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Crop diseases are a major threat to food security, but their rapid identification

remains difficult in many parts of the world due to the lack of the necessary

infrastructure. The combination of increasing global smartphone penetration and recent

advances in computer vision made possible by deep learning has paved the way for

smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of

diseased and healthy plant leaves collected under controlled conditions, we train a deep

convolutional neural network to identify 14 crop species and 26 diseases (or absence

thereof). The trained model achieves an accuracy of 99.35% on a held-out test set,

demonstrating the feasibility of this approach. Overall, the approach of training deep

learning models on increasingly large and publicly available image datasets presents

a clear path toward smartphone-assisted crop disease diagnosis on a massive global

scale.
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INTRODUCTION

Modern technologies have given human society the ability to produce enough food to meet
the demand of more than 7 billion people. However, food security remains threatened by a
number of factors including climate change (Tai et al., 2014), the decline in pollinators (Report
of the Plenary of the Intergovernmental Science-PolicyPlatform on Biodiversity Ecosystem and
Services on the work of its fourth session, 2016), plant diseases (Strange and Scott, 2005), and
others. Plant diseases are not only a threat to food security at the global scale, but can also have
disastrous consequences for smallholder farmers whose livelihoods depend on healthy crops. In the
developing world, more than 80 percent of the agricultural production is generated by smallholder
farmers (UNEP, 2013), and reports of yield loss of more than 50% due to pests and diseases are
common (Harvey et al., 2014). Furthermore, the largest fraction of hungry people (50%) live in
smallholder farming households (Sanchez and Swaminathan, 2005), making smallholder farmers a
group that’s particularly vulnerable to pathogen-derived disruptions in food supply.

Various efforts have been developed to prevent crop loss due to diseases. Historical approaches
of widespread application of pesticides have in the past decade increasingly been supplemented
by integrated pest management (IPM) approaches (Ehler, 2006). Independent of the approach,
identifying a disease correctly when it first appears is a crucial step for efficient diseasemanagement.
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Historically, disease identification has been supported by
agricultural extension organizations or other institutions, such
as local plant clinics. In more recent times, such efforts have
additionally been supported by providing information for
disease diagnosis online, leveraging the increasing Internet
penetration worldwide. Even more recently, tools based
on mobile phones have proliferated, taking advantage of
the historically unparalleled rapid uptake of mobile phone
technology in all parts of the world (ITU, 2015).

Smartphones in particular offer very novel approaches to
help identify diseases because of their computing power, high-
resolution displays, and extensive built-in sets of accessories, such
as advanced HD cameras. It is widely estimated that there will
be between 5 and 6 billion smartphones on the globe by 2020.
At the end of 2015, already 69% of the world’s population had
access to mobile broadband coverage, and mobile broadband
penetration reached 47% in 2015, a 12-fold increase since 2007
(ITU, 2015). The combined factors of widespread smartphone
penetration, HD cameras, and high performance processors in
mobile devices lead to a situation where disease diagnosis based
on automated image recognition, if technically feasible, can be
made available at an unprecedented scale. Here, we demonstrate
the technical feasibility using a deep learning approach utilizing
54,306 images of 14 crop species with 26 diseases (or healthy)
made openly available through the project PlantVillage (Hughes
and Salathé, 2015). An example of each crop—disease pair can be
seen in Figure 1.

Computer vision, and object recognition in particular,
has made tremendous advances in the past few years. The
PASCAL VOC Challenge (Everingham et al., 2010), and more
recently the Large Scale Visual Recognition Challenge (ILSVRC)
(Russakovsky et al., 2015) based on the ImageNet dataset (Deng
et al., 2009) have been widely used as benchmarks for numerous
visualization-related problems in computer vision, including
object classification. In 2012, a large, deep convolutional neural
network achieved a top-5 error of 16.4% for the classification
of images into 1000 possible categories (Krizhevsky et al., 2012).
In the following 3 years, various advances in deep convolutional
neural networks lowered the error rate to 3.57% (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; Zeiler and Fergus,
2014; He et al., 2015; Szegedy et al., 2015). While training large
neural networks can be very time-consuming, the trained models
can classify images very quickly, which makes them also suitable
for consumer applications on smartphones.

