached maximum values of 8.82 ± 1.08,
3.81 ± 0.46, and 8.41 ± 0.82 ng/mL, respectively, after
30 h (Figure 2), whereas the concentration of melatonin
reached a maximum value of 1.19 ± 0.12 ng/mL after 24 h
of incubation and declined slightly thereafter. When the
results were expressed as ng/1012 viable cells, the production
capacity for all the investigated metabolites peaked at
6 h (cell number, 9.87 log10 CFU/mL) and, thereafter,
declined with increasing cell density (11.76 log10 CFU/mL
at 30 h).

Growth Responses of V. labruscana
‘Summer Black’ Plantlets Treated with
B. amyloliquefaciens SB-9
Based on its high melatonin-producing capacity, we selected
B. amyloliquefaciens SB-9 for the inoculation of grapevine
plantlets. We observed no symptoms of pathogenicity in
the inoculated V. labruscana ‘Summer Black’ plantlets.
At 20 days after inoculation, B. amyloliquefaciens SB-9
was successfully re-isolated from inoculated roots, and
its identity was verified via sequencing of the 16S rRNA
region. In addition, the colonies recovered from the
inoculated seedling roots exhibited a single morphotype
(Figure 3A), and the population density was 5.74 ± 0.22
log10 CFU/g FW (Figure 3B), which indicated a high level
of colonization, whereas no colonies were isolated from
the control plant roots. Furthermore, we also observed that
inoculation with B. amyloliquefaciens SB-9 significantly
promoted the growth of the grapevine plantlets. In fact,
the root length, plant height, FW, and leaf chlorophyll
content of the inoculated plantlets were 48.58, 19.46, 41.82,
and 41.76% greater, respectively, than those of the control
plantlets (Figures 3C,D), which indicates that the strain
can be regarded as a valuable plant growth-promoting
rhizobacteria.
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TABLE 3 | Endophytic bacterial strains screened for melatonin production ability.

Species Code Origin GenBank accession no.

16S rRNA gene gyrB

Agrobacterium tumefaciens CS-30 Cabernet Sauvignon KU522188 KX346711

Bacillus thuringiensis CS-9 KU522196 KX346714

B. cereus CS-17 KU522189 KX346713

B. amyloliquefaciens SB-9 Summer Black KX346710 KX346712

Variovorax sp. VA10 Changbai 9 KX065462 —

Pseudomonas sp. VA-7 KU522198 KX423685

Ensifer sp. VA11 KX065463 —

Sphingomonas sp. VA-16 KU522199 —

—, no PCR product.

FIGURE 1 | UPLC-MS/MS detection of melatonin and TEE production by various endophytic bacteria from grapevine roots. (A) Melatonin and TEE
levels in the culture media of the endophytic bacteria after 36 h of incubation in nutrient broth containing 200 mg/L of tryptophan. Values represent means ± SD
(n = 3), and different letters indicate significant differences at P < 0.05, according to Tukey’s test. ND, not detected. (B) UPLC-MS/MS chromatograms of standard
solutions of two target analytes and a sample from a Bacillus amyloliquefaciens SB-9 culture at the transitions of (m/z)+ 233/174.

Effect of B. amyloliquefaciens SB-9 on
Levels of Endogenous Melatonin and Its
Intermediates in Roots under Stress
When the roots of inoculated and control plantlets were
subjected to salt or drought stress, they responded by
synthesizing melatonin and its intermediates (tryptamine,
5-hydroxytryptophan, serotonin, and N-acetylserotonin),
albeit to different extents. We found that melatonin synthesis was
similar in the inoculated and control plants under normal growth
conditions; however, after exposure to salt or drought stress, the
melatonin levels in the roots of inoculated plantlets were 52.61,
37.90, and 53.07% higher, respectively, than those in the roots of
control plantlets (Figure 4E). Similarly, in the absence of abiotic
stresses, 5-hydroxytryptophan levels in inoculated plants and
control plants were similar, but after NaCl or 10% PEG 6000
treatment, the synthesis of 5-hydroxytryptophan in the roots of
inoculated plantlets was significantly higher than that in the roots
of control plants (Figure 4B). A similar trend was also observed

for N-acetylserotonin, and in salt-stress plantlets (120 mM only),
its level was significantly upregulated in inoculated plantlets,
when compared to control plants (Figure 4C); however, the
tryptamine levels in the roots of inoculated plantlets were
significantly lower than those in the roots of control plants after
exposure to abiotic stresses (Figure 4A), and the serotonin levels
in inoculated and control plantlets were statistically similar
(P > 0.05; Figure 4D). Therefore, it is likely that the synthesis of
melatonin and its intermediates in the roots of plants exposed
to abiotic stress is influenced by B. amyloliquefaciens SB-9
colonization.

