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Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two

phylogenetically closely related agricultural pests. While pea aphid is restricted to

Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40

families. Transcriptome comparison could shed light on the genetic factors underlying

the difference in host range between the two species. Furthermore, a large scale study

contrasting gene expression between immature nymphs and fully developed adult aphids

would fill a previous knowledge gap. Here, we obtained transcriptomic sequences

of green peach aphid nymphs and adults, respectively, using Illumina sequencing

technology. A total of 2244 genes were found to be differentially expressed between

the two developmental stages, many of which were associated with detoxification,

hormone production, cuticle formation, metabolism, food digestion, and absorption.

When searched against publically available pea aphid mRNA sequences, 13,752

unigenes were found to have no homologous counterparts. Interestingly, many of these

unigenes that could be annotated in other databases were involved in the “xenobiotics

biodegradation and metabolism” pathway, suggesting the two aphids differ in their

adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene

pairs between the two species were subjected to calculations of synonymous and

nonsynonymous substitutions, and 148 of the genes potentially evolved in response

to positive selection. Some of these genes were predicted to be associated with

insect-plant interactions. Our study has revealed certainmolecular events related to aphid

development, and provided some insight into biological variations in two aphid species,

possibly as a result of host plant adaptation.

Keywords: Myzus persicae, Acyrthosiphon pisum, nymph and adult, transcriptome, developmental regulation,

synonymous and nonsynonymous substitutions, host plant adaptation

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.01562
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01562&domain=pdf&date_stamp=2016-10-21
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:fangjc@jaas.ac.cn
mailto:ksalzman@tamu.edu
http://dx.doi.org/10.3389/fpls.2016.01562
http://journal.frontiersin.org/article/10.3389/fpls.2016.01562/abstract
http://loop.frontiersin.org/people/345096/overview
http://loop.frontiersin.org/people/384589/overview
http://loop.frontiersin.org/people/345683/overview
http://loop.frontiersin.org/people/105971/overview
http://loop.frontiersin.org/people/345773/overview
http://loop.frontiersin.org/people/384585/overview
http://loop.frontiersin.org/people/341812/overview


Ji et al. Transcriptome Analysis of Myzus persicae

INTRODUCTION

Aphids (Insecta: Hemiptera), a group of economically important
insect pests that consume plant phloem sap, cause substantial
losses of crop yield by direct feeding on host plants and by
vectoring plant viruses (Dixon, 1998). More than 450 species
within Aphididae attack agricultural and horticultural plants, of
which over 100 are categorized as significant and economically
important pests (Blackman and Eastop, 1984). While some
aphids are specific to plant species in a single taxonomic family,
others have an exceptionally broad host range across many plant
families. Green peach aphid (Myzus persicae) is a generalist with
a host range comprising 40 different plant families including
Brassicaceae, Solanaceae, and Fabaceae. Moreover, it is the most
versatile viral vector, capable of transmitting more than 100
plant viruses (Ramsey et al., 2007). In contrast, pea aphid
(Acyrthosiphon pisum) feeds specifically on legumes. Despite
different feeding habits, they are both classified in the tribe
Macrosiphini within the subfamily Aphidinae (von Dohlen et al.,
2006). The close relationship between the two aphids is further
supported by analysis of mitochondrial and nuclear sequences
as well as transcriptomic sequence comparisons (Ramsey et al.,
2007; Kim and Lee, 2008). Due to the difference in host range,
green peach aphids most likely ingest toxic metabolites that pea
aphids would not normally encounter, such as glucosinolates in
Brassicaceae and alkaloids in Solanaceae, necessitating a more
complex metabolic system (Ramsey et al., 2010).

Hemipteran immature nymphs and fully developed adults
sometimes differ in their feeding behavior. Lygus hesperus

nymphs prefer developing cotton squares, whereas adults prefer
vegetative structures (Snodgrass, 1998). In three spittlebug
species (Aeneolamia varia, A. reducta and Zulia carbonaria),
foliage-feeding adults are more capable of feeding upon
resistant hybrid crops than root- and stem-feeding nymphs
(Cardona et al., 2010). Besides host and tissue preferences,
quantity of food intake can vary (Banks and Macaulay, 1965).
Profiling in nymphal and adult transcriptomes could reveal
biological properties that are developmental stage-specific.
In Asian citrus psyllid (Diaphorina citri) for instance, the
transcriptome comparison revealed distinct patterns of protein
and energy requirements between nymphs and adults (Vyas
et al., 2015). This approach has also identified differentially
expressed resistance/detoxification genes, e.g., cytochrome
P450, glutathione S-transferase (GST), and ATP-binding
cassette transporter genes from two developmental stages
of a thiamethoxam-resistant strain of whitefly (Yang et al.,
2013). Contrasting gene expression among different insect
developmental stages on a large scale can not only shed light
on development modulation, reproduction, and developmental
stage-specific interaction with host plant, xenobiotics, and
invading microbes, but can also facilitate the improvement of
pest management strategies (Yang et al., 2013; Tian et al., 2015;
Vyas et al., 2015). However, stage-specific gene expression in
immature nymphs and fully developed adults has not yet been
characterized in aphids.