Deep neural networks have recently been successfully applied
in many diverse domains as examples of end to end learning.
Neural networks provide a mapping between an input—such
as an image of a diseased plant—to an output—such as
a crop∼disease pair. The nodes in a neural network are
mathematical functions that take numerical inputs from the
incoming edges, and provide a numerical output as an outgoing
edge. Deep neural networks are simply mapping the input layer
to the output layer over a series of stacked layers of nodes. The
challenge is to create a deep network in such a way that both
the structure of the network as well as the functions (nodes) and
edge weights correctly map the input to the output. Deep neural
networks are trained by tuning the network parameters in such a

way that the mapping improves during the training process. This
process is computationally challenging and has in recent times
been improved dramatically by a number of both conceptual and
engineering breakthroughs (LeCun et al., 2015; Schmidhuber,
2015).

In order to develop accurate image classifiers for the purposes
of plant disease diagnosis, we needed a large, verified dataset
of images of diseased and healthy plants. Until very recently,
such a dataset did not exist, and even smaller datasets were
not freely available. To address this problem, the PlantVillage
project has begun collecting tens of thousands of images of
healthy and diseased crop plants (Hughes and Salathé, 2015),
and has made them openly and freely available. Here, we report
on the classification of 26 diseases in 14 crop species using
54,306 images with a convolutional neural network approach.
We measure the performance of our models based on their
ability to predict the correct crop-diseases pair, given 38 possible
classes. The best performing model achieves a mean F1 score
of 0.9934 (overall accuracy of 99.35%), hence demonstrating
the technical feasibility of our approach. Our results are a
first step toward a smartphone-assisted plant disease diagnosis
system.

METHODS

Dataset Description
We analyze 54,306 images of plant leaves, which have a spread
of 38 class labels assigned to them. Each class label is a crop-
disease pair, and we make an attempt to predict the crop-disease
pair given just the image of the plant leaf. Figure 1 shows one
example each from every crop-disease pair from the PlantVillage
dataset. In all the approaches described in this paper, we
resize the images to 256 × 256 pixels, and we perform both
the model optimization and predictions on these downscaled
images.

Across all our experiments, we use three different versions of
the whole PlantVillage dataset. We start with the PlantVillage
dataset as it is, in color; then we experiment with a gray-scaled
version of the PlantVillage dataset, and finally we run all the
experiments on a version of the PlantVillage dataset where the
leaves were segmented, hence removing all the extra background
information which might have the potential to introduce some
inherent bias in the dataset due to the regularized process of
data collection in case of PlantVillage dataset. Segmentation was
automated by the means of a script tuned to perform well on
our particular dataset. We chose a technique based on a set of
masks generated by analysis of the color, lightness and saturation
components of different parts of the images in several color
spaces (Lab and HSB). One of the steps of that processing also
allowed us to easily fix color casts, which happened to be very
strong in some of the subsets of the dataset, thus removing
another potential bias.

This set of experiments was designed to understand if the
neural network actually learns the “notion” of plant diseases, or
if it is just learning the inherent biases in the dataset. Figure 2
shows the different versions of the same leaf for a randomly
selected set of leaves.
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FIGURE 1 | Example of leaf images from the PlantVillage dataset, representing every crop-disease pair used. (1) Apple Scab, Venturia inaequalis (2) Apple

Black Rot, Botryosphaeria obtusa (3) Apple Cedar Rust, Gymnosporangium juniperi-virginianae (4) Apple healthy (5) Blueberry healthy (6) Cherry healthy (7) Cherry

Powdery Mildew, Podoshaera clandestine (8) Corn Gray Leaf Spot, Cercospora zeae-maydis (9) Corn Common Rust, Puccinia sorghi (10) Corn healthy (11) Corn

Northern Leaf Blight, Exserohilum turcicum (12) Grape Black Rot, Guignardia bidwellii, (13) Grape Black Measles (Esca), Phaeomoniella aleophilum, Phaeomoniella

chlamydospora (14) Grape Healthy (15) Grape Leaf Blight, Pseudocercospora vitis (16) Orange Huanglongbing (Citrus Greening), Candidatus Liberibacter spp. (17)