Effect of B. amyloliquefaciens SB-9 on
Stress-Induced Oxidative Damage
The MDA level in plant tissue is an indicator of lipid peroxidation
status, and it is accompanied by ROS production (H2O2
and O2

−). In the absence of abiotic stresses, the MDA level
was markedly lower in the roots of inoculated plantlets than
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FIGURE 2 | Evolution of metabolite production in melatonin biosynthesis pathway in Bacillus amyloliquefaciens SB-9. (A) Melatonin biosynthesis
pathway in animals and plants. Red arrows indicate the animal pathway, and green arrows indicate the plant pathway. TPH, tryptophan hydroxylase; AAAD, aromatic
amino acid decarboxylase; TDC, tryptophan decarboxylase; T5H, tryptamine 5-hydroxylase; AN-SNAT, animal serotonin N-acetyltransferase; PL-SNAT, plant
serotonin N-acetyltransferase; AN-ASMT, animal N-acetylserotonin O-methyltransferase; PL-ASMT, plant N-acetylserotonin O-methyltransferase; CAMT, caffeic acid
O-methyltransferase. (B) Chemical structures and UPLC-MS/MS chromatograms of five standards (40–60 ng/mL). (C) Levels of metabolites involved in the
melatonin biosynthesis in a B. amyloliquefaciens SB-9 culture grown in medium containing 200 mg/L tryptophan. The levels are expressed as ng/mL (solid line) and
ng/1012 cells (dotted line), and the data points represent the means ± SD (n = 3).

in the roots of un-inoculated plantlets (3.8 nmol/g FW vs.
5.2 nmol/g FW). Additionally, inoculated and un-inoculated
plantlets exposed to salt and drought stress had increased MDA
levels; however, the MDA levels were significantly lower in
the roots of endophyte-associated plantlets than in the roots
of un-inoculated plantlets (Figure 5A). We observed similar
trends in ROS production between un-inoculated and inoculated
plantlets (Figures 5B,C). Our findings indicate that colonization

with Bacillus amyloliquefaciens SB-9 counteracted the adverse
effects of abiotic stress by reducing the production of MDA and
ROS.

Relative Expression of Melatonin
Synthesis Genes
The VvTDC1, VvTDC2, and VvTDC3 genes are located on
grapevine chromosomes 7, 10, and 4, respectively, and their
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FIGURE 3 | Colonization of Vitis labruscana ‘Summer Black’ plantlets by Bacillus amyloliquefaciens SB-9. (A) Colony morphotype of B. amyloliquefaciens
SB-9. (B) Colony count of bacteria that were re-isolated from inoculated plantlets. (C) Morphological differences between inoculated and control plantlets.
(D) Effects of B. amyloliquefaciens SB-9 inoculation on the growth attributes of grapevine plantlets. The values represent means ± SD (n = 12). Different letters
indicate significant differences (P < 0.05) between inoculated and un-inoculated (control) plantlets, according to Student’s t-test.

predicted amino acid sequences possessed 48.50, 47.87, and
47.49 % homology with rice tryptophan decarboxylase (TDC1).
Similar to the pattern observed for endogenous melatonin levels,
we observed that the relative expression levels of VvTDC1,
VvTDC2, VvTDC3, and VvSNAT in the roots of control plantlets
were significantly upregulated by both salt and drought stress
(Figure 6), again suggesting that melatonin synthesis is stress-
inducible. Interestingly, the transcript levels of the VvTDCs
and VvSNAT in the roots of SB-9-inoculated plants were also
increased by both salt and drought stress; however, the extent of
upregulation for these genes was significantly lower (P < 0.05)
than that of control plants when they were subject to identical
stressors, with the exception of VvTDC1 under 60 mM salt
stress.

