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Production of ent-kaurene as a precursor for important signaling molecules such as the
gibberellins seems to have arisen early in plant evolution, with corresponding cyclase(s)
present in all land plants (i.e., embryophyta). The relevant enzymes seem to represent
fusion of the class II diterpene cyclase that produces the intermediate ent-copalyl
diphosphate (ent-CPP) and the subsequently acting class I diterpene synthase that
produces ent-kaurene, although the bifunctionality of the ancestral gene is only retained
in certain early diverging plants, with gene duplication and sub-functionalization leading
to distinct ent-CPP synthases and ent-kaurene synthases (KSs) generally observed. This
evolutionary scenario implies that plant KSs should have conserved structural features
uniquely required for production of ent-kaurene relative to related enzymes that have
alternative function. Notably, substitution of threonine for a conserved isoleucine has
been shown to “short-circuit” the complex bicyclization and rearrangement reaction
catalyzed by KSs after initial cyclization, leading to predominant production of ent-
pimaradiene, at least in KSs from angiosperms. Here this effect is shown to extend
to KSs from earlier diverging plants (i.e., bryophytes), including a bifunctional/KS. In
addition, attribution of the dramatic effect of this single residue “switch” on product
outcome to electrostatic stabilization of the ent-pimarenyl carbocation intermediate
formed upon initial cyclization by the hydroxyl introduced by threonine substitution
has been called into question by the observation of similar effects from substitution of
alanine. Here further mutational analysis and detailed product analysis is reported that
supports the importance of electrostatic stabilization by a hydroxyl or water.

Keywords: diterpenoids, diterpene synthases, product specificity, mutagenesis, metabolic engineering,
carbocation, catalytic mechanism

INTRODUCTION

All embryophyta produce the diterpene ent-kaur-16-ene (1). In vascular plants (i.e., tracheophytes)
1 serves as an intermediate in biosynthesis of the gibberellin phytohormones (Hedden and
Thomas, 2012). Even in earlier diverging bryophytes 1 seems to serve as a precursor to an as yet
undefined signaling molecule (Anterola et al., 2009; Hayashi et al., 2010; Miyazaki et al., 2014,
2015). Production of 1 from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate
(GGPP) proceeds via two distinct bicyclization reactions (Peters, 2010). The first is catalyzed by
copalyl diphosphate synthases (CPSs) that are representative of class II diterpene cyclases and
produce ent-CPP (2). 2 is then subsequently further cyclized and rearranged by KSs that are
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representative of class I (di)terpene synthases (Zi et al.,
2014). While the reactions catalyzed by CPSs and KSs are
mechanistically distinct and carried out in distinct active sites,
in plants these enzymes seem to be derived from fusion of
the genes for each enzyme – i.e., CPS and KS – potentially
from bacteria (Morrone et al., 2009; Gao et al., 2012). However,
the presumably bifunctional nature of the initially resulting
enzyme appears to have been retained only in certain bryophytes
(Hayashi et al., 2006; Kawaide et al., 2011; Kumar et al., 2016).
The production of 1 in most plants appears to depend on
separate CPS and KS that arose from duplication and sub-
functionalization of the ancestral fused bifunctional enzyme,
with retention of the original multi-domain structure (Zi
et al., 2014). In turn, the CPS and KS required for the
production of signaling molecules derived from 1, such as the
gibberellins, seem to have given rise to closely related enzymes
that mediate more specialized labdane-related diterpenoid
metabolism via gene duplication and neo-functionalization (Zi
et al., 2014). These enzymes then catalyze similar reactions,
but yield different products. For example, many angiosperms
contain small families of KS-like diterpene synthases (KSLs)
that retain the multi-domain structure of KSs, but do not
produce 1. These catalyze ionization of the allylic diphosphate
ester bond that characterizes class I terpene synthases, and
may even still react with 2. However, these enzymes then
mediate distinct product outcome by either abbreviation of the
KS reaction, or by mediating formation of a distinct series
of carbocationic intermediates. These KSLs terminate catalysis
via deprotonation, either directly or following the addition
of water, leading to a variety of products (see Scheme 1 for
examples).