Peach Bacterial Spot, Xanthomonas campestris (18) Peach healthy (19) Bell Pepper Bacterial Spot, Xanthomonas campestris (20) Bell Pepper healthy (21) Potato

Early Blight, Alternaria solani (22) Potato healthy (23) Potato Late Blight, Phytophthora infestans (24) Raspberry healthy (25) Soybean healthy (26) Squash Powdery

Mildew, Erysiphe cichoracearum (27) Strawberry Healthy (28) Strawberry Leaf Scorch, Diplocarpon earlianum (29) Tomato Bacterial Spot, Xanthomonas campestris

pv. vesicatoria (30) Tomato Early Blight, Alternaria solani (31) Tomato Late Blight, Phytophthora infestans (32) Tomato Leaf Mold, Passalora fulva (33) Tomato Septoria

Leaf Spot, Septoria lycopersici (34) Tomato Two Spotted Spider Mite, Tetranychus urticae (35) Tomato Target Spot, Corynespora cassiicola (36) Tomato Mosaic Virus

(37) Tomato Yellow Leaf Curl Virus (38) Tomato healthy.

Measurement of Performance
To get a sense of how our approaches will perform on new unseen
data, and also to keep a track of if any of our approaches are
overfitting, we run all our experiments across a whole range
of train-test set splits, namely 80–20 (80% of the whole dataset
used for training, and 20% for testing), 60–40 (60% of the whole
dataset used for training, and 40% for testing), 50–50 (50% of

the whole dataset used for training, and 50% for testing), 40–60
(40% of the whole dataset used for training, and 60% for testing)
and finally 20–80 (20% of the whole dataset used for training,
and 80% for testing). It must be noted that in many cases, the
PlantVillage dataset has multiple images of the same leaf (taken
from different orientations), and we have the mappings of such
cases for 41,112 images out of the 54,306 images; and during all
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FIGURE 2 | Sample images from the three different versions of the PlantVillage dataset used in various experimental configurations. (A) Leaf 1 color, (B)

Leaf 1 grayscale, (C) Leaf 1 segmented, (D) Leaf 2 color, (E) Leaf 2 gray-scale, (F) Leaf 2 segmented.

these test-train splits, we make sure all the images of the same leaf
goes either in the training set or the testing set. Further, for every
experiment, we compute the mean precision, mean recall, mean
F1 score, along with the overall accuracy over the whole period of
training at regular intervals (at the end of every epoch). We use
the final mean F1 score for the comparison of results across all of
the different experimental configurations.

Approach
We evaluate the applicability of deep convolutional neural
networks for the classification problem described above. We
focus on two popular architectures, namely AlexNet (Krizhevsky
et al., 2012), and GoogLeNet (Szegedy et al., 2015), which were
designed in the context of the “Large Scale Visual Recognition
Challenge” (ILSVRC) (Russakovsky et al., 2015) for the ImageNet
dataset (Deng et al., 2009).

The AlexNet architecture (see Figure S2) follows the same
design pattern as the LeNet-5 (LeCun et al., 1989) architecture
from the 1990s. The LeNet-5 architecture variants are usually a
set of stacked convolution layers followed by one or more fully
connected layers. The convolution layers optionally may have a
normalization layer and a pooling layer right after them, and all
the layers in the network usually have ReLu non-linear activation
units associated with them. AlexNet consists of 5 convolution
layers, followed by 3 fully connected layers, and finally ending
with a softMax layer. The first two convolution layers (conv{1,
2}) are each followed by a normalization and a pooling layer,
and the last convolution layer (conv5) is followed by a single
pooling layer. The final fully connected layer (fc8) has 38 outputs
in our adapted version of AlexNet (equaling the total number

of classes in our dataset), which feeds the softMax layer. The
softMax layer finally exponentially normalizes the input that it
gets from (fc8), thereby producing a distribution of values across
the 38 classes that add up to 1. These values can be interpreted
as the confidences of the network that a given input image is
represented by the corresponding classes. All of the first 7 layers
of AlexNet have a ReLu non-linearity activation unit associated
with them, and the first two fully connected layers (fc{6, 7})
have a dropout layer associated with them, with a dropout
ratio of 0.5.