While comparative genomic sequence analysis has furnished
tremendous information regarding genetic factors underlying

inter-species divergence (Chinwalla et al., 2002; Kaufman et al.,
2002; Kirkness et al., 2003; Zdobnov and Bork, 2007; Arensburger
et al., 2010; Bonasio et al., 2010; Werren et al., 2010), an
increasing number of studies have applied RNA-seq for this
purpose, particularly in species whose genome sequences are
unavailable. For example, transcriptomic comparisons have been
performed between different aphids, A. pisum vs. Sitobion avenae
(Wang et al., 2014), whitefly (Bemisia tabaci) species complexes
Middle East-Asia Minor 1 vs. Mediterranean (Wang et al.,
2011), ranid frogs Rana chensinensis vs. Rana kukunoris (Yang
et al., 2012), ornamental primrose species Primula poissonii vs.
Primula wilsonii (Zhang L. et al., 2013), and fishes, Erythroculter
ilishaeformis vs. Danio rerio (Ren et al., 2014). Comparisons
among pea aphid, green peach aphid and grain aphid (S. avenae)
have enabled investigation of the transcriptome evolution and
understanding of the differences in host plant adaptation and
insecticide resistance among them (Ollivier et al., 2010; Ramsey
et al., 2010;Wang et al., 2014). Between grain aphid and pea aphid
340 gene orthologs are considered to be under positive selection
based on the rates of nonsynonymous (Ka) and synonymous
(Ks) substitutions (Wang et al., 2014). Such orthologs were also
identified when Ollivier et al. (2010) compared coding sequences
(CDSs) derived from the genome sequence of pea aphid and EST
database derived from 5 tissues of green peach aphids reared on
5 host plants (Ramsey et al., 2007). Later, Ramsey et al. (2010)
sequenced the transcriptome from mixed stages of green peach
aphids using 454 pyrosequencing. Besides the reads mapped
to the existing ESTs, they obtained 47,832 additional unigenes
with a mean length of 160 bp, from which they identified
more detoxification genes in green peach aphid than in pea
aphid (Ramsey et al., 2010). However, limited transcriptomic
information may not fully reflect the divergence between the two
species.

In this study, we performed transcriptomic sequencing of
green peach aphid nymphs and adults using Illumina RNA-
seq technology, de novo assembled sequencing reads, and
annotated the resulting unigenes. Gene expression profiling
between nymphs and adults identified genes potentially
involved in development modulation. Furthermore, comparative
transcriptomic analyses identified genes unique to green peach
aphid (relative to pea aphid) and orthologous gene pairs under
positive selection. Data analysis has helped expose certain genetic
factors underlying host plant adaptation by the two destructive
aphid species.

MATERIALS AND METHODS

Plant Growth and Insect Rearing
Arabidopsis ecotype Col-0 plants were grown in LP5 potting
medium (Sun Gro Horticulture, Agawam, WA, USA) in
an environmental chamber at 23◦C (day)/21◦C (night), 65%
relative humidity (RH), and a photosynthetic photon flux
density of 88 µmol m−2 s−1 with a 12-h light/12-h dark
photoperiod. The green peach aphid (a tobacco-adapted red
lineage from Dr. Georg Jander, Boyce Thompson Institute
for Plant Research, Cornell University) had been maintained
on Col-0 for over 40 generations. Age-synchronized nymphs
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and adults were subjected to RNA extraction as described
below.

RNA Isolation and Transcriptome
Sequencing
Neonate nymphs (within 16 h) were placed on 4-week-old Col-
0 plants for 4 or 8 days respectively. Sixty 4-day-old nymphs
and 60 8-day-old adults were collected, immediately frozen
in liquid nitrogen, and stored at −80◦C for RNA extraction.
Three independent biological replicates were performed for
transcriptome sequencing analysis.

Total RNA was extracted with TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA). RNase-Free DNase (Qiagen, Valencia, CA,
USA) was added to remove residual DNA. Samples were then
further purified using RNeasy Mini Kit (Qiagen) according
to the manufacturer’s instructions. Purified total RNA samples
were quantified using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) and qualified
by Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). Transcriptome sequencing was performed on an Illumina
HiSeq 2500 platform with 125-nucleotide (nt) paired-end reads
at Texas A&M AgriLife Genomics and Bioinformatics Services
(College Station, TX, USA).