DISCUSSION

Melatonin was previously identified in the primitive
photosynthetic bacterium Erythrobacter longus (Tilden
et al., 1997) and in the gram-negative bacterium Escherichia
coli (Hardeland and Poeggeler, 2003); however, few other
bacteria are known to produce melatonin. In the present
study, we demonstrated that endophytic bacteria, such as
A. tumefaciens and B. amyloliquefaciens, are capable of
secreting melatonin into extracellular media (Figure 1A).
In addition, we also found that the level of melatonin in
seedling roots was greater when the roots were colonized by
B. amyloliquefaciens SB-9 and subjected to salt or drought
stress (Figure 2A). These findings are in accordance with
those of Arnao and Hernández-Ruiz (2015), who proposed an
association between beneficial endophytes and the enhanced
melatonin levels in their host plants. However, we cannot
be sure that the enhanced levels of endogenous melatonin
were derived from the endophytic bacteria. Alternatively,

root cells might utilize intermediate metabolites of melatonin
that are produced by endophytic bacteria. In fact, in the
present study, B. amyloliquefaciens SB-9 secreted serotonin and
N-acetylserotonin.

The melatonin biosynthesis pathway of plants was recently
described (Byeon et al., 2014b) and was shown to differ
markedly from that of vertebrates (Tan et al., 2014). One
difference is that plants initially decarboxylate tryptophan to
form tryptamine and subsequently hydroxylate tryptamine
to form serotonin, whereas vertebrates initially hydroxylate
tryptophan to form 5-hydroxytryptophan. In the present study,
we failed to detect tryptamine in the B. amyloliquefaciens SB-9
culture; however, the concentration of 5-hydroxytryptophan
increased throughout the incubation period (Figure 2C).
This suggests that the first step of melatonin biosynthesis
in the endophytic bacterium B. amyloliquefaciens SB-9
may be similar to that in vertebrates. However, the entire
melatonin biosynthesis pathway remains to be elucidated,
and further studies of the genes involved in the melatonin
biosynthesis pathway of B. amyloliquefaciens SB-9 are
required.

Endophytic bacteria play an important role in promoting
plant growth; however, their influence might be the result of
cumulative effects from the various bioactivities of individual
endophytes. Indeed, N2-fixing bacteria are also capable of
producing IAA (Pedraza et al., 2004), solubilizing phosphate,
and releasing amino acids (Liba et al., 2006). Furthermore, it
has also been reported that IAA and gibberellins frequently
occur simultaneously in culture broth (Piccoli et al., 2011),
which indicates that individual endophytic bacterium may be
capable of synthesizing multiple phytohormones. All of the
above-mentioned factors are beneficial to plant growth. We
found that endophytic bacteria produced an additional growth
regulator, melatonin, which was previously reported to stimulate
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FIGURE 4 | Effects of Bacillus amyloliquefaciens SB-9 inoculation on levels of endogenous tryptamine (A), 5-hydroxytryptophan (B),
N-acetylserotonin (C), serotonin (D) and melatonin (E) in the roots of salt- and drought-stressed Vitis labruscana ‘Summer Black’ plantlets. Values
represent means ± SD (n = 12). Different letters indicate significant differences (P < 0.05) between inoculated and un-inoculated (control) plantlets, according to
Student’s t-test.

lateral root and shoot growth in several plants, even at low
concentrations (Chen et al., 2009; Park and Back, 2012; Bajwa
et al., 2014; Wei et al., 2014; Hernández-Ruiz and Arnao,
2016). In the present study, plant height, FW, leaf chlorophyll
content, root length, and number of lateral roots (data not
shown) were all enhanced by SB-9 colonization. Although we
are not sure whether the other B. amyloliquefaciens strains could
enhance the endogenous melatonin level in roots, this growth-
promoting activity has also been confirmed by other researchers
(Idriss et al., 2002; Zhang et al., 2015), Until now, however,
we have no direct evidence that the SB-9-derived melatonin
enhancement played a role in the growth attributes we measured.
This is especially true since the growth promotion, including
main/lateral roots development, were likely derived from the

combined effects of plant growth-promoting rhizobacteria
(PGPR), such as nitrogen fixation, phosphorus solubilization,
the production of 1-aminocyclopropane-1-carboxylate (ACC)
deaminase or other PGPR-induced physical and chemical
(gibberellin, auxin, cytokinin, and unknown metabolites) changes
in plants. Further studies, using a mutant that is unable to
increase the endogenous melatonin level of roots, are needed
to determine the correlation between the enhanced level of
melatonin in endophytic bacteria and the promotion of growth
in their host plants.

Recent studies have suggested that some plants accumulate
melatonin as a defense against a variety of environmental
abiotic stressors, such as salt (Mukherjee et al., 2014), chemical
agents (Arnao and Hernández-Ruiz, 2009b; Byeon et al., 2015),
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FIGURE 5 | Effects of Bacillus amyloliquefaciens SB-9 inoculation on the levels of malondialdehyde (A), H2O2 (B), and O2
− (C) in the roots of salt- and

drought-stressed Vitis labruscana ‘Summer Black’ plantlets. MDA, malondialdehyde. Values represent means ± SD (n = 12). Different letters indicate
significant differences (P < 0.05) between inoculated and un-inoculated (control) plantlets, according to Student’s t-test.