The GoogleNet architecture on the other hand is a much
deeper and wider architecture with 22 layers, while still having
considerably lower number of parameters (5 million parameters)
in the network than AlexNet (60 million parameters). An
application of the “network in network” architecture (Lin et al.,
2013) in the form of the inception modules is a key feature of
the GoogleNet architecture. The inception module uses parallel
1 × 1, 3 × 3, and 5 × 5 convolutions along with a max-pooling
layer in parallel, hence enabling it to capture a variety of features
in parallel. In terms of practicality of the implementation, the
amount of associated computation needs to be kept in check,
which is why 1 × 1 convolutions before the above mentioned
3 × 3, 5 × 5 convolutions (and also after the max-pooling
layer) are added for dimensionality reduction. Finally, a filter
concatenation layer simply concatenates the outputs of all these
parallel layers. While this forms a single inception module, a total
of 9 inception modules is used in the version of the GoogLeNet
architecture that we use in our experiments. A more detailed
overview of this architecture can be found for reference in
(Szegedy et al., 2015).
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We analyze the performance of both these architectures on
the PlantVillage dataset by training the model from scratch in
one case, and then by adapting already trained models (trained
on the ImageNet dataset) using transfer learning. In case of
transfer learning, we re-initialize the weights of layer fc8 in case
of AlexNet, and of the loss {1,2,3}/classifier layers in case of
GoogLeNet. Then, when training the model, we do not limit the
learning of any of the layers, as is sometimes done for transfer
learning. In other words, the key difference between these two
learning approaches (transfer vs. training from scratch) is in the
initial state of weights of a few layers, which lets the transfer
learning approach exploit the large amount of visual knowledge
already learned by the pre-trained AlexNet and GoogleNet
models extracted from ImageNet (Russakovsky et al., 2015).

To summarize, we have a total of 60 experimental
configurations, which vary on the following parameters:

1. Choice of deep learning architecture:

AlexNet,
GoogLeNet.

2. Choice of training mechanism:

Transfer Learning,
Training from Scratch.

3. Choice of dataset type:

Color,
Gray scale,
Leaf Segmented.

4. Choice of training-testing set distribution:

Train: 80%, Test: 20%,
Train: 60%, Test: 40%,
Train: 50%, Test: 50%,
Train: 40%, Test: 60%,
Train: 20%, Test: 80%.

Throughout this paper, we have used the notation of
Architecture:TrainingMechanism:DatasetType:Train-Test-
Set-Distribution to refer to particular experiments. For
instance, to refer to the experiment using the GoogLeNet
architecture, which was trained using transfer learning
on the gray-scaled PlantVillage dataset on a train—test
set distribution of 60–40, we will use the notation
GoogLeNet:TransferLearning:GrayScale:60–40.

Each of these 60 experiments runs for a total of 30 epochs,
where one epoch is defined as the number of training iterations
in which the particular neural network has completed a full pass
of the whole training set. The choice of 30 epochs wasmade based
on the empirical observation that in all of these experiments, the
learning always converged well within 30 epochs (as is evident
from the aggregated plots (Figure 3) across all the experiments).

To enable a fair comparison between the results of all the
experimental configurations, we also tried to standardize the
hyper-parameters across all the experiments, and we used the
following hyper-parameters in all of the experiments:

• Solver type: Stochastic Gradient Descent,
• Base learning rate: 0.005,

• Learning rate policy: Step (decreases by a factor of 10 every
30/3 epochs),

• Momentum: 0.9,
• Weight decay: 0.0005,
• Gamma: 0.1,
• Batch size: 24 (in case of GoogLeNet), 100 (in case of AlexNet).

All the above experiments were conducted using our own fork of
Caffe (Jia et al., 2014), which is a fast, open source framework for
deep learning. The basic results, such as the overall accuracy can
also be replicated using a standard instance of caffe.