Sequence Assembly and Annotation
After trimming the adaptor sequences and removing short or
low-quality reads (>5% unknown nucleotides or more than 20%
nts with >10% error rate), the processed reads were assembled
using Trinity software (Trinity Software, Inc., Plymouth, NH,
USA) and clustered with TGICL Clustering tools (The Institute
for Genomic Research, Rockville, MD, USA) (Pertea et al.,
2003; Grabherr et al., 2011). The publically available databases,
NCBI non-redundant (Nr), NCBI non-redundant nucleotide
(Nt), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Cluster of Orthologous Groups of proteins (COG) were used
to perform BLAST analyses to annotate the functions of these
assembled unigenes (E-value cutoff of 10−5). Blast2GO software
(http://www.geneontology.org) was used for gene ontology (GO)
annotations (Conesa et al., 2005).

Differential Gene Expression and RT-qPCR
Confirmation
Genes differentially expressed between nymphs and adults were
identified based on Fragments Per Kilobase per Million mapped
reads (FPKM) values, which adjusts the number of fragments
mapped to a transcript by the total number of fragments mapped
to all unigenes and the length of the transcript (Mortazavi et al.,
2008; Ji et al., 2013). The false discovery rate (FDR) was used
for the P-values in multiple tests and analyses. A FDR ≤ 0.001
and an absolute value of the log2 ratio ≥ 1 provided significance
threshold for gene expression differences.

To validate the FPKM analysis, expression of 20 selected genes
were measured in nymphs and adults by RT-qPCR. For each total
RNA sample, 2 µg RNA was used to synthesize cDNAs with
random hexamer primers (Invitrogen) and M-MuLV reverse
transcriptase (New England Biolabs, Beverly, MA, USA). qPCR
reactions were performed using Power SYBR Green PCR Master

Mix (Applied Biosystems, Foster City, CA, USA) according to
the manufacturer’s protocol and run on the CFX384TM Real
Time System (BioRad, Hercules, CA, USA). Dissociation curve
analyses were performed to ensure amplification specificity.
Mean fold change in gene expression was calculated as described
previously (Chi et al., 2011). Primer sequences are provided in
Table S1. The 18S rRNA gene of green peach aphid (Acc. No.
AF487712.1) was amplified as the internal control.

Functional Analysis of Differentially
Expressed Unigenes
GO enrichment analysis was performed to recognize the main
biological functions of differentially expressed unigenes. The
hypergeometric test was performed to find significantly enriched
GO terms in differentially expressed unigenes compared to the
whole reference transcriptome background (Su et al., 2012; Ji
et al., 2013). The P-value was calculated with the formula:

P = 1 −

m−1
∑

i= 0

(

M
i

) (

N −M
n− i

)

(

N
n

)

where N and n are defined as the number of genes in
the transcriptome and differentially expressed genes with GO
annotations, respectively. The variables M and m represent
the gene number in the transcriptome annotated to a certain
GO term and differentially expressed genes within the group
(M-m ≥ 0), respectively. The calculated P-value was subjected
to Bonferroni correction. GO terms with corrected P-value, i.e.,
Q < 0.05 were considered significantly enriched.

KEGG analyses were performed to identify significantly
enriched pathways represented by differentially expressed
unigenes. The hypergeometric test was used in a similar way to
that for GO enrichment analysis and the terms with Q < 0.05
were determined as enriched pathways.

Ka and Ks Analyses
To predict CDS regions, unigenes were first aligned by BLAST
analyses with E-value cutoff of 10−5 to public databases in
the priority order of Nr, Swiss-Prot, KEGG, and COG. Coding
regions with the best match in BLAST were considered to be
the CDS. Unigenes unable to be aligned to any databases were
scanned by ESTScan, which may predict some coding regions.
The CDSs of pea aphid were predicted from the mRNA sequence
data (https://www.aphidbase.com/aphidbase/content/download/
3250/33670/file/aphidbase_2.1b_mRNA.fasta.bz2).

After filtering the redundant CDSs that may result from
alternative splicing, predicted CDSs of the two aphid species
were used to identify orthologous genes using OrthoMCL (Li
et al., 2003). Only single-copy ortholog pairs longer than 150 bp
were considered as putative orthologous gene pairs. Ka, Ks, and
Ka/Ks-values were computed using the YNmethod implemented
in the software KaKs Calculator Version 1.2 (Yang and Nielsen,
2000; Wang et al., 2011, 2014). As the sequencing errors were
distributed among synonymous and non-synonymous sites at
equal frequencies, they were not expected to strongly influence
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the results of analyses (Tiffin and Hahn, 2002; Wang et al., 2011,
2014).

