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Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers,
while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since
normal flower development is essential for plant sexual reproduction and crop yield,
it is imperative to have a better understanding of plant sterility under regular and
stress conditions. Here, we review the functions of ABC genes together with their
downstream genes in floral organ degeneration and the formation of unisexual flowers
in Arabidopsis and several agriculturally significant cereal grains. We further explore
the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic
acid, and ethylene, in floral organ formation and fertility. We show that alterations in
genes affecting hormone biosynthesis, hormone transport and perception cause loss of
stamens/carpels, abnormal floral organ development, poor pollen production, which
consequently result in unisexual flowers and male/female sterility. Moreover, abiotic
stresses, such as heat, cold, and drought, commonly affect floral organ development
and fertility. Sterility is induced by abiotic stresses mostly in male floral organ
development, particularly during meiosis, tapetum development, anthesis, dehiscence,
and fertilization. A variety of genes including those involved in heat shock, hormone
signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum
development are essential for plants to maintain normal fertility under abiotic stress
conditions. Further elucidation of cellular, biochemical, and molecular mechanisms
about regulation of fertility will improve yield and quality for many agriculturally valuable
crops.

Keywords: sterility, yield, floral organ degeneration/abortion, ABC genes, hormones, abiotic stresses,
Arabidopsis, cereal crops

INTRODUCTION

Flower development is a long and complex process, which is mainly classified into four
stages: flowering transition, floral meristem identity, floral organ identity, and floral organ
morphogenesis. Mainly using model species Arabidopsis thaliana and snapdragon (Antirrhinum
majus), extensive molecular genetic studies have identified numerous genes required for
flower development, particularly during early stages. Arabidopsis plants produce raceme-type
indeterminate inflorescences where flowers are indefinitely generated. A typical Arabidopsis flower
contains four protective sepals in the first whorl, four petals in the second whorl, six stamens (male
reproductive organs) in the third whorl, and two fused carpels (female reproductive structure)
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that form the gynoecium in the fourth whorl (Figures 1A,B).
Different from Arabidopsis, Poaceae plants, commonly known as
grasses, produce determinate panicles where flowers (or florets)
are organized into spikelets. In maize, these spikelets are grouped
into separate male and female inflorescences (Figure 2A). The
highly branched male inflorescence, the tassel, is composed
of spikelet pairs, each of which comprises an upper and a
lower floret surrounded by the leaf like structures known as
glumes (Figure 2B). Similarly, spikelet pairs are formed in
the female inflorescence, but the lower floret in each spikelet
pair is aborted (Figure 2C) (Zhang and Yuan, 2014). Poaceae
flowers have stamens and carpels similar to eudicot flowers,
such as Arabidopsis. In maize, the male floret contains three
stamens (Figures 1C,D), while the female floret produces three
central carpels which are fused to form the pistil (Figures 1E,F)
(Zhang and Yuan, 2014). Maize florets do not contain sepals
and petals. Instead, the sepal-analogous organs lemma and palea
are produced (Figures 1C–F) (Schmidt and Ambrose, 1998;

Lombardo and Yoshida, 2015). Additionally, the petal analogous
structures known as lodicules are essential for pollination via
opening the bract organs (Yoshida, 2012).

Within cereal grains, floral organ degeneration is not unique
to maize. During development in grain crops such as wheat
(Triticum aestivum), rice (Oryza sativa), and sorghum (Sorghum
bicolor), the arrest of stamen or carpel primordia, or both
potentially results in reduced fertility or completely sterile flowers
(Bommert et al., 2005; Yoshida and Nagato, 2011; Aryal and
Ming, 2014). In the floret pair of sorghum, one floret is bisexually
fertile, whereas the other one is bisexually sterile. Similarly,
wild barley (Hordeum vulgare) produces a central fertile floret
surrounded by a pair of sterile florets, and even oats (Avena
sativa) are known to form sterile flowers at the apex of the rachilla
(Schmidt and Ambrose, 1998). Additionally, abiotic stresses
cause flower sterility, which consequently results in yield loss. In
this review, we will focus on discussing molecular genetic and
physiological mechanisms underlying sterility caused by floral

FIGURE 1 | Flower structures in Arabidopsis and maize as well as ABCE model. (A) A longitudinal view through a mature Arabidopsis flower (only 2 of 4 long
stamens shown). (B) A cross view through an Arabidopsis flower. (C) A longitudinal view through a mature male upper floret in maize. (D) A cross view through a
male maize flower. (E) A longitudinal view through a mature female upper floret in maize. (F) A cross section view a female maize flower. LE, lemma; LO, lodicule; PA,
palea; PE, petal; PI, pistil; SE, sepal; and ST, stamen. X indicates the aborted carpels. (G) The ABCE model in Arabidopsis. (H) The ABCE model in maize with most
likely orthologous genes.
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FIGURE 2 | Positions of maize florets in ear and tassel. (A) A mature
maize plant with positions of the tassel and ears. (B) Zoomed in view of male
florets in the tassel showing the upper florets (yellow), lower florets (blue), and
glumes (brown). (C) Enlarged view of female florets in the ear showing only the
upper florets (yellow) after the degeneration of the lower florets. E, ears; G,
glumes; LF, lower floret, T, tassel; and UF, upper floret. (B,C) Modified from
Bortiri and Hake (2007).

organ degeneration and abiotic stresses mainly in Arabidopsis and
key cereal grain plants.

MOLECULAR GENETIC REGULATION OF
FLORAL ORGAN DEGENERATION

Degeneration or abortion of developing stamens and/or pistil is
a main mechanism used by plants to produce unisexual flowers
or sterile flowers. In Arabidopsis, there are four major classes of
genes that specify floral organ identity. Class A genes [APETALA1
(AP1) and AP2], class B genes [AP3 and PISTILLATA (PI)],
the class C gene [AGAMOUS (AG)], and the semi-redundant
class E genes [SEPALATTA1-4 (SEP1-4)]. Class A and E genes
are required for specifying sepals in the first whorl. Class A,
B, and E genes in combination control petal identity in the
second whorl. Class B, C, and E genes direct the stamen
identity in the third whorl, and class C and E genes specify
carpels in the fourth whorl (Figure 1G) (Bowman et al., 1991;
Rounsley et al., 1995; Pelaz et al., 2000; Ditta et al., 2004). The
ABCE model can also be applied to flower development in
other plants including the Poaceae, although many variations
exist (Figure 1H; Table 1). Altered expression patterns of B
and C class genes can result in floral organ degeneration and
sterility.