The evolutionary scenario presented above implies that the
ancestral enzyme produced ent-kaurene, with conservation of
this function in all extant KSs. However, such conservation of
function versus parallel evolution from related but functionally
divergent ancestors is difficult to discern from phylogenetic
analyses given the extended timescale over which land plants have
evolved (Kumar et al., 2016). For example, while KSs contain
highly conserved DDxxD and NDxx(G/S/T)xxxE amino acid
sequence motifs, these are found in class I terpene synthases
more generally. Specifically, because they are involved in binding
magnesium divalent ion co-factors required for the initiating
ionization of the allylic diphosphate ester bond (Christianson,
2006). On the other hand, KSs have been reported to contain
a conserved isoleucine that plays a surprisingly critical role
in promoting the complex bicyclization and rearrangement
reaction catalyzed by these enzymes (Scheme 1). In particular,
substitution of threonine for this Ile leads to an abbreviated
reaction, only cyclization of the ent-CPP substrate to ent-
pimara-8(14),15-diene (3), representing deprotonation of the
ent-pimar-15-en-8-yl carbocation formed by initial cyclization
(Xu et al., 2007b). This effect has been interpreted as resulting
from electrostatic stabilization of this carbocationic intermediate
by the hydroxyl of the introduced Thr side-chain, rather than the
hydroxyl group acting as a general base. The presence of the inert
Ile hydrocarbon side-chain then allows carbocation migration
toward the diphosphate anion co-product via further cyclization

and ring rearrangement prior to terminating deprotonation
(Zhou and Peters, 2011). However, conservation of this Ile and
the effect of Thr substitution was originally only reported for
KSs from angiosperms (Xu et al., 2007b). This Ile is conserved
in a KS from gymnosperms (Keeling et al., 2010), with a similar
effect on product outcome observed upon substitution with
alanine as well (Zerbe et al., 2012). Thus, this Ile seems to be
conserved in KSs throughout seed plants (i.e., spermatophyta).
However, the identity and importance of this residue has not
yet been investigated in KSs from even earlier diverging plants.
Moreover, the similar effect of Thr or Ala substitution on product
outcome also leaves some question as to the mechanistic role
of the residue at this position given that Ala would be expected
to be as inert as Ile. Here the conservation of this Ile and
effect of Thr substitution is extended to KSs from the earliest
diverging plants (i.e., bryophytes), including an example of a
bifunctional CPS/KS, along with additional mutational analysis
of this critical residue that resolve its role in the enzymatically
catalyzed reaction.

MATERIALS AND METHODS

General
Unless otherwise noted, chemicals were purchased from Fisher
Scientific and molecular biology reagents from Invitrogen.
Sequence alignments were performed with CLC sequence viewer
6.9.1 using default parameters.

Mutant Construction
The enzymes investigated here are pseudomature constructs
suitable for recombinant expression in Escherichia coli, as
previously described for MpKS (Kumar et al., 2016), PpCPS/KS
(Hayashi et al., 2006), OsKSL5i (Xu et al., 2007a), and
AtKS (Yamaguchi et al., 1998). Site-directed mutants were
constructed by whole-plasmid PCR amplification of the relevant
pENTR/SD/d-TOPO constructs using the primers described
in Supplementary Table S1, and AccuPrimeTM Pfx DNA
Polymerase. All mutants were verified by complete gene
sequencing, and then transferred via directional recombination
to the T7-based N-terminal GST fusion expression vector
pDEST15.

Enzymatic Analyses
To determine catalyzed product outcome, each pDEST15 based
construct was co-transformed with a previously described
pGGeC vector containing both a GGPP synthase and ent-CPP
synthase (Cyr et al., 2007), along with a previously reported
pIRS plasmid that increases metabolic flux toward terpenoids
(Morrone et al., 2010), into the OverExpress C41 strain of
Escherichia coli (Lucigen). The resulting recombinant strains
were cultured in 50 mL TB medium (pH= 7.0), with appropriate
antibiotics, in 250 mL Erlenmeyer flasks. These cultures were first
grown by shaking at 37◦C to mid-log phase (OD600∼0.7), then
the temperature dropped to 16◦C for 0.5 h prior to induction with
1 mM isopropylthiogalactoside (IPTG) and supplementation
with 40 mM pyruvate and 1 mM MgCl2. The induced cultures
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SCHEME 1 | Cyclization mechanism catalyzed by KSs and the Ile mutants investigated here. These KS catalyzed reactions are initiated by ionization of
bicyclic ent-CPP (2), generated from the acyclic precursor GGPP by CPS, with initial cyclization to ent-pimar-15-en-8-yl+. In Ile→Thr mutants this intermediate is
directly deprotonated, affording largely ent-pimara-8(14),15-diene (4) with small amounts of ent-pimara-7,15-diene (6), while Ile→Ala or Ser mutants also produce
significant amounts of 8α-hydroxy-ent-pimara-15-ene (7), generated by addition of water prior to deprotonation. In wild-type (WT) KSs secondary cyclization occurs,
followed by ring rearrangement, with deprotonation of the neighboring methyl group yielding ent-kaur-16-ene (1). Some of the wild-type KS(L)s investigated here
produce either ent-isokaur-15-ene (5) (i.e., OsKSL5i), or a mixture of 1 and 16α-hydroxy-ent-kaurane (4) (i.e., PpCPS/KS), with the latter generated by addition of
water prior to deprotonation. Numbers correspond to the compound numbering defined in text.

were further grown for an additional 72 h before extraction
with an equal volume of hexanes, with the organic phase then
separated, and concentrated under N2 when necessary.