RESULTS AND DISCUSSION

Illumina Sequencing Analysis and De novo

Assembly
High-throughput RNA-seq generated the most extensive current
transcriptome for the green peach aphid. After quality checks,
about 74.1, 74.0, and 74.5 million reads were obtained from the
three replicates of nymphs and 74.6, 76.0, and 74.3 million reads
from adults (Table 1). All reads were deposited in the NCBI
Short Read Archive (SRA, the accession number SRP073458).
The reads were assembled into 89,944, 85,416, and 82,810 contigs
withmean lengths of 474, 502, and 460 nt for nymphs and 81,641,
78,710, and 87,354 contigs with mean lengths of 472, 484, and
464 nt for adults (Table 1). Using paired-end joining and gap-
filling, these contigs were finally assembled into a total of 62,627
consensus sequences with a mean length of 1460 nt. GC contents
were 39.00% for nymphs and 39.63% for adults, comparable to
that of the pea aphid (38.80%) (Wang et al., 2014).

Functional Annotation and Classification of
the Assembled Unigenes
Of the 62,627 unigenes, 33,543 were annotated by referencing to
the Nr database (Table S2); 66.66% of the annotated sequences
had very strong homology (E < 10−60), 12.02% showed strong
homology (10−60

< E < 10−30) and the rest 21.32% showed
homology (10−30

< E< 10−5) to known sequences. With respect
to species, 92.30% of the unique annotated sequences matched
to pea aphid, 1.45% to Tribolium castaneum, 0.49% to Bombus
impatiens, and 0.41% to Camponotus floridana.

GO assignments were used to classify the functions of the
predicted unigenes; 14,260 sequences were categorized into
46 GO terms consisting of three domains: biological process,
cellular component and molecular function (Figure 1). The most
abundantly expressed genes in “biological process” were involved
in cellular process (9028), single-organism process (7075), and
metabolic process (6557). In “molecular function,” genes involved
in catalytic (6894), binding (6678), and transporter (1137)
activities were most abundantly expressed (Figure 1).

To better understand the biological pathways that are active
in the green peach aphid, we mapped all sequences to the
canonical reference pathways in the KEGG database. As a
result, 23,695 sequences were assigned to 187 insect-related
KEGG pathways (Table S3), with 3286 unigenes (15.47%) being
involved in metabolic pathways. These annotations could be
useful for further investigation of specific processes, functions
and pathways.

Comparison of Gene Expression Profiles
between Nymphs and Adults
When different developmental stages were compared, 1639 genes
showed higher expression in nymphs and 605 higher in adults
(Figure 2, Table S4). We performed RT-qPCR on selected genes
to validate these gene expression data. Of the 20 selected genes,

18 were in agreement with RNA-seq results, suggesting good
quality of transcriptomic analysis (Table S5). To gain insight into
the major biological pathways represented by the differentially
expressed genes, 21 enriched insect-related pathways (Q < 0.05)
were identified using the hypergeometric test (Table 2); 14 were
associated with “metabolism” and 3 with “digestive system,”
suggesting differential metabolic and digestive activities between
nymphs and adults (Banks and Macaulay, 1965; Randolph
et al., 1975). The most enriched pathway being “metabolism of
xenobiotics by cytochrome P450” is intriguing because it may
reflect developmental stage-specific interaction with the host
plant. Presumably, nymphal, and adult aphids ingest different
amounts of allelochemicals, given that more detoxification genes,
e.g., 16 of the 23 differential P450 genes, and all differential
esterase (6) and GST (1) genes, were expressed in higher
abundance in adults (Table 3). Developmental stage-dependent
variations in expression patterns have often been observed in the
detoxification genes (Harrison et al., 2001; Strode et al., 2006;
Yang et al., 2013). High expression ofCYP321B1 is detected in the
late larval stage of tobacco cutworm (Spodoptera litura) (Wang
et al., 2016). In B. tabaci, relatively high expression of CYP6CM1
is found in adults, correlating with the observation that specific
resistance to neonicotinoid imidacloprid is largely restricted to
adults (Nauen et al., 2008; Jones et al., 2011). Similarly, high
expression of CYP6P9 in adults of Anopheles funestus, but not
in larvae, explains the adult resistance (Amenya et al., 2008).
In a pyrethroid resistant strain of Anopheles gambiae, CYP6Z1
is expressed in adults but undetectable in larvae or pupae
(Nikou et al., 2003). Direct correlation between expression levels
of detoxification genes at different developmental stages and
resistance to pesticides is also exemplified by the beet webworm
(Pyrausta sticticalis) (Leonova and Slynko, 2004) and citrus
red mite (Panonychus citri) (Liao et al., 2013; Zhang K. et al.,
2013). Banks and Macaulay (1965) reported that adult aphids
have higher food consumption than nymphs. Ahmad (1982)
stated that increased amounts of dietary allelochemicals due
to increased food consumption may explain elevated P450-
mediated metabolic activity. In parallel, green peach aphid adults
likely ingest more plant materials, thus more allelochemicals
from host plants, necessitating higher detoxification
capacity.