RESULTS

At the outset, we note that on a dataset with 38 class labels,
random guessing will only achieve an overall accuracy of
2.63% on average. Across all our experimental configurations,
which include three visual representations of the image
data (see Figure 2), the overall accuracy we obtained on
the PlantVillage dataset varied from 85.53% (in case of
AlexNet::TrainingFromScratch::GrayScale::80–20) to 99.34%
(in case of GoogLeNet::TransferLearning::Color::80–20), hence
showing strong promise of the deep learning approach for
similar prediction problems. Table 1 shows the mean F1 score,
mean precision, mean recall, and overall accuracy across all our
experimental configurations. All the experimental configurations
run for a total of 30 epochs each, and they almost consistently
converge after the first step down in the learning rate.

To address the issue of over-fitting, we vary the test set
to train set ratio and observe that even in the extreme case
of training on only 20% of the data and testing the trained
model on the rest 80% of the data, the model achieves an
overall accuracy of 98.21% (mean F1 score of 0.9820) in the case
of GoogLeNet::TransferLearning::Color::20–80. As expected, the
overall performance of both AlexNet and GoogLeNet do degrade
if we keep increasing the test set to train set ratio (see Figure 3D),
but the decrease in performance is not as drastic as we would
expect if the model was indeed over-fitting. Figure 3C also shows
that there is no divergence between the validation loss and the
training loss, confirming that over-fitting is not a contributor to
the results we obtain across all our experiments.

Among the AlexNet and GoogLeNet architectures,
GoogLeNet consistently performs better than AlexNet
(Figure 3A), and based on the method of training, transfer
learning always yields better results (Figure 3B), both of which
were expected.

The three versions of the dataset (color, gray-scale, and
segmented) show a characteristic variation in performance across
all the experiments when we keep the rest of the experimental
configuration constant. The models perform the best in case
of the colored version of the dataset. When designing the
experiments, we were concerned that the neural networks might
only learn to pick up the inherent biases associated with the
lighting conditions, themethod and apparatus of collection of the
data. We therefore experimented with the gray-scaled version of
the same dataset to test the model’s adaptability in the absence of
color information, and its ability to learn higher level structural

Frontiers in Plant Science | www.frontiersin.org 5 September 2016 | Volume 7 | Article 1419

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Mohanty et al. Deep Learning for Plant Diseases

FIGURE 3 | Progression of mean F1 score and loss through the training period of 30 epochs across all experiments, grouped by experimental

configuration parameters. The intensity of a particular class at any point is proportional to the corresponding uncertainty across all experiments with the particular

configurations. (A) Comparison of progression of mean F1 score across all experiments, grouped by deep learning architecture, (B) Comparison of progression of

mean F1 score across all experiments, grouped by training mechanism, (C) Comparison of progression of train-loss and test-loss across all experiments, (D)

Comparison of progression of mean F1 score across all experiments, grouped by train-test set splits, (E) Comparison of progression of mean F1 score across all

experiments, grouped by dataset type. A similar plot of all the observations, as it is, across all the experimental configurations can be found in the Supplementary

Material.

patterns typical to particular crops and diseases. As expected, the
performance did decrease when compared to the experiments
on the colored version of the dataset, but even in the case of
the worst performance, the observed mean F1 score was 0.8524
(overall accuracy of 85.53%). The segmented versions of the
whole dataset was also prepared to investigate the role of the
background of the images in overall performance, and as shown
in Figure 3E, the performance of the model using segmented

images is consistently better than that of the model using gray-
scaled images, but slightly lower than that of the model using the
colored version of the images.

While these approaches yield excellent results on the
PlantVillage dataset which was collected in a controlled
environment, we also assessed the model’s performance on
images sampled from trusted online sources, such as academic
agriculture extension services. Such images are not available
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TABLE 1 | Mean F1 score across various experimental configurations at the end of 30 epochs.