The extensive roles and interactions of ABC genes in flower
development are summarized in Prunet and Jack (2014). What is
less clear and receives less attention is that after the establishment

of floral organ identity, how floral organ identity genes play a
role in development of functional floral organs. AG is required
throughout reproductive development for establishing fertility.
Specifically, AG is expressed in stamen and carpel primordia
initially, and later in specific cell types of stamens and carpels
(Bowman et al., 1991). AG (along with PI and AP3) controls
stamen development via directly activating the expression of
SPOROCYTELESS/NOZZLE (SPL/NZZ), which in turn regulates
microsporogenesis (Ito et al., 2004; Liu et al., 2009). AG also
upregulates the expression of the DEFECTIVE IN ANTHER
DEHISCENCE 1 (DAD1) gene that encodes a jasmonic acid (JA)
biosynthesis enzyme (Ito et al., 2007). The dad1 mutant produces
immature pollen, resulting in male sterility. If AG is not expressed
in flowers prior to stage 7 in Arabidopsis, plants fail to undergo
microsporogenesis, while increased duration of AG expression
enhances normal stamen and pollen production (Ito et al., 2007).
Similarly, in maize branched silkless1-2 (bd1-2) mutants, loss of
expression of class C and D (ovule specification) genes like ZAG1
(Zea mays AG1), ZAG2, and ZMM2 (Zea mays MADS2) may
cause female sterility (Colombo et al., 1998).

Flowers destined to be male or female often begin as
hermaphroditic flowers, but later undergo a programmed
degeneration of the gynoecium or androecium, respectively,
in early reproductive development. This degeneration is often
accompanied by down regulation of B and C class genes
(Ainsworth et al., 2005). Unisexual flowers in plants like
asparagus (Asparagus officinalis) undergo abortion late in
development at the onset of meiosis, although remnants of
male or female organs remain (Dellaporta and Calderon-Urrea,
1993; Aryal and Ming, 2014). In female asparagus flowers,
the expression of B class gene AODEF (Asparagus officinalis
DEFICIENS) is decreased in the stamen, which may cause stamen
degeneration (Park et al., 2003). Loss of class B gene function
also leads to stamen degeneration in the tulip (Tulipa gesneriana)
mutant viridiflora (Kanno et al., 2007). In male sorrel (Rumex
acetosa) flowers, both class B and C genes are present in early
male flower formation. In later stages, the expression of a class
C gene is not detectable in the region that would specify carpels
in a female or hermaphroditic flower (Ainsworth et al., 2005).
In white champion (Silene latifolia), the class C gene SLM1
(Silene latifolia MADS1) is expressed until meiosis in male
and female floral organs. Later in female flower development,
stamens undergo degeneration. The expression of SLM1 is
not detected in aborted stamens, while its expression persists
in the undeveloped gynoecium of male flowers (Hardenack
et al., 1994). Moreover, in S. latifolia, Arabidopsis orthologs
of SHOOT MERISTEMLESS (SLSTM1 and SLSTM2) and CUP
SHAPED COTYLEDON (SLCUC1 and SLCUC2) likely control
sex determination via regulating cellular proliferation in the third
whorl (Zluvova et al., 2006).

Growing evidence supports that the early loss of class B and
C genes leads to the arrest of development in reproductive organ
primordia and ultimately the inability of these flowers to form
functional carpels or stamens. It is clear that during development
class B and C genes must be expressed in the correct location
for a sufficient duration. Without the normal expression, flowers
exhibit a wide array of phenotypes, ranging from floral organs
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TABLE 1 | Key genes for maize unisexual flower development.

Gene Function Reference

ZAP1 Class A function Mena et al., 1995

ZMM4 Class A function Fischer et al., 1995

ZMM15, ZMM28 Class A function Münster et al., 2002

IDS1∗, SID1∗ Class A function Chuck et al., 1998, 2008

SI1 Class B function Ambrose et al., 2000; Whipple et al., 2004

ZMM16, ZMM18, ZMM29 Class B function Münster et al., 2001; Whipple et al., 2004

ZMM2 Class C function Theissen et al., 1995

ZMM23 Class C function Münster et al., 2002

ZAG1 Class C function Schmidt et al., 1993

ZAG2 Class D function Schmidt et al., 1993

ZMM1 Class D function Theissen et al., 1995

ZMM25 Class D function Münster et al., 2002

ZAG3 AGL6 function Mena et al., 1995; Thompson et al., 2009

ZMM6 Class E function Fischer et al., 1995

ZMM24, ZMM27, ZMM31 Class E function Münster et al., 2002

ZmLHS1a, ZM1HS1b (ZMM8, ZMM14) Class E function Cacharrón et al., 1999

ZMM3 Class E function Fischer et al., 1995; Kobayashi et al., 2010

ZMM7 Class E function Fischer et al., 1995

TS1 TS2 expression and JA production Calderon-Urrea and Dellaporta, 1999

TS2, TS4, TS6 Pistil abortion DeLong et al., 1993; Irish, 1997

SK1 Protects pistils Calderon-Urrea and Dellaporta, 1999

RMR6 Protects tassel by repressing SK1 Parkinson et al., 2007

NA1 Promotes stamen development, BR production Hartwig et al., 2011

OPR7, OPR8 Promote carpel abortion and stamen development; JA production Yan et al., 2012

AN1 promotes stamen arrest; GA production Bensen et al., 1995

D1, D2, D3, D5 Promote stamen arrest; GA production Fujioka et al., 1988; Spray et al., 1996

∗Cannot compensate for the AP2 mutation in Arabidopsis.

present in incorrect whorls, to unisexual flower development, and
even complete sterility.