The differentially expressed genes were also assigned to
20 GO enriched functional groups; ontology distributions are
shown in Figure 3. Enriched in the “biological process” and
“molecular function” include cuticle formation-related groups
such as “structural constituent of cuticle,” “chitin-based cuticle
attachment to epithelium” and “molting cycle, chitin-based
cuticle.” The insect cuticle, composed of chitin and cuticle
proteins, not only supports and maintains the physical structure,
but also serves as a natural barrier against adverse external
impacts (Andersen et al., 1995). Cuticle protein comparisons
among insects at different developmental stages show that,
rather than being an inert structure, the insect cuticle is
developmentally modified (Chihara et al., 1982; Dombrovsky
et al., 2003). Consistent with these findings, among the 81
differentially expressed transcripts of cuticular proteins and
their precursors we detected, 79 were highly expressed in
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TABLE 1 | Summary of transcriptome parameters of green peach aphid nymphs and adults.

Nymph Adult

1a 2 3 1 2 3

Number of processed reads 74,068,728 74,017,762 74,553,158 74,568,296 76,017,216 74,335,676

Number of contigs 89,944 85,416 82,810 81,641 78,710 87,354

Mean length of contigs (nt) 474 502 460 472 484 464

GC content (%) 39.11 38.89 38.06 39.58 39.69 39.44

Number of unigenes 61,186 55,776 60,271 53,928 52,829 57,758

Mean length of unigenes (nt) 1054 998 957 960 965 986

aValues combined all independent biological replicates.

FIGURE 1 | Distribution of green peach aphid sequences by GO category. GO classification includes three domains: biological process, cellular component,

and molecular function. The y-axis shows the number of matching unigenes in a category.

nymphs (Table 3). Insects of this developmental stage repeatedly
shed their cuticles and replace them with new layers, thus
their cuticle biosynthesis is likely more active. No doubt,
hormones play an essential role in insect ecdysis. Enrichment
of the “steroid hormone biosynthesis” pathway among the
differential genes (Table 2) supports this notion. The major

steroid hormone ecdysone plays an essential role in larval

ecdysis, a process mediated by hormones, such as ecdysone

and ecdysis triggering hormone (ETH) (Robbins et al., 1968;
Ewer et al., 1997). Interestingly, the ETH-encoding gene

Unigene5077 was highly expressed in green peach aphid nymphs

(Table 3).

Transcriptomic Divergences between
Green Peach Aphid and Pea Aphid
Transcriptome comparisons of different aphid species
could provide useful information in understanding
transcriptome evolution and the genetic factors underlying
the biological divergence of these species. To identify genes
specific to green peach aphid (relative to pea aphid), we
compared the transcriptome we obtained in this study
with publically available mRNA sequence data of pea
aphid. tBLASTx identified homologous pea aphid mRNAs
for 41,912 of our unigenes, leaving 20,595 having no
hits. After removing sequences shorter than 250 bp (too
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FIGURE 2 | Fold change distribution of green peach aphid unigenes

between nymphs and adults. The x-axis shows the fold change (log2 ratio)

of gene expression in nymphs compared to adults. |Log2 | values of 2244

unigenes are higher than 1, indicating potential importance during

developmental transition.

TABLE 2 | Significantly enriched insect-related KEGG pathways

represented by the genes differentially expressed between nymphs and

adults.

Pathway Q-value

Metabolism of xenobiotics by cytochrome P450 2.09 × 10−7

Steroid hormone biosynthesis 1.14 × 10−6

Retinol metabolism 1.34 × 10−6

Pentose and glucuronate interconversions 2.76 × 10−6

Ascorbate and aldarate metabolism 9.68 × 10−6

Glycine, serine and threonine metabolism 9.68 × 10−6

Circadian rhythm 2.81 × 10−5

Pentose phosphate pathway 1.92 × 10−4

Tyrosine metabolism 2.51 × 10−4

Glycerophospholipid metabolism 5.00 × 10−4

Glycerolipid metabolism 1.59 × 10−3

Starch and sucrose metabolism 2.93 × 10−3

Notch signaling pathway 6.75 × 10−3

Other types of O-glycan biosynthesis 7.06 × 10−3

RNA polymerase 7.09 × 10−3

Fat digestion and absorption 7.09 × 10−3

Insect hormone biosynthesis 1.99 × 10−2

Valine, leucine and isoleucine biosynthesis 2.45 × 10−2

Protein digestion and absorption 2.67 × 10−2

Vitamin digestion and absorption 3.92 × 10−2

Dorso-ventral axis formation 4.00 × 10−2

short to be translated into polypeptides meaningful for
comparisons) and BLASTn hits from pea aphid mRNAs and
Nt databases, the remaining 13,752 were considered green
peach aphid-specific unigenes under the rearing conditions
described (Table S6).

TABLE 3 | Differentially expressed detoxification and cuticle

formation-related genes in adult and nymph.