Product Analyses
Gas chromatography with mass spectral detection (GC-MS) was
carried on a Varian 3900 GC with a Saturn 2100T ion trap
mass spectrometer in electron ionization (70 eV) mode, using an
Agilent HP-5MS column (Agilent, 19091S-433) with 1.2 mL/min
helium flow rate. Samples (1 µL) were injected in splitless mode
by an 8400 autosampler with the injection port set at 250◦C. The
following temperature program was used: the oven temperature
initially started at 50◦C, which was maintained for 3 min, and
then increased at a rate of 15◦C/min to 300◦C, where it was
held for another 3 min. Mass spectrum was recorded by mass-to-
charge ratio (m/z) values in a range from 90 to 650, starting from
13 min after sample injection until the end of the run. Enzymatic
products were identified by comparison of retention time and
mass spectra to those of authentic standards.

RESULTS

Extending the Conservation of a Key
Residue in Plant KSs
Intriguingly, a recently identified monofunctional KS from the
liverwort Marchantia polymorpha (MpKS) (Kumar et al., 2016)
was found to contain an Ile at the key position previously
identified in spermatophyta KSs (Figure 1). Moreover, this
Ile is further conserved in the only characterized KS from a
lycophyte (i.e., Selaginella moellendorffii, SmKS) (Shimane et al.,
2014), as well as the bifunctional CPS/KSs identified from other
bryophytes (Hayashi et al., 2006; Kawaide et al., 2011). This
includes that from the moss Physcomitrella patens (PpCPS/KS),

which produces a mixture of ent-kaurene and 16α-hydroxy-ent-
kaurane (4) (Hayashi et al., 2006). To determine if this Ile was
similarly important in these phylogenetically and functionally
disparate KSs, Thr substitution mutants were constructed in
both MpKS (I645T) and PpCPS/KS (I741T). The effect of these
mutations on product outcome was investigated by recombinant
expression in Escherichia coli. Specifically, by use of a previously
developed modular metabolic engineering system that enables
bacterial co-production of the appropriate substrate (Cyr et al.,
2007), here ent-CPP (2), along with the KSs (either wild-type
or mutant). Strikingly, both MpKS:I645T and PpCPS/KS:I741T
produced almost entirely ent-pimara-8(14),15-diene (3). This
contrasts with the almost exclusive production of ent-kaurene
(1) by the wild-type MpKS, and mixture of 1 and 4 produced
by the wild-type PpCPS/KS (Figure 2). These results then extend
the conserved functional importance of this Ile to KSs across the
embryophyta phylogeny.

Extending Understanding of the Role of
the Key Ile Residue in KS Catalysis
It has been suggested that the effect of Thr substitution for the
key Ile is due to electrostatic stabilization of the pimar-15-en-8-yl
carbocation immediately formed by initial cyclization, enabling
deprotonation (Zhou and Peters, 2011). However, similar effects
on product outcome have been reported for Ala substitution for
the corresponding Ile in the KS from the gymnosperm Picea
glauca (Zerbe et al., 2012). Given the lack of a hydroxyl group
in Ala, these results leave the original mechanistic interpretation
in question. This discrepancy was first addressed by constructing
the equivalent Ala substitution mutant for the ent-isokaur-15-
ene synthase from rice (OsKSL5i) (Xu et al., 2007a), in which
the effect of Thr substitution was originally discovered (Xu et al.,
2007b). Notably, this OsKSL5i:I664A mutant produced almost
exclusively ent-pimara-8(14),15-diene (3), albeit only in small
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FIGURE 1 | Partial sequence alignment of representative kaurene
synthases spanning plant evolution. The highly conserved Ile probed here
is indicated by an asterisk (∗). Residues are numbered as in the full length
enzymes. The phylogenetic terms on the right apply to the divisions branching
above that point. The aligned sequences are named as follows (NCBI protein
database accession): AtKS, Arabidopsis thaliana KS (AAC39443); OsKS,
Oryza sativa KS (BAE72099); PgKS, Picea glauca KS (ADB55711); SmKS,
Selaginella moellendorffii KS (BAP19110); PpCPS/KS, Physcomitrella patens
KS (BAF61135); MpKS, Marchantia polymorpha KS (OAE22677).