Besides class B and C genes, many additional genes are
essential for the establishment of the unisexual state in
monoecious plants. Male and female flower development in
plants like maize begins as identical, but degeneration of
gynoecium primordia in the male flowers and degeneration of
stamen primordia in the female flowers result in the production
of two distinct flower types (Dellaporta and Calderon-Urrea,
1993; Irish, 1996). TASSEL SEED (TS) genes are responsible
for normal pistil abortion in the tassel. In recessive ts1
and ts2 mutants, feminization of tassels occurs and pistillate
flowers are formed. The ts1 mutant phenotype is attributable
to a mutation in a lypoxygenase that produces JA (DeLong
et al., 1993; Malcomber and Kellogg, 2006; Acosta et al.,
2009). TS2 (a short-chain alcohol dehydrogenase) triggers
the programmed cell death (PCD) of pistils (DeLong et al.,
1993; Parkinson et al., 2007). In silkless1 (sk1) mutants,
pistils are not developed in female florets, while male florets
are unaffected (Malcomber and Kellogg, 2006). In the ear,
SK1 protects pistils from undergoing PCD caused by TS2
(Calderon-Urrea and Dellaporta, 1999). Similarly, in the maize
relative Tripsacum, the TS2 homolog GYNOMONOECIOUS SEX
FORM1 is expressed in pistils prior to abortion (Li et al.,
1997).

Moreover, in required to maintain repression6 (rmr6) mutants,
pistils fail to abort, which causes the feminization in tassels
(Parkinson et al., 2007). RMR6 (encoding the largest subunit
of RNA polymerase IV, an orthologue of Arabidopsis NRPD1a)
acts by limiting the activity of SK1 to the primary ear floret,
resulting in PCD of the gynoecium in the tassel and the
secondary ear floret (Parkinson et al., 2007; Erhard et al.,
2009). In each of the dominant single mutants of Ts3, Ts5,
and Ts6, as well as the recessive mutant ts4, a variety
of phenotypes are observed in the tassel, such as reduced
tassel size, bisexual flowers, and feminization of the tassel
(Veit et al., 1993; Irish et al., 1994). Key genes involved in
unisexual flower development in maize are summarized in
Table 1.

In addition to the formation of unisexual flowers, completely
sterile flowers are also commonly produced in grasses due
to floral organ degeneration. In some cereal grains, a fertility
conversion of sterile flowers is possible. In the sorghum
multiseeded1 (msd1) mutant, the development of bisexually
sterile flowers become normal, leading to the formation of all
fertile flowers (Burow et al., 2014). In barley, the vrs1 (six-rowed
spike1) mutation results in fully fertile barley known as six-rowed
barley. In the wild-type barley, the VRS1 gene suppresses lateral
spikelet development, causing a central fertile floret surrounded
by two sterile florets (Komatsuda et al., 2007).
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FIGURE 3 | Effects of hormones on male and female flower development. Genes involved in hormone biosynthesis, transport, and perception are shown. A:
Arabidopsis thaliana, Z: Zea mays, ∗ Indicates cucumber genes used in Arabidopsis studies.

ROLES OF HORMONES IN FLORAL
ORGAN DEVELOPMENT

Hormones have strong influences on flower sexuality and fertility.
Some hormones are essential for both male and female organ
development, while others are male or female specific (Figure 3).
Brassinosteroids (BRs) and JA promote male but suppress female
organ development in both Arabidopsis and maize (Clouse et al.,
1996; Szekeres et al., 1996; Clouse and Sasse, 1998; Stintzi and
Browse, 2000; Zhao and Ma, 2000; Li et al., 2001; Nagpal et al.,
2005; Mandaokar et al., 2006; Acosta et al., 2009; Yan et al., 2012).
Ethylene has been shown to act as a feminizing agent in plants like
cucumber, but its role in Arabidopsis and maize is less understood
(Yin and Quinn, 1995; Duan et al., 2008; Wang et al., 2010). The
function of gibberellic acid (GA) is conflicting, as it is critical for
proper male organ development in Arabidopsis, but it antagonizes
stamen development in the maize ear (Fujioka et al., 1988;
Dellaporta and Calderon-Urrea, 1994; Bensen et al., 1995; Spray
et al., 1996; Goto and Pharis, 1999; Michaels and Amasino, 1999;
Cheng et al., 2004; Yu et al., 2004; Hu et al., 2008). Differently,
auxin is necessary for both male and female floral organ
development (Okada et al., 1991; Sessions et al., 1997; Nagpal
et al., 2005; Cheng et al., 2006; Wu et al., 2006; Dong et al., 2013).

Brassinosteroid
Brassinosteroids are widely involved in cell expansion, cell
division, senescence, vascular differentiation, and stress
responses. Overall, BRs promote the formation of stamens and
pollen in both Arabidopsis and maize, and the abortion of pistils
in staminate maize flowers. The constitutive photomorphogenesis
and dwarfism (cpd) mutant which fails to form the ecdysone-
like brassinosteroids, produces pollen defective in pollen tube
elongation (Szekeres et al., 1996). Both cpd and brassinosteroid-
insensitive1 (bri1) mutants make far fewer pollen grains per locule
with limited viability. Similarly, the brassinosteroid-insensitive2
(bin2) mutant is male sterile (MS; Li et al., 2001). Further studies

show that BRs control male fertility via regulating expression
of genes critical for anther and pollen development, such as
SPL/NZZ, DEFECTIVE IN TAPETAL DEVELOPMENT AND
FUNCTION 1 (TDF1), ABORTED MICROSPORES (AMS),
and MS1 and MS2 genes (Ye et al., 2010). Additionally, BRs
are required for sex determination in maize. In the maize
nana plant 1 (na1) mutant tassel, some carpels fail to abort,
resulting in both staminate and pistillate flowers (Hartwig
et al., 2011). The na1 mutation occurs in ZmDET2, a homolog
of the Arabidopsis DE-ETIOLATED2 (DET2) which encodes
the important BR biosynthesis enzyme 5α-steroid reductase,
suggesting an important role of BRs in the formation of tassel
flowers in maize.