Gene ID Fold change (log2)* Nr-annotation

DETOXIFICATION GENES UP-REGULATED IN ADULT

Unigene28862 7.29 Cytochrome P450 4g15-like

Unigene5938 5.20 Cytochrome P450 4g15-like

Unigene38834 4.64 Cytochrome P450 4C1-like

Unigene12004 3.09 Cytochrome P450 6a13-like

CL1335.Contig8 2.37 Cytochrome P450

Unigene21970 2.37 Cytochrome P450 6a13-like

CL2142.Contig1 2.13 Cytochrome P450 18a1-like

Unigene8797 2.03 Cytochrome P450 6a14-like

Unigene13485 1.73 Cytochrome P450 4C1-like

Unigene17164 1.65 Cytochrome P450 6j1-like

CL4129.Contig2 1.52 Cytochrome P450 4C1-like

Unigene18192 1.35 Cytochrome P450 18a1-like

CL2142.Contig2 1.31 Cytochrome P450 18a1-like

Unigene30119 1.23 Cytochrome P450 6a2-like

CL1335.Contig7 1.12 Cytochrome P450 6a13-like

Unigene8106 1.03 Cytochrome P450 4g15-like

Unigene11947 2.98 Esterase E4-like

CL2237.Contig3 1.97 Esterase FE4-like

Unigene14425 1.89 Esterase FE4-like

Unigene30909 1.60 Esterase FE4-like

CL2237.Contig6 1.28 Esterase FE4-like

CL1600.Contig6 1.14 Carboxylesterase-6-like

Unigene8449 1.07 Glutathione S-transferase

D4-like

DETOXIFICATION GENES UP-REGULATED IN NYMPH

CL27.Contig6 −4.63 Cytochrome P450 4C1-like

Unigene12432 −3.88 Cytochrome P450 4C1-like

CL27.Contig7 −3.41 Cytochrome P450 4C1-like

CL1617.Contig5 −2.30 Cytochrome P450 6a14-like

CL3489.Contig2 −1.83 Cytochrome P450 4C1-like

Unigene13770 −1.24 Cytochrome P450 6k1-like

Unigene24402 −1.20 Cytochrome P450 6k1-like

CUTICLE FORMATION-RELATED GENES UP-REGULATED IN ADULT

CL2631.Contig2 2.57 Cuticle protein-like precursor

Unigene31315 2.32 RR1 cuticle protein 5

CUTICLE FORMATION-RELATED GENES UP-REGULATED IN NYMPH

Unigene2111 −4.53 Cuticle protein

CL4114.Contig1 −4.17 Cuticular protein-like

precursor

Unigene17916 −4.16 Cuticular protein 11 precursor

Unigene16021 −3.72 Cuticular protein 11 precursor

Unigene7580 −3.69 Cuticular protein-like

precursor

Unigene27924 −3.53 Cuticular protein 11 precursor

Unigene25191 −3.45 Cuticular protein 16 precursor

CL4114.Contig2 −3.45 Cuticular protein-like

precursor

CL5082.Contig1 −3.15 Cuticular protein 21

Unigene4987 −2.93 Cuticular protein 22 precursor

(Continued)
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TABLE 3 | Continued