AlexNet GoogleNet

Transfer learning Training from scratch Transfer learning Training from scratch

TRAIN: 200%, TEST: 80%

Color 0.9736{0.9742, 0.9737, 0.9738} 0.9118{0.9137, 0.9132, 0.9130} 0.9820{0.9824, 0.9821, 0.9821} 0.9430{0.9440, 0.9431, 0.9429}

Grayscale 0.9361{0.9368, 0.9369, 0.9371} 0.8524{0.8539, 0.8555, 0.8553} 0.9563{0.9570, 0.9564, 0.9564} 0.8828{0.8842, 0.6835, 0.8841}

Segmented 0.9724{0.9727, 0.9727, 0.9726} 0.8945{0.8956, 0.8963, 0.8969} 0.9808{0.9810, 0.9808, 0.9808} 0.9377{0.9388, 0.9380, 0.9380}

TRAIN: 400%, TEST: 60%

Color 0.9860{0.9861, 0.9861, 0.9860} 0.9555{0.9557, 0.9558, 0.9558} 0.9914{0.9914, 0.9914, 0.9914} 0.9729{0.9731, 0.9729, 0.9729}

Grayscale 0.9584{0.9588, 0.9589, 0.9588} 0.9088{0.9090, 0.9101, 0.9100} 0.9714{0.9717, 0.9716, 0.9716} 0.9361{0.9364, 0.9363, 0.9364}

Segmented 0.9812{0.9814, 0.9813, 0.9813} 0.9404{0.9409, 0.9408, 0.9408} 0.9896{0.9896, 0.9896, 0.9898} 0.9643{0.9647, 0.9642, 0.9642}

TRAIN: 50%, TEST: 50%

Color 0.9896{0.9897, 0.9896, 0.9897} 0.9644{0.9647, 0.9647, 0.9647} 0.9916{0.9916, 0.9916, 0.9916} 0.9772{0.9774, 0.9773, 0.9773}

Grayscale 0.9661{0.9663, 0.9663, 0.9663} 0.9312{0.9315, 0.9318, 0.9319} 0.9788{0.9789, 0.9788, 0.9788} 0.9507{0.9510, 0.9507, 0.9509}

Segmented 0.9867{0.9868, 0.9868, 0.9869} 0.9551{0.9552, 0.9555, 0.9556} 0.9909{0.9910, 0.9910, 0.9910} 0.9720{0.9721, 0.9721, 0.9722}

TRAIN: 600%, TEST: 40%

Color 0.9907{0.9908, 0.9908, 0.9907} 0.9724{0.9725, 0.9725, 0.9725} 0.9924{0.9924, 0.9924, 0.9924} 0.9824{0.9825, 0.9824, 0.9824}

Grayscale 0.9686{0.9689, 0.9688, 0.9688} 0.9388{0.9396, 0.9395, 0.9391} 0.9785{0.9789, 0.9786, 0.9787} 0.9547{0.9554, 0.9548, 0.9551}

Segmented 0.9855{0.9856, 0.9856, 0.9856} 0.9595{0.9597, 0.9597, 0.9596} 0.9905{0.9906, 0.9906, 0.9906} 0.9740{0.9743, 0.9740, 0.9745}

TRAIN: 80%, TEST: 20%

Color 0.9927{0.9928, 0.9927, 0.9928} 0.9782{0.9786, 0.9782, 0.9782} 0.9934{0.9935, 0.9935, 0.9935} 0.9836{0.9839, 0.9837, 0.9837}

Grayscale 0.9726{0.9728.0.9727, 0.9725} 0.9449{0.9451, 0.9454, 0.9452} 0.9800{0.9804, 0.9801, 0.9798} 0.9621{0.9624, 0.9621, 0.9621}

Segmented 0.9891{0.9893, 0.9891, 0.9892} 0.9722{0.9725, 0.9724, 0.9723} 0.9925{0.9925, 0.9925, 0.9924} 0.9824{0.9827, 0.9824, 0.9822}

Each cell in the table represents the mean F1 score{mean precision, mean recall, overall accuracy} for the corresponding experimental configuration.