Jasmonic Acid
In Arabidopsis and the maize tassel, JA is crucial for stamen
and pollen maturation. In Arabidopsis, the 12-oxophydoienoic
acid reductase 3 (opr3) mutant is deficient in JA synthesis at the
conversion of linolenic acid to JA. The opr3 mutant produces
stamens that are abnormal in filament elongation and dehiscence
(Stintzi and Browse, 2000; Zhao and Ma, 2000; Mandaokar et al.,
2006). Maize has a series of OPR genes, among which OPR7
and OPR8 represent the Arabidopsis OPR3 orthologs (Zhang
et al., 2005; Yan et al., 2012). The opr7-5 opr8-2 double mutant
plants form feminized tassels devoid of stamen formation and are
capable of seed production if pollinated with wild-type pollen.
This phenotype can be reversed by exogenous application of JA
(Acosta et al., 2009; Yan et al., 2012). A similar phenotype is
observed when the AG expression is lost, as AG promotes the
DAD1 (JA biosynthesis enzyme) expression (Ito et al., 2007).
AUXIN RESPONSE FACTOR (ARF) transcription factors ARF6
and ARF8 are required for JA production. Disruption of ARF6
and ARF8 genes results in delayed stamen development, and
consequently the complete male sterility (Nagpal et al., 2005).
As discussed above, feminization in the ts1 tassel is attributed
to loss of JA synthesis (Acosta et al., 2009). In the tomato
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JAjas–insensitive1 (jai-1) mutant, the male fertility is also greatly
affected with about 28% of pollen being viable and only 10%
actually germinating (Li et al., 2004). However, it is believed
that the additional female sterility may be caused by arrest in
embryo/seed development.

The effects of JA on stamen development and male fertility
in maize and Arabidopsis are consistent. In both organisms JA
promotes male organ development, but suppresses female organ
development. Unlike in Arabidopsis, JA is also important for
female fertility in tomato, indicating potentially divergent and
complex roles of JA in plant sexual reproduction that warrant
further exploration. Of particular interest, AG is required for
the DAD1 expression, suggesting interaction between the JA
signaling and the class C gene AG.

Ethylene
Ethylene promotes the formation of female flowers in cucumber
(Cucumis sativus). CsACO2 (OXIDASE GENE2) encodes an
ACC OXIDASE which oxidizes ethylene intermediates to form
ethylene. Transgenic Arabidopsis plants expressing CsACO2
under control of the AP3 promoter display repressed stamen
development and male sterility (Yin and Quinn, 1995; Duan
et al., 2008). Down-regulation of the ethylene receptor gene
ETR1 results in the decrease of the ETR1-interacting kinase
CTR1, which a repressor of the ethylene signaling. Loss of
ETR1 fails the formation of ETR1-CTR1 complex. Consequently,
de-suppression of the ethylene response pathway causes the
production of female flowers in Arabidopsis (Wang et al., 2010).
So far, little is known about the effects of ethylene on flower
development in monocots, including maize.

Gibberellin
In Arabidopsis, gibberellin (GA) deficiencies greatly impact male
fertility, resulting in partial or complete male sterility. Conversely,
GA deficiencies promote stamen maturation in the maize ear,
leading to the formation of perfectly bisexual flowers.

In Arabidopsis, the GA deficient mutant ga1-3, which fails to
catalyze the first step in GA biosynthesis due to a deletion in ent-
KAURENE SYNTHASE, exhibits abnormal microsporogenesis
and retarded growth of all floral organs, e.g., stamens with greatly
shortened filaments that cannot pollinate pistils (Michaels and
Amasino, 1999; Cheng et al., 2004; Yu et al., 2004). Similarly, the
ga1-1 mutant has severe defects in stamen and pollen maturation
as well as petal and sepal growth (Goto and Pharis, 1999). DELLA
proteins (transcriptional repressors), such as RGA, RGA-LIKE1
(RGL1), and RGL2, repress stamen development (Cheng et al.,
2004). The DELLA degradation triggered by GA activates JA
biosynthesis genes DAD1 and LIPOXYGENASE 1 (LOX1; Cheng
et al., 2009).

In Arabidopsis, during GA biosynthesis, four GIBBERELLIN
3-OXIDASE (GA3OX) genes are responsible for the final GA
activation. The ga3ox1 ga3ox3 double mutant shows high
frequency of sterility on the lowest siliques with fertility
restoration after the 20th to 25th silique, whereas triple mutants
ga3ox1 ga3ox3 ga3ox4 and ga3ox1 ga3ox2 ga3ox3, on average,
underwent a later conversion. This sterility is caused by abnormal
anther dehiscence and shortened anther filaments, highlighting

that GA is required for stamen development in Arabidopsis (Hu
et al., 2008).

In the maize ear, GA promotes the arrest of stamens, but
prevents carpel abortion. The maize ANTHER EAR1 (AN1)
gene is necessary for the production of ent-kaurene during GA
biosynthesis. Besides short stature and delayed maturity, the an1
mutant develops perfectly bisexual flowers in ears, indicating the
inability of the an1 plant to successfully abort stamens in the
ear (Bensen et al., 1995). In addition, maize dwarf mutants d1,
d2, d3, and d5, which are deficient in GA production, also form
stamens in flowers of the ear (Fujioka et al., 1988; Dellaporta and
Calderon-Urrea, 1994; Spray et al., 1996).

Taken together, in both dicots and monocots the male organ
development is sensitive to GA, however, its effects are opposite.