Gene ID Fold change (log2)* Nr-annotation

CL5082.Contig2 −2.85 Cuticular protein 21

Unigene21389 −2.71 Cuticular protein 21

CL6036.Contig9 −2.58 Cuticular protein 28 precursor

Unigene21306 −2.45 Cuticular protein 22 precursor

Unigene24136 −2.36 Cuticular protein 62 precursor

Unigene13474 −2.30 Cuticular protein 22 precursor

Unigene13465 −2.25 Cuticular protein 28 precursor

CL5767.Contig2 −2.21 Cuticular protein CPG12-like

precursor

Unigene13461 −2.19 Cuticle protein-like

Unigene9175 −2.17 Cuticular protein 23 precursor

Unigene24655 −1.99 Cuticular protein 47 precursor

Unigene13436 −1.91 Cuticular protein 9 precursor

Unigene13449 −1.89 Cuticular protein 28 precursor

Unigene13417 −1.88 Cuticular protein 9 precursor

CL1419.Contig2 −1.87 Cuticular protein 15 precursor

Unigene8362 −1.72 Cuticular protein precursor

Unigene13478 −1.72 Cuticular protein 1 precursor

Unigene4947 −1.71 Cuticular protein 47 precursor

Unigene11489 −1.71 RR1 cuticle protein 7

precursor

Unigene13482 −1.70 Cuticular protein precursor

Unigene10882 −1.70 Cuticular protein 60 precursor

Unigene11447 −1.68 Cuticular protein CPG12-like

precursor

Unigene17255 −1.67 Cuticular protein 20 precursor

CL4704.Contig1 −1.66 Cuticular protein 57 precursor

Unigene13459 −1.65 Cuticular protein 37 precursor

Unigene13431 −1.65 Cuticular protein 1 precursor

Unigene13477 −1.63 Cuticular protein 16 precursor

Unigene13435 −1.63 Cuticular protein 16 precursor

Unigene13480 −1.60 Cuticular protein 9 precursor

Unigene13432 −1.59 Cuticular protein 45 precursor

Unigene13457 −1.58 Cuticular protein 16 precursor

Unigene11389 −1.58 Cuticular protein CPG12-like

precursor

CL1419.Contig4 −1.58 Cuticular protein 15 precursor

CL5117.Contig1 −1.56 RR2 cuticle protein 2

Unigene13440 −1.55 Cuticular protein 45 precursor

Unigene13416 −1.55 Cuticular protein 1 precursor

Unigene13481 −1.53 Cuticular protein precursor

Unigene13443 −1.53 Cuticular protein 37 precursor

CL1419.Contig1 −1.50 Cuticular protein 15 precursor

Unigene13479 −1.47 Cuticular protein 28 precursor

Unigene13452 −1.46 Cuticle protein-like

CL6036.Contig5 −1.45 Cuticular protein 28 precursor

Unigene13484 −1.45 Cuticular protein 1 precursor

Unigene31055 −1.42 Cuticular protein 48

CL1419.Contig3 −1.41 Cuticular protein 15 precursor

Unigene21674 −1.41 Cuticular protein 52 precursor

Unigene31334 −1.40 Cuticular protein 20 precursor

(Continued)

TABLE 3 | Continued

Gene ID Fold change (log2)* Nr-annotation

Unigene13420 −1.39 Cuticular protein 37 precursor

Unigene14603 −1.37 Cuticular protein 28 precursor

Unigene13424 −1.35 Cuticular protein 16 precursor

Unigene14604 −1.34 Cuticular protein 28 precursor

Unigene7739 −1.32 Cuticular protein analogous to

peritrophins 3-D1 precursor

Unigene13438 −1.26 Cuticular protein 28 precursor

CL6036.Contig11 −1.26 Cuticular protein 28 precursor

CL6036.Contig6 −1.24 Cuticular protein 28 precursor

Unigene24750 −1.23 Cuticle protein precursor

Unigene13418 −1.21 Cuticular protein 45 precursor

CL6036.Contig10 −1.18 Cuticular protein 28 precursor

Unigene554 −1.17 Cuticular protein 31 precursor

Unigene14112 −1.14 Cuticular protein 30 precursor

Unigene13441 −1.13 Cuticular protein 9 precursor

Unigene8067 −1.09 Cuticular protein 68 precursor

Unigene13475 −1.09 Cuticular protein 28 precursor

Unigene13426 −1.08 Cuticular protein precursor

Unigene31278 −1.07 RR1 cuticle protein 1

CL6048.Contig2 −1.05 Cuticular protein precursor

Unigene1224 −1.04 Cuticle protein-like

Unigene13467 −1.03 Cuticular protein 1 precursor

Unigene24090 −1.01 Cuticular protein 58 precursor

Unigene5077 −1.55 Ecdysis triggering hormone

*Log2 (FPKM-value in adult/ FPKM-value in nymph).

Arabidopsis was selected as our host plant because it is readily
consumed by green peach aphid. Its short life cycle, abundant
genetic resources and well developed RNAi technique (Ramsey
et al., 2007; Pitino et al., 2011; Bhatia et al., 2012; Elzinga et al.,
2014) can greatly facilitate ourmore in-depth studies of candidate
genes derived from the current study. One caveat however, is that
choice of hosts may impact aphid gene expression. Few studies
have been conducted to compare transcriptome profiles of the
same insect species feeding on different host plants, but some
information is available on differential gene expression of insect
populations reared on different varieties/lines of the same host
plant species (Ji et al., 2013; Bansal et al., 2014; Yu et al., 2014).
It appears that the vast majority of genes are present (but likely
varied in expression level) among different insect populations,
and that genes solely expressed in one population are rare.
Whether this observation can be extended to insect populations
feeding on different host plant species is yet to be determined.

The Nr, Nt, Swiss-Prot, COG, KEGG, and GO annotations
of green peach aphid-specific unigenes were then performed
(Table S6). Only 4.52% were predicted to have defined functions
(Table 4), and functions of the remaining sequences need further
study in the future. Likewise, KEGG classification identified only
30 unigenes, the most predominant group being “xenobiotics
biodegradation and metabolism” (13.33%) (Figure 4). This
finding correlates well with the fact that green peach aphids
feed on a wider variety of plant species, and may have to
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FIGURE 3 | Significantly enriched GO categories among the differentially expressed genes between nymphs and adults. GO categories with Q < 0.05

were considered significantly enriched. Classification consists of three domains: biological process, cellular component and molecular function. The y-axis shows the

value of −log10Q of the category. The GO term with highest −log10Q was determined the most significant enrichment.