FIGURE 6 | Effects of Bacillus amyloliquefaciens SB-9 inoculation on the relative expression of the VvTDC1 (A), VvTDC2 (B), VvTDC3 (C), and VvSNAT
(D) genes in the roots of salt- and drought-stressed Vitis labruscana ‘Summer Black’ plantlets. The expression levels were normalized according to the
expression of grapevine EF1-α mRNA. Values represent means ± SD (n = 12). Different letters indicate significant differences (P < 0.05) between inoculated and
un-inoculated (control) plantlets, according to Student’s t-test.

low temperature (Shi et al., 2015), and drought (Arnao and
Hernández-Ruiz, 2013a,b). The results of the present study
concur with those of previous reports, and we also found
that stress-induced melatonin synthesis was accompanied
by the upregulation of several VvTDCs and VvSNAT, as well
as the increased production of melatonin intermediates,
such as tryptamine, 5-hydroxytryptophan, serotonin, and
N-acetylserotonin (Figure 4).

Endophytes have mostly been reported to counteract the
adverse effects of stress by reducing the production of MDA
and ROS in plants (Jungwook et al., 2009; Khan et al., 2012).
This behavior is likely derived from the combined effects of
endophytes, such as the enhancement of plant antioxidant
enzyme (POD, CAT, POD and APX) activities and the production
of phenolic compounds or other antioxidant compounds (Torres
et al., 2012). We found that, in grapevine plantlets exposed to
salt or drought stress, the production of MDA and ROS, as well
as the transcript levels of the grapevine VvTDCs and VvSNAT in

inoculated roots were relatively lower than those in un-inoculated
controls. Therefore, it seems logical that the endogenous levels
of melatonin and its intermediates in inoculated roots could be
also lower than those in the un-inoculated controls. However,
only tryptamine levels exhibited this trend, whereas levels of the
other intermediates in the roots of inoculated plants were similar
or higher than those in the un-inoculated controls. We speculate
that the lower expression of VvTDCs and VvSNAT could be
associated with lower oxidative damage in the roots of inoculated
plantlets (Figures 5 and 6) because the transcript levels of
melatonin synthesis genes were reported to show a positive
correlation with ROS levels caused by abiotic stress (Li et al.,
2014); however, the higher endogenous 5-hydroxytryptophan,
N-acetylserotonin and melatonin levels, as well as the statistically
similar serotonin level, in the roots of these plantlets was due to
SB-9 colonization, which may promote the production of these
compounds via supplementary bacterial melatonin biosynthesis,
a possible exchange of metabolites between plants and the strain,
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or additional promoting factors produced by the strain. In fact,
in the present study, B. amyloliquefaciens SB-9 was able to
secrete these compounds in vivo, except tryptamine. In primitive
bacteria, melatonin is thought to function as an antioxidant and
free radical scavenger that reduces the harmful effects of ROS
(Tan et al., 2014). This is the primary role that was reported in
both animals and plants (Tan et al., 2002, 2003; Reiter et al., 2005).
Therefore, based on these observations, if abiotic stress induces
a burst of ROS in the internal tissues of host plants, the living
conditions for root-inhabiting microbes presumably become
toxic, and as a result, endophytes upregulate their melatonin
biosynthesis accordingly, in order to alleviate ROS-induced cell
damage.

In summary, the findings of the present study demonstrate
that the melatonin-producing ability of endophytic bacteria
and the potential application of these bacteria in promoting
endogenous melatonin level in plants. However, it remains
unclear (i) whether the enhanced levels of endogenous
melatonin in roots were derived from production by endophytic
bacteria; (ii) whether endophytic fungi produce melatonin; (iii)
whether fruit-colonizing endophytes enhance the melatonin
levels of fruit tissue, especially in grapevines; (iv) whether
any endophytic bacteria, even those with low melatonin-
producing abilities, are able to enhance the endogenous
melatonin levels in their host plants by providing intermediate
metabolites; or (v) which specific internal and external
elements influence melatonin production in endophytes
and their host plants? Therefore, more comprehensive and
detailed investigations are needed to characterize the role

of melatonin biosynthesis in naturally occurring symbiotic
relationships.
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