The bold values are the F1 scores of the best performing models in the respective row/column.

in large numbers, and using a combination of automated
download from Bing Image Search and IPM Images with a
visual verification step, we obtained two small, verified datasets
of 121 (dataset 1) and 119 images (dataset 2), respectively (see
SupplementaryMaterial for a detailed description of the process).
Using the best model on these datasets, we obtained an overall
accuracy of 31.40% in dataset 1, and 31.69% in dataset 2, in
successfully predicting the correct class label (i.e., crop and
disease information) from among 38 possible class labels. We
note that a random classifier will obtain an average accuracy of
only 2.63%. Across all images, the correct class was in the top-5
predictions in 52.89% of the cases in dataset 1, and in 65.61%
of the cases in dataset 2. The best models for the two datasets
wereGoogLeNet:Segmented:TransferLearning:80–20 for dataset 1,
and GoogLeNet:Color:TransferLearning:80–20 for dataset 2. An
example image from theses datasets, along with its visualization
of activations in the initial layers of an AlexNet architecture, can
be seen in Figure 4.

So far, all results have been reported under the assumption
that the model needs to detect both the crop species and the
disease status. We can limit the challenge to a more realistic
scenario where the crop species is provided, as it can be expected
to be known by those growing the crops. To assess this the
performance of the model under this scenario, we limit ourselves
to crops where we have at least n > = 2 (to avoid trivial
classification) or n > = 3 classes per crop. In the n > = 2 case,
dataset 1 contains 33 classes distributed among 9 crops. Random
guessing in such a dataset would achieve an accuracy of 0.225,

while our model has an accuracy of 0.478. In the n>= 3 case, the
dataset contains 25 classes distributed among 5 crops. Random
guessing in such a dataset would achieve an accuracy of 0.179,
while our model has an accuracy of 0.411.

Similarly, in the n > = 2 case, dataset 2 contains 13 classes
distributed among 4 crops. Random guessing in such a dataset
would achieve an accuracy of 0.314, while our model has an
accuracy of 0.545. In the n > = 3 case, the dataset contains 11
classes distributed among 3 crops. Random guessing in such a
dataset would achieve an accuracy of 0.288, while our model has
an accuracy of 0.485.

DISCUSSION

The performance of convolutional neural networks in object
recognition and image classification has made tremendous
progress in the past few years. (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014; Zeiler and Fergus, 2014; He
et al., 2015; Szegedy et al., 2015). Previously, the traditional
approach for image classification tasks has been based on hand-
engineered features, such as SIFT (Lowe, 2004), HoG (Dalal
and Triggs, 2005), SURF (Bay et al., 2008), etc., and then to
use some form of learning algorithm in these feature spaces.
The performance of these approaches thus depended heavily
on the underlying predefined features. Feature engineering itself
is a complex and tedious process which needs to be revisited
every time the problem at hand or the associated dataset
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FIGURE 4 | Visualization of activations in the initial layers of an AlexNet architecture demonstrating that the model has learnt to efficiently activate

against the diseased spots on the example leaf. (A) Example image of a leaf suffering from Apple Cedar Rust, selected from the top-20 images returned by Bing

Image search for the keywords “Apple Cedar Rust Leaves” on April 4th, 2016. Image Reference: Clemson University - USDA Cooperative Extension Slide Series,

Bugwood. org. (B) Visualization of activations in the first convolution layer(conv1) of an AlexNet architecture trained using AlexNet:Color:TrainFromScratch:80–20

when doing a forward pass on the image in shown in panel b.

changes considerably. This problem occurs in all traditional
attempts to detect plant diseases using computer vision as they
lean heavily on hand-engineered features, image enhancement
techniques, and a host of other complex and labor-intensive
methodologies.

In addition, traditional approaches to disease classification
via machine learning typically focus on a small number of
classes usually within a single crop. Examples include a feature
extraction and classification pipeline using thermal and stereo
images in order to classify tomato powdery mildew against
healthy tomato leaves (Raza et al., 2015); the detection of
powdery mildew in uncontrolled environments using RGB
images (Hernández-Rabadán et al., 2014); the use of RGBD
images for detection of apple scab (Chéné et al., 2012) the
use of fluorescence imaging spectroscopy for detection of citrus
huanglongbing (Wetterich et al., 2012) the detection of citrus
huanglongbing using near infrared spectral patterns (Sankaran
et al., 2011) and aircraft-based sensors (Garcia-Ruiz et al., 2013)
the detection of tomato yellow leaf curl virus by using a set of
classic feature extraction steps, followed by classification using
a support vector machines pipeline (Mokhtar et al., 2015), and
many others. A very recent review on the use of machine learning
on plant phenotyping (Singh et al., 2015) extensively discusses
the work in this domain. While neural networks have been
used before in plant disease identification (Huang, 2007) (for
the classification and detection of Phalaenopsis seedling disease
like bacterial soft rot, bacterial brown spot, and Phytophthora
black rot), the approach required representing the images using a
carefully selected list of texture features before the neural network
could classify them.