Auxin
In Arabidopsis and maize, auxin is required for the formation
of all floral organs, as disruption of genes associated with
auxin signaling, biosynthesis, and transport leads to flowers with
various abnormalities (Okada et al., 1991; Nagpal et al., 2005;
Cheng et al., 2006; Wu et al., 2006; Cecchetti et al., 2008).
ARFs activate or repress expression of auxin response genes. In
Arabidopsis, the arf6 arf8 double mutant and plants expressing
miR167 resistant versions of ARF6 and ARF8 exhibit many
flower defects, such as shortened petals, gynoecium, and stamen
filaments, failure to release pollen, as well as abnormal ovules
(Nagpal et al., 2005; Wu et al., 2006). In the arf3/ett (ettin)
mutant, a decreased number of stamens are observed (Sessions
et al., 1997). In the Arabidopsis floral organs in carpels (foc)
mutant, increased expression of ARF10, 16, and 17 due to the
lack of its negative regulator miR160 results in floral organ
loss and abnormal female fertility (Liu et al., 2010). In rice,
expressing the miR160 resistant version of OsARF18 causes the
formation of abnormal flowers and reduced seed set (Huang
et al., 2016a). Mutations in arf5/mp (monopteros) lead to either
small or absent lateral flowers (Przemeck et al., 1996). YUCCA
(YUC) genes in Arabidopsis encode auxin biosynthesis enzymes.
Stamens in the yuc2yuc6 double mutant fail to elongate but
produce pollen grains, while flowers in the yuc1yuc4 double
mutant cannot form functional reproductive organs (Cheng et al.,
2006). Ectopic expression of the small protein ligand TAPETUM
DETERMINANT1 (TPD1) causes abnormal ovule and seed
development via altering auxin signaling (Huang et al., 2016b,c).
In maize, mutation in the SPARSE INFLORESCENCE1 (SPI1)
gene, which functions as a YUC-like gene, results in tassels with
small ears and few kernels (Gallavotti et al., 2008a).

Many genes in the auxin transport pathway play key roles in
maintaining fertility and normal floral organ development. In
Arabidopsis, PIN-FORMED (PIN) transporters function in polar
auxin transport. In the pin1-1 mutant, various phenotypes, such
as missing stamens, the formation of sterile pistil-like structures,
and abnormal petal shape, are observed (Okada et al., 1991).
In maize, BARREN INFLORESCENCE1 (BIF1) and BARREN
INFLORESCENCE2 (BIF2) are involved in regulating polar auxin
transport. BIF1 likely acts upstream of polar auxin transport
via up-regulating the expression of ZmPIN1a (Gallavotti et al.,
2008b). The tassels and ears in bif1 and bif2 mutants have reduced
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number of spikelets/florets and floral organs, and consequently
fewer kernels (McSteen and Hake, 2001; Barazesh and McSteen,
2008; Skirpan et al., 2009). The rice gene LAZY1 (LA1), which
encodes a novel grass specific protein, is a negative regulator
of polar auxin transport (Li et al., 2007). In maize, the la1-ref
mutant carries a mutation in the maize ortholog of LA1 (Dong
et al., 2013). Spikelets in la1-ref either are not fully developed or
undergo abortion especially in the tassel tip. Similarly, in the ear,
silk production is decreased and spikelets are aborted in the ear
tip (Dong et al., 2013).

The role of auxin in flower development is challenging to
interpret. Due to the effects of auxin on the entirety of plant, it
is possible that some phenotypes are the consequence of larger
changes occurring in the plant. For example, as mentioned above,
the LA1 gene regulates polar auxin transport in Arabidopsis.
LA1 also affects plant architecture, since the tiller morphology is
altered in mutants like la1-ZF802 in a pattern known as tiller-
spreading (Li et al., 2007). These architectural changes may alter
photosynthesis which consequently affects fertility and yield (Wu
et al., 2013). Thus, more work should be done to look into
specific roles of all involved hormones in flower development
and fertility. Effects of hormones on female and male flower
development are summarized in Figure 3.

STERILITY AND ABIOTIC STRESSES

The loss of yield caused by abiotic stresses is partially
attributed to defects in flower development. Even a mild or
a short-term abiotic stress can cause a significant decrease in
fertility. The majority of studies focus on the effects of abiotic
stresses, including heat, cold, and drought, on fertility at the
morphological level in Arabidopsis and cereal grains; however, the
molecular mechanisms behind are not clear.

Heat Stress
Many stages of flower development, particularly the late
stages of stamen development, are sensitive to heat stress. In
Arabidopsis and cereal grains, sensitive stages include meiosis
of pollen mother cells (PMC), tapetum development, anther
dehiscence/pollen release, anthesis, and fertilization (Dupuis and
Dumas, 1990; Kim et al., 2001; Abiko et al., 2005; Oshino et al.,
2007; Thakur et al., 2010; Zinn et al., 2010; De Storme and Geelen,
2014). The overall effects of heat stress on male sterility depend on
duration, timing, and temperature (Schoper et al., 1986, 1987a,b).
The female organ is not as susceptible as the male organ to the
heat stress.

The tapetum in the anther is particularly vulnerable to heat
stress (Parish et al., 2012). In Arabidopsis, the tapetum consists
of a monolayer of cells, which surrounds successive stages of
microsporocytes, tetrads, microspores, and developing pollen
as anther development progresses. Tapetal cells undergo three
stages: differentiation, maturation, and PCD. First, the early
differentiated tapetal cells secrete the callase enzyme that is
required for the release of haploid microspores from meiotic
tetrads. Second, mature tapetal cells produce a large amount
of specialized non-photosynthetic plastids (elaioplasts) and

tapetosomes, which provide lipids, proteins, and sporopollenin
essential for pollen wall formation. Finally, tapetal cells are
degenerated via PCD, and the remnants are important for the
completion of pollen wall formation (McCormick, 1993; Wu and
Cheung, 2000; Parish and Li, 2010).