FIGURE 2 | Effect of Ile-to-Thr mutation on (hydroxy)kaurene synthase
product outcome. Chromatograms from GC–MS analysis of the indicated
diterpene synthases (wild-type or indicated mutant). (A) MpKS. (B)
PpCPS/KS. Numbers correspond to the compound numbering defined in the
text (i.e., 1, ent-kaurene; 3, ent-pimara-8(14),15-diene; 4,
16α-hydroxy-ent-kaurane). Enzymatic products were identified by comparison
of both retention time and mass spectra to authentic standards (see
Supplementary Figure S1).

quantities. To further probe the basis for this effect on product
outcome, additional mutants were constructed, substituting
serine or valine at this position in OsKSL5i. Interestingly, these
showed opposite effects. The OsKSL5i:I664S mutant produced
largely 3, much like the previously described OsKSL5i:I664T
mutant (Xu et al., 2007b). By contrast, the OsKSL5i:I664V mutant
predominantly produced ent-(iso)kaur-15-ene (5), much like
the wild-type enzyme (Figure 3). Given the minimal difference
between the volume of Thr and Val side chains, it seems unlikely
that these results are explicable by steric effects. An alternative

FIGURE 3 | Effect of substitutions for I664 on OsKSL5i product
outcome. Chromatograms from GC–MS analysis of the indicated diterpene
synthases (wild-type or indicated mutant). Numbers correspond to the
compound numbering defined in the text (i.e., 3, ent-pimara-8(14),15-diene;
5, ent-isokaurene), with 2′ corresponding to ent-copalol, the
dephosphorylated derivative of ent-CPP (2). Enzymatic products were
identified by comparison of both retention time and mass spectra to authentic
standards (see Supplementary Figure S1).

hypothesis is that substitution by Ala leaves space that is occupied
by a water molecule, providing similar electrostatic stabilization
of the ent-pimar-15-en-8-yl+ intermediate as substitution by
the hydroxyl containing Thr and Ser side chains. However, it
seems puzzling that such a water is not observed to add to this
carbocation, which would yield a hydroxylated product.

Intriguingly, although not observed with OsKSL5i:I664A,
the equivalent PgKS:I619A mutant was reported to make at
least two unidentified minor products, although it was not
reported if either was hydroxylated (Zerbe et al., 2012). Given
that all of the OsKSL5i mutants exhibited decreased yield in
the modular metabolic engineering system, as evidenced by
presence of significant amounts of ent-copalol (2′) derived
from dephosphorylation of 2 (presumably by endogenous
phosphatases), it seemed worth investigating a more robust
KS. Previous work indicated that Thr substitution for the key
Ile in the KS from Arabidopsis thaliana (AtKS) retains good
activity. In particular, no 2′ was observed with this AtKS:I638T
mutant (Xu et al., 2007b). Accordingly, an equivalent set of
additional substitutions (i.e., Ala, Ser, or Val) at this position
were constructed in AtKS. While the overall impact of these
mutations on product outcome in the modular metabolic
engineering system were analogous to those observed with
OsKSL5i, additional products were observed (Figure 4). In
particular, while the AtKS:I638V mutant produced just ent-
kaurene (1), the AtKS:I638A and AtKS:I638S mutants produced
a mixture of four products. Beyond the predominant production
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FIGURE 4 | Effect of various substitutions for I638 on AtKS product
outcome. Chromatograms from GC–MS analysis of the indicated diterpene
synthases (wild-type or indicated mutant). Numbers correspond to the
compound numbering defined in the text (i.e., 1, ent-kaurene; 3,
ent-pimara-8(14),15-diene; 6, ent-pimara-7,15-diene; 7,
8α-hydroxy-ent-pimar-15-ene). Enzymatic products were identified by
comparison of both retention time and mass spectra to authentic standards
(see Supplementary Figure S2).

of ent-pimara-8(14),15-diene (3), these also produced small
amounts of the double bond isomer ent-pimara-7,15-diene (6)
and variable amounts of 1, as well as substantial amounts
of a hydroxylated product. This diterpene alcohol was shown
to be 8α-hydroxy-ent-pimar-15-ene (7) by comparison to an
authentic standard. 7 almost certainly results from stereospecific
addition of water to the ent-pimar-15-en-8-yl+ intermediate,
with subsequent deprotonation. Upon incorporation into the
modular metabolic engineering system with increased flux, it
was further found that the AtKS:I638T mutant also exhibited a
similar mixture of the same four products, albeit with less of
the hydroxylated 7 observed (Figure 4). This provides a strong
contrast to the approximately isosteric AtKS:I638V mutant, and
indicates that the hydroxyl group of the Thr side chain enables
occasional addition of water.