TABLE 4 | Annotations of green peach aphid-specific unigenes.

Public database Number of annotated unigenes Percentage (%)

Nr 85 0.62

Nt 562 4.09

Swiss-Prot 31 0.23

COG 9 0.07

KEGG 30 0.22

GO 10 0.07

encounter more types of toxic plant metabolites than pea
aphids.

Ka and Ks Analysis between Green Peach
Aphid and Pea Aphid
Contrasting with the above analysis where the focus was on genes
unique to green peach aphid, here we concentrated on single-
copy orthologous genes between the two aphids. From the 33,963
green peach aphid CDSs (mean length, 1275 bp) derived from our
RNA-seq, 3989 that had one-to-one orthologs in pea aphid CDSs
were identified, and 3824 contained both substitution types, from
which Ka/Ks ratios were calculated (Table S7).

The Ka/Ks ratio provides information about the evolutionary
forces operating on a particular coding gene and has been
widely used to measure the intensity and mode of selection;
Ka/Ks = 1 indicates a neutral evolution; Ka/Ks < 1 suggests
that nonsynonymous mutations are deleterious and purged from
the population; Ka/Ks>1 indicates that nonsynonymous amino

acid substitutions offer fitness advantages and are fixed in the
population at a higher rate than synonymous substitutions
(Hurst, 2002). However, this cutoff value for positive selection
has recently been adjusted to 0.5 by Swanson et al. (2004). They
found that 15 of 16 genes with 0.5< Ka/Ks< 1 showed statistical
evidence for adaptive evolution (Swanson et al., 2004). Since
then, this new value has been adopted for “positive selection”
determination in many studies (Kelleher et al., 2007; Elmer et al.,
2010; Yang et al., 2012; Zhang L. et al., 2013; Ren et al., 2014;
Cheng et al., 2015; Mu et al., 2015; He et al., 2016; Pereira et al.,
2016). In our study, a total of 24 pairs of orthologs had a Ka/Ks
ratio greater than 1, and 124 had a Ka/Ks ratio between 0.5 and 1
(Table S8).

Relative to the earlier study by Ollivier et al. (2010), our CDS
construction is more complete than that of EST-based (33,963
CDSs, 1275 bp mean length vs. 6652 CDSs, 667 bp mean length),
due to improvements in sequencing technology. Nevertheless,
some putative orthologs under positive selection were identified
by both studies, such as C002 (Table S8). Other genes related
to insect-plant interactions include those encoding mucins
(Ka/Ks= 1.09 and 0.94), the essential components of peritrophic
matrix. Fast-evolving mucin proteins presumably contribute to
aphid adaptation to different dietary pro-oxidants, phenolic, and
lipophilic xenobiotics associated with their respective host plants
(Hiraishi et al., 1991; Felton and Summers, 1995; Barbehenn,
1999, 2001; Barbehenn and Stannard, 2004; Hegedus et al.,
2009). Likewise, the homolog of salivary protein gene Me17
(Ka/Ks = 0.69), identified in multiple aphid species with
dissimilar plant host ranges, is thought to play important roles
as the effector in suppressing defense responses in different host
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FIGURE 4 | Insect-related KEGG pathway classifications of green peach aphid-specific unigenes.

plants and in promoting aphid colonization (Atamian et al.,
2013; Pitino and Hogenhout, 2013; Elzinga et al., 2014). Nicotinic
acetylcholine receptors (nAChR) in insects are often the target
sites for naturally occurring and synthetic insecticides (Millar
and Denholm, 2007; Bass et al., 2011). A high mutation rate in
the nAChR β-2 subunit (Ka/Ks = 0.55) could help green peach
aphids adapt to tobacco and become resistant to nicotine, as is
the strain used in this study (Devine et al., 1996; Nauen et al.,
1996). Another interesting ortholog pair encode odorant-binding
protein 10 (OBP10) (Ka/Ks = 0.52). Nucleotide and amino acid
sequence comparisons between the two species indicated that all
substitutions occurred in the predicted mature protein region,
and 19 of the 62 substitutions resulted in 12 hydrophilic and
hydrophobic amino acid conversions (Figure S1). Sun et al.
(2012) observed that the two aphid species showed similar as
well as dissimilar behavioral responses to certain tested odors.
Presumably, fast evolution in OBPs could contribute to the
change in their binding activity, which in turn could facilitate
host shift or impact host range (Matsuo et al., 2007; Sun et al.,
2012).

CONCLUSIONS

Our RNA-seq data have increased molecular resources available
for the green peach aphid, a major agricultural pest as well
as a biological model for insect-plant interaction studies. The
transcriptomic analyses have deepened our understanding of
aphid development and aphid-plant interactions. Our results
have also provided useful insight into the molecular mechanisms
underlying the biological variations in aphids, especially in
adaptation to different host plants.
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