The abnormal tapetum or altered timing of its degeneration
causes pollen defects and consequently male sterility. Barley
and wheat grown at elevated temperatures (barley: 30–35◦C
day/20–25◦C night, wheat: 30◦C for 1–3 days, or varied 30/20◦C
day/night at meiosis) display precocious tapetum degradation
(Saini and Aspinall, 1982; Saini et al., 1984;Abiko et al., 2005;
Oshino et al., 2007; Omidi et al., 2014). In rice, tapetal genes
like YY1 and YY2 are down regulated following heat stress
[39/30◦C (day/night) for 5 days], affecting tapetum function and
consequently pollen viability (Endo et al., 2009). Additionally
in rice, male sterility in the thermos-sensitive genic male-sterile
(TGMS) line 95850ms is caused by premature tapetum PCD
and consequent pollen grain collapse (Ku et al., 2001, 2003). A
recent study shows that the TGMS trait in the thermosensitive
genic male sterile 5 (tms5) mutant is caused by the loss of
function of RNase Zs1, which processes mRNAs of three ubiquitin
fusion ribosomal protein genes (UbL40) (Zhou et al., 2014). At
restrictive temperatures, high level of UbL40 results in abortive
pollen and therefore male sterility. Arabidopsis plants under heat
stress (31 and 33◦C) show reduced expression of YUCCA genes
especially in tapetum and PMC. Inactivation of YUC2 and YUC6
leads to decreased male fertility, while which can be reversed
by exogenous application of auxin (Sakata et al., 2010, 2014).
More work needs to be done to understand the genetic pathways
leading to decreased fertility during heat stress, especially the role
of auxin in male fertility and tapetum development.

Another sensitive stage is the PMC meiosis. Wheat and rice
exposed to high or varied temperatures [wheat: high 30◦C (1–
3 days), varied 30◦/20◦C (day/night), rice: 39/30◦C (day/night;
5 days)] at and prior to the onset of PMC meiosis exhibit greatly
reduced grain set (Saini and Aspinall, 1982; Saini et al., 1984;
Endo et al., 2009; Omidi et al., 2014). Impairments in rice
PMC division occur even 5◦C over the ambient temperature
[28.3/21.3◦C (day/night)], resulting in decreased pollen
production especially in susceptible cultivars (Prasad et al., 2006).

Anther dehiscence, anthesis, and fertilization are sensitive to
elevated temperatures too. Heat stress applied to wheat [two-
day intervals of 36/31◦C (day/night)] from floral emergence to
3 days post anthesis results in male sterility due to abnormal
pollen grains (Tashiro and Wardlaw, 1990; Ferris et al., 1998).
Similarly, rice that receives a short-term (33.7◦C, 1 h) or a long-
term heat stress (35◦C, 38◦C, and 41◦C, 5 days) at anthesis display
reduced fertility, but with a better fertility when stress was applied
before or after anthesis (Satake and Yoshida, 1978; Jagadish et al.,
2007). Heat stressed rice [35/25◦C (day/night)] has decreased
anther dehiscence and pollen count (Das et al., 2014). Pollen
germination is also very vulnerable to high temperature stress.
When maize tassels and rice spikelets are subjected to high heat
stress [maize: 6 h of 40◦C, rice: 35/25◦C (day/night) or greater
for 3 days], the ability of pollen to fertilize the ear is lost, which
is attributed to the failure of pollen tube growth (Dupuis and
Dumas, 1990; Das et al., 2014). In Arabidopsis, disruption of
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THERMOSENSITIVE MALE STERILE 1 (TMS1), which encodes
the heat shock protein HSP40, causes pollen tubes to burst and
decreased pollen tube length (Yang et al., 2009).

Although the cause of the heat-induced sterility is not clear, it
might be related to heat shock proteins like HSP40 mentioned
above (Yang et al., 2009). Mutations in the small heat shock
protein gene BOBBER1 (BOB1) result in a range of phenotypes,
such as irregular flowers and sterile siliques (Perez et al., 2009).
In maize, pollen infertility may be due to the lack of production
of major protective HSPs (Dupuis and Dumas, 1990; Hopf et al.,
1992), supported by the fact that pollen grains do not express HSP
RNAs at dehiscence (Dietrich et al., 1991; Young et al., 2001). In
wheat, heat-stress induces many HSPs, including HSP17, HSP26,
and HSP70, as well as microRNAs targeted HSP genes (Kumar
et al., 2015).

Cold Stress
Extensive research has been done about the effects of below
optimal temperature conditions on growth and development of
Arabidopsis and cereal crops. In Arabidopsis, a large number
of genes are identified with differential expression after chilling
stress, and many of which play roles in pollen development (Lee
et al., 2005; Zou and Yu, 2010). The COLD REGULATED (COR)
genes are induced at low temperatures. The WRKY transcription
factors repress COR expression via binding to their c-repeat
binding factors (CBF; Zou et al., 2010). Plants harboring mutated
WRKY genes show increased pollen viability under the chilling
stress. In Arabidopsis, freezing treatment (0◦C for 72 h) induces
the acclimation of COR, lipid transfer proteins, and β-amylase
in vegetative tissues, but not in pollen, which may explain the
inability of pollen to withstand the chilling stress (Lee and
Lee, 2003). In rice, DEHYDRATION RESPONSIVE ELEMENT
BINDING PROTEIN1F (OsDREB1F) activates the expression of
COR15a. Overexpression of OsDREB1F causes increased cold
and drought tolerance, which aids spike development, further
highlighting the role of COR genes in cold tolerance (Wang
et al., 2008). For a review on freezing tolerance genes Thomashow
(1999).

In cereal grains, the establishment of reproductive
development, branching, and spikelet pair formation are
sensitive to low temperature stress. Maize plants grown at cold
conditions (10◦C for 3 days or longer) during the reproductive
transition produce less tassel branches and spikelet pairs
(Bechoux et al., 2000). In the maize inbred line Dent11, chilling
stress [17/6◦C (day/night)] leads to the reduction of 43 and 29%
of pollen when stress is applied at branch and spikelet initiation,
respectively (Tranel et al., 2009).

In anthers, meiosis and tapetum development are particularly
cold sensitive. Sorghum and rice display male sterility under
cold conditions during meiosis and microspore development
(Downes and Marshall, 1971; Mamun et al., 2006; Wood et al.,
2006; Gothandam et al., 2007; Sakata et al., 2014). Abnormal
tapetum development and degradation under chilling stress
results in aberrant pollen (Sakata et al., 2014). Plants insensitive to
GA or deficient in GA production exhibit more severe problems
in tapetal cell hypertrophy and pollen production under chilling.
In the tapetum, chilling stress represses both the cell wall bound

acid invertase gene OSINV4 and the monosaccharide transporter
gene OSMST8, which causes failed transport of sugar to the
tapetum and developing pollen (Oliver et al., 2005; Mamun et al.,
2006). ABA application also leads to abnormal pollen, possibly by
repressing OSINV4 and OSMST8 (Oliver et al., 2005). More work
needs to be done in the future to determine genes responsible for
the abnormal development of tapetum under chilling conditions.