DISCUSSION

The results reported here not only demonstrate conservation of
the unique importance of a key Ile in the complex cyclization
and rearrangement reaction catalyzed by plant KSs throughout
the embryophyta, but also further extend our understanding

SCHEME 2 | Schematic depicting the water bound in the active site of
the AtKS:I638S/A mutants, and its addition to yield 7.

of the underlying mechanism. For example, the stereospecific
addition of water to generate the 8α-hydroxy-ent-pimar-15-ene
product (7) observed upon substitution of the relevant I638 in
AtKS indicates the orientation of this residue relative to the
ent-pimar-15-en-8-yl+ intermediate in the catalyzed reaction.
Specifically, in order for this to occur, the water must attack from
‘underneath’ the ring structure (Scheme 2). This presumably
further defines the relative positioning of the key Ile residue,
as it is changes of this amino acid side chain that enable such
access.

Although the observed effects might suggest the hypothesis
that these substitutions enable water to bind and act as a
general base that directly deprotonates the ent-pimar-15-en-8-
yl+ intermediate, this seems somewhat unlikely given previous
results reported for class II diterpene cyclases that also catalyze
reactions with similar carbocationic intermediates. In particular,
while there is strong evidence that a specific water acts as the
general base in the ent-CPP synthase from A. thaliana, this water
is tightly constrained by several interactions with the enzyme.
This includes the side chains of a histidine and asparagine,
substitution of either of which with Ala is sufficient to lead
to predominant formation of a hydroxylated product (Potter
et al., 2014). Moreover, simply opening up space to create a
polar ‘pocket’ at the site of the catalytic base in the class II
diterpene cyclase active site of the abietadiene synthase from
Abies grandis (i.e., either substitution of Ala or aspartate for
histidine, or phenylalanine for the hydrogen-bonded tyrosine)
similarly leads to specific addition of water and predominant
production of hydroxylated products (Criswell et al., 2012; Mafu
et al., 2015). In both cases, this contrasts with the occasional
addition of water and relatively small amounts of hydroxylated
product observed here (Figure 4). Accordingly, it seems unlikely
that introducing a single hydroxyl group would be sufficient
to both bind and activate a water to largely function as a
general base, particularly without adding to the carbocation
more often than is observed. Thus, although such a direct
mechanism cannot be entirely ruled out, it seems most likely
that the observed effects are due to the electrostatic effect of the
introduced hydroxyl on stabilization of the ent-pimar-15-en-8-
yl+ for deprotonation. The water bound in the cavity created
by substitution of Ala for this Ile would then similarly enable
the effects on product outcome observed here with such I→A
mutants of KSs (Figures 3 and 4). In this mechanism the
general base is most likely the pyrophosphate anion co-product,
as previously suggested for class I terpene synthases in general
(Pemberton and Christianson, 2016).
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Regardless of the exact role of this key Ile, the conservation
of this residue across all known embryophyta KSs is consistent
with the hypothesis that the earliest plant terpene synthase was a
bifunctional CPS/KS (e.g., much like the PpCPS/KS studied here).
This hypothesis is further reinforced by the observation that the
key Ile from plant KSs is not found in the functionally analogous
enzymes that have been identified in microbes (Morrone et al.,
2009). In particular, this Ile is not conserved in the bifunctional
CPS/KS found in certain fungi (Bomke and Tudzynski, 2009),
which otherwise nominally resemble those found in plants
(Peters, 2013). Nor is this Ile conserved in the known single-
domain monofunctional KSs in bacteria, where such activity
appears to have arisen via parallel evolution in two separate
contexts (Morrone et al., 2009; Smanski et al., 2011; Hershey et al.,
2014; Lu et al., 2015). The widespread functional conservation
of a key Ile shown here indicates an early appearance of KSs
in plant evolution, which is consistent with the importance of
ent-kaurene derived molecules in all embryophyta, even the
bryophytes that do not produce gibberellins (Hirano et al.,
2007; Yasumura et al., 2007). Such early origins for KSs also is
consistent with the previously suggested staggered evolution of
gibberellin biosynthesis in which modification of the ent-kaurane
backbone into gibberellins only arose after divergence of the
bryophytes from tracheophytes (Zi et al., 2014). Moreover, the
catalytic plasticity of these enzymes demonstrated here is further

consistent with the hypothesis that the KSs gave rise to the plant
family of classic (class I) terpene synthases more generally, the
importance of which in the diversification of plant metabolism is
highlighted by their presence as moderately large gene families in
all tracheophytes (Chen et al., 2011).
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