Our approach is based on recent work Krizhevsky et al.
(2012) which showed for the first time that end-to-end supervised
training using a deep convolutional neural network architecture
is a practical possibility even for image classification problems

with a very large number of classes, beating the traditional
approaches using hand-engineered features by a substantial
margin in standard benchmarks. The absence of the labor-
intensive phase of feature engineering and the generalizability
of the solution makes them a very promising candidate for a
practical and scaleable approach for computational inference of
plant diseases.

Using the deep convolutional neural network architecture,
we trained a model on images of plant leaves with the goal of
classifying both crop species and the presence and identity of
disease on images that the model had not seen before. Within
the PlantVillage data set of 54,306 images containing 38 classes
of 14 crop species and 26 diseases (or absence thereof), this
goal has been achieved as demonstrated by the top accuracy
of 99.35%. Thus, without any feature engineering, the model
correctly classifies crop and disease from 38 possible classes
in 993 out of 1000 images. Importantly, while the training
of the model takes a lot of time (multiple hours on a high
performance GPU cluster computer), the classification itself is
very fast (less than a second on a CPU), and can thus easily be
implemented on a smartphone. This presents a clear path toward
smartphone-assisted crop disease diagnosis on a massive global
scale.

However, there are a number of limitations at the current stage
that need to be addressed in future work. First, when tested on a
set of images taken under conditions different from the images
used for training, the model’s accuracy is reduced substantially,
to just above 31%. It’s important to note that this accuracy is
much higher than the one based on random selection of 38 classes
(2.6%), but nevertheless, a more diverse set of training data is
needed to improve the accuracy. Our current results indicate
that more (and more variable) data alone will be sufficient
to substantially increase the accuracy, and corresponding data
collection efforts are underway.
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The second limitation is that we are currently constrained to
the classification of single leaves, facing up, on a homogeneous
background. While these are straightforward conditions, a real
world application should be able to classify images of a disease
as it presents itself directly on the plant. Indeed, many diseases
don’t present themselves on the upper side of leaves only (or at
all), but on many different parts of the plant. Thus, new image
collection efforts should try to obtain images frommany different
perspectives, and ideally from settings that are as realistic as
possible.

At the same time, by using 38 classes that contain both
crop species and disease status, we have made the challenge
harder than ultimately necessary from a practical perspective,
as growers are expected to know which crops they are growing.
Given the very high accuracy on the PlantVillage dataset, limiting
the classification challenge to the disease status won’t have
a measurable effect. However, on the real world datasets, we
can measure noticeable improvements in accuracy. Overall,
the presented approach works reasonably well with many
different crop species and diseases, and is expected to improve
considerably with more training data.

Finally, it’s worth noting that the approach presented
here is not intended to replace existing solutions for disease
diagnosis, but rather to supplement them. Laboratory tests
are ultimately always more reliable than diagnoses based on
visual symptoms alone, and oftentimes early-stage diagnosis
via visual inspection alone is challenging. Nevertheless, given
the expectation of more than 5 Billion smartphones in the
world by 2020—of which almost a Billion in Africa (GSMA
Intelligence, 2016)—we do believe that the approach represents
a viable additional method to help prevent yield loss. What’s
more, in the future, image data from a smartphone may be
supplemented with location and time information for additional
improvements in accuracy. Last but not least, it would be
prudent to keep in mind the stunning pace at which mobile
technology has developed in the past few years, and will
continue to do so. With ever improving number and quality

of sensors on mobiles devices, we consider it likely that highly

accurate diagnoses via the smartphone are only a question of
time.
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