Later in development, anthesis and pollen germination
are also cold sensitive. In wheat, chilling conditions [8/2◦C
(day/night)] applied to anthesis result in high levels of male
sterility (Subedi et al., 1998). In Arabidopsis, freezing stress causes
reduced pollen tube growth and decreased seed production.
Similarly, mutations in G protein-coupled receptor-type G
proteins (GTGs) lead to decreased pollen germination, abnormal
pollen tube elongation, and consequent seed loss (Jaffé et al.,
2012). In rice, the QTL COLD1, which encodes a regulator
of G-protein signaling, acts to sense chilling (Ma et al.,
2015). COLD1 is important for maintaining grain yield, further
suggesting that G-protein signaling plays a key role in chilling
tolerance during sexual reproduction. In young rice panicles, the
Ctb1 QTL harbors an F-box protein gene that is responsible for
chilling tolerance (Saito et al., 2010). Additionally, upregulation
of the CORN CYSTATIN genes CC8 and CC9 is observed under
cold stress (14 and 14/7◦C). CC8 is found in kernel and the
immature tassel, while CC9 is detected in immature and mature
tassels, silk, and kernels (Massonneau et al., 2005). Future study
looking into the roles of these cystatins in fertility could be
valuable.

Collectively, similar to what is observed under heat stress, the
stamen development is sensitive to cold stress, particularly during
meiosis, tapetum development, pollen germination, and anthesis.
The female organ development remains relatively unaffected to
cold stress. However, not all studies agree with this finding. In
maize, prolonged exposure to cold stress (10◦C for 7 days) results
in the abortion of the ear (Lejeune and Bernier, 1996). The effects
of ear abortion may be prevented by applying benzyladenine (a
synthetic cytokinin) exogenously (Lejeune et al., 1998). Genes like
COR and those involved in GA and G-protein signaling may play
important roles in chilling tolerance during sexual reproduction.

Drought Stress
Similar to heat, drought stress affects flower development
and consequently impairs fertility. In stamen development,
drought stress causes shortened anther filaments, delayed anther
development and dehiscence, as well as reduced pollen viability
(Su et al., 2013; Tunc-Ozdemir et al., 2013; Ma et al., 2014).
Female fertility is less sensitive to drought stress (Su et al., 2013).
Younger buds are sacrificed during early drought stress and water
is likely allocated to older flowers (Su et al., 2013).

Under moderate and severe drought stresses, thousands of
genes are differentially expressed (Ma et al., 2014). Genes like
DREB1, ABA-RESPONSIVE ELEMENTS BINDING FACTORS
(ABF), NAC DOMAIN CONTAINING PROTEIN019 (NAC019),
RESPONSIVE TO DESSICATION20 (RED20), and RD29A were
upregulated (Su et al., 2013). A great number of genes involved
in ABA and JA signaling are also upregulated, which may affect
stamen filament elongation as well as overall stamen and pistil
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development (Su et al., 2013). CYCLIC NUCLEOTIDE-GATED
CHANNEL16 (CNGC16) is important for stress response, as
disruption of CHGC16 leads to reduced pollen viability (Tunc-
Ozdemir et al., 2013).

Some cereals like rice and wheat are sensitive to drought
stress, whereas others such as sorghum are quite drought
tolerant. In maize, female organ development, particularly
prior to pollination, is sensitive to drought stress, which is
often attributed to problems with carbohydrate transport and
metabolism. When comparing well watered with drought treated
plants, carbohydrate transport to ovary is decreased in drought
conditions and expression of carbohydrate (e.g., starch and
sucrose) metabolism genes is altered (Mäkelä et al., 2005;
Kakumanu et al., 2012). Many genes in maize kernels show
differential expression under drought stress, such as those
important for carbohydrate metabolism (SU1P, ISA1, DULL1,
FRK2, GLU1, and AAG1), stress response and regulation (ZmDJ1,
SOD1, and STI1), and transcriptional regulation of drought
inducible genes (EREBP1, MYB-IF35, MYB-IF25I, and RISBZ4;
Marino et al., 2009). Under drought conditions, genes involved
in cell cycle, cell division, and antioxidant formation are down
regulated in ovaries, while genes essential for stress responses
like ABA are expressed at higher levels. Increased ABA may lead
to a reduction of invertase in ovaries, limiting sucrose use and
subsequent ovary abortion (Zinselmeier et al., 1999; Andersen
et al., 2002; Boyer and Westgate, 2004; McLaughlin and Boyer,
2004; Kakumanu et al., 2012).

During meiosis, drought stress results in differential
expression of many genes, for example, genes encoding
β-carotene hydroxylase and cytochrome P450 monooxygenase
which might protect against oxidative damage. Altered
expression was also observed in genes that encode histone
H2A and dehydrin DHN1, suggesting the importance of
chromatin stabilization and dehydration prevention under
drought stress (Zhuang et al., 2008). After pollination, elevated
expression of senescence genes may be the cause of embryo
abortion (McLaughlin and Boyer, 2004). Interestingly, pollen
development was relatively unaffected by drought stress in maize
(Schoper et al., 1986; Westgate and Boyer, 1986).

Drought stress is detrimental to pollen production in wheat,
resulting in a 40–50% of reduction in yield (Dorion et al., 1996).
Drought-induced degeneration of tapetal cells may contribute to
the failure of microspore and pollen development. The timing
of tapetum degeneration is crucial, as its early degeneration
results in loss of orientation, and late degeneration leads to
microspores that do not receive essential nutrients (Saini et al.,
1984; Lalonde et al., 1997; Ji et al., 2010). In addition, pollen
developed under drought condition is devoid of starch, limiting
fertilization, and pollen tube growth (Ji et al., 2010). In wheat,
drought stress decreases the level of invertases in developing
pollen and microspores, (Dorion et al., 1996; Lalonde et al., 1997;
McLaughlin and Boyer, 2004; Koonjul et al., 2005). Drought
tolerant lines have a normal invertase expression (Ji et al., 2010).
In wheat, no effects are observed on female fertility under
moderate drought stress (Saini and Aspinall, 1981; Ji et al., 2010).

In rice, male sterility is common under drought stress
conditions. If drought conditions are applied during PMC

meiosis, the pollen production is severely affected (Sheoran
and Saini, 1996), which is potentially caused by tapetal cell
vacuolization/degeneration and abnormal starch deposition
(Nguyen and Sutton, 2009; Jin et al., 2013). Under drought
conditions, the presence of reactive oxygen species (ROS) results
in a depletion of ATP and therefore leads to PCD and pollen
abortion in rice (Nguyen et al., 2009). Furthermore, expression
of genes critical for tapetal cell PCD and pollen wall formation
is altered along with increased ABA signaling and decreased GA
signaling (Jin et al., 2013). Both invertase and starch synthase
gene expression are reduced under drought stress (Sheoran and
Saini, 1996; Nguyen et al., 2010). Conversely, genes involved
in sugar transport are upregulated (Sheoran and Saini, 1996;
Nguyen et al., 2010; Fu et al., 2011). The accumulation of sugar
may help maintain water levels in the anther due to low water
potential (Fu et al., 2011).

It is not clear why the stamen development and male fertility
appear more susceptible to abiotic stresses in plants. It will be
necessary to identify genes that first respond to abiotic stresses
and genes that later build strength for plants to cope with
long-term abiotic stresses. Hormones, such as ABA and auxin,
are heavily involved in abiotic stresses. It is well known that
cross-talks are important for plant hormonal signaling; however,
little is known about cross-talks among hormones in response
to different abiotic stresses. The effects on fertility and some
potential genes involved under abiotic stresses are summarized
in Table 2 and Figure 4.

CONCLUSION AND FUTURE
DIRECTIONS

Floral organ degeneration or abortion under the normal
condition results in the formation of unisexual flowers, such
as in maize; or completely sterile flowers, such as in sorghum.
In addition to other genes, class B and C genes are involved
in floral reproductive organ degeneration via losing their
functions in floral organ identity or in regulating expression of
downstream target genes. Moreover, hormones play important
roles in establishing the male and female state. Genes underlying
JA and BR signaling and their biosynthesis promote stamen
development and carpel abortion, whereas genes involved in GA
signaling and their biosynthesis induce carpel development and
stamen abortion (with exception of the maize ear). Auxin is
essential for the formation of all floral organs, including stamen
and carpels. Interactions between flower and hormone regulation
genes are essential for flower organ establishment and fertility.

It is evident that maintaining ideal temperature and soil
moisture is crucial for fertility in Arabidopsis, maize, wheat,
and rice. Abiotic stresses commonly lead to male sterility, while
female viability is well maintained under most mild abiotic
stresses. In nearly all plants under all observed abiotic stresses,
the most sensitive stages causing sterility are during tapetum
development, male meiosis, microsporogenesis, anthesis, and
fertilization. Hormones play important roles in male and female
organ development during abiotic stresses. Auxin application
can reverse some effects of heat stress, whereas decreased GA in
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TABLE 2 | Effects of abiotic stresses on sterility and genes involved.

Stress Organism Key effects of stress Genes involved

Heat Arabidopsis Abnormal microsporogenesis, irregular pollen and male sterility TMS1, BOB1, YUC2, YUC6

Heat Maize Decreased pollen germination and pollen tube growth, decreased
number of silks and florets, kernel abortion

HSP70, HSP18, HSP101

Heat Wheat Early tapetum degradation, decreased pollen viability, reduced anther
size, irregular embryo sac development

ARF, TPR

Heat Rice Abnormal microsporogenesis, decreased pollen production and viability,
altered flower timing

YY1, YY2

Chilling Arabidopsis Decreased pollen viability and pollen tube growth COR, WRKY, CBF1

Chilling Maize Decreased number of tassel branches and spikelet pairs, decreased
pollen production, ear abortion

CC8, CC9

Chilling Wheat Pollen death and male sterility, no affects on female development None

Chilling Rice Abnormal microspore, pollen development, and tapetum degradation COLD1, OsINV4, OsMST8, OsDREB1F

Drought Arabidopsis Decreased anther filament length, delays in anther development and
dehiscence, decreased pollen viability

DREB1, ABF, NAC019, RED20, RD29A, CNGC16

Drought Maize Decreased number of kernels and increased embryo abortion TM00030371, TM00036151, H2A, DHN1, SIP1, SU1P, ISA1,
DULL1, FRK2, GLU1, AAG1, ZmDJ1, SOD1, STI1, EREBP1,
MYB-IF35, MYB-IF25I, RISBZ4

Drought Wheat Abnormal microspore and tapetum development, pollen devoid of
starch, decreased fertilization and pollen tube growth

IVR1, IVR5

Drought Rice Decreased pollen viability, abnormal tapetal degeneration and starch
deposits in pollen

OsDREB1F, OsmiR408, OsCIN4, OsSUT5, OsM577

FIGURE 4 | Effects of abiotic stresses on fertility in Arabidopsis and key cereals. Genes (italic) and proteins (non-italic) involved are shown.

stressed plants worsens tapetum defects and consequently further
reduces pollen production.

Overall, abiotic stress induced sterility causes the major loss
of crop yield. By 2050 the global population is expected to
reach 9.1 billion. Additionally, if the use of grains for biofuel
production is intensified, the demand for crop products will be
further increased. High-yield wheat ideotypes are currently being
studied and improved based on long-term climate projections
(Semenov and Stratonovitch, 2013). To develop high-yield crops

that have ideal agronomic traits and can cope with anticipated
environmental changes using traditional and molecular breeding
approaches, it is necessary to decipher molecular genetic
mechanisms that cause flower sterility under normal and stress
conditions.
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