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Land surface temperature over the past decades has shown a faster warming
trend during the night than during the day. Extremely low night temperatures have
occurred frequently due to the influence of land-sea thermal difference, topography
and climate change. This asymmetric night temperature change is expected to affect
plant ecophysiology and growth, as the plant carbon consumption processes could
be affected more than the assimilation processes because photosynthesis in most
plants occurs during the daytime whereas plant respiration occurs throughout the
day. The effects of high night temperature (HNT) and low night temperature (LNT)
on plant ecophysiological and growing processes and how the effects vary among
different plant functional types (PFTs) have not been analyzed extensively. In this meta-
analysis, we examined the effect of HNT and LNT on plant physiology and growth across
different PFTs and experimental settings. Plant species were grouped according to their
photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and
economic purposes (crop, non-crop). We found that HNT and LNT both had a negative
effect on plant yield, but the effect of HNT on plant yield was primarily related to a
reduction in biomass allocation to reproduction organs and the effect of LNT on plant
yield was more related to a negative effect on total biomass. Leaf growth was stimulated
at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes,
including photosynthesis and dark respiration, while LNT slowed these processes.
Overall, the results showed that the effects of night temperature on plant physiology
and growth varied between HNT and LNT, among the response variables and PFTs,
and depended on the magnitude of temperature change and experimental design.
These findings suggest complexities and challenges in seeking general patterns of
terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical
for obtaining credible predictions of the changes in crop production, plant community
structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial
biomes when asymmetric night temperature change continues.
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INTRODUCTION

The increased intensity of human activities has been magnifying
the climate change and its consequences in recent decades
(IPCC, 2013). A remarkable feature of climate change is global
warming, caused by anthropogenic emissions of key greenhouse
gasses that absorb infrared radiation, such as CO2, CH4, and
N2O, deforestation and urbanization. The global temperature is
forecasted to continuously increase 1–3.7◦C by the end of the
21st century (IPCC, 2013). Compared with day temperature,
night temperature has increased faster at local (Peng et al.,
2004), country (Zhou et al., 2004; Rao et al., 2014), and global
scales (Vose et al., 2005). On average, the lowest land nighttime
temperature increased about 0.2◦C per decade between 1950 and
1993, which is double the increased highest daytime temperature
(IPCC, 2001). It is probably due to the incremental cloudiness,
which leads to less radiant heat loss (Alward et al., 1999). Night
temperature increased 1.13◦C in the Philippines from 1979 to
2003 (Peng et al., 2004), whereas night temperature in Lybia over
a period of 45 years (1950–1995) increased at a rate of 0.18◦C
per decades (Jones et al., 1999). Based on the prediction of multi-
model ensembles, asymmetric warming between day and night is
going to continue in the future (Christensen et al., 2007; Sillmann
et al., 2013). Therefore, plants in the future will be exposed to
warmer nights, which could greatly influence crop yield and
vegetation dynamics as well as ecosystem biodiversity, structure
and productivity.

Due to the influence of land-sea thermal differences,
topography and climate change, extremely low temperatures have
also occurred frequently around the world (Yang et al., 2006).
Low temperature is one of the major environmental factors
impacting plant growth, development and ecological distribution
(Allen and Ort, 2001). A variety of crops from tropical and sub-
tropical regions, such as maize, tomato, cucumber, and mango,
are sensitive to cold when cultivated in temperate environments
(Jones and Ort, 1998; Allen and Ort, 2001; Meng et al., 2008). As
people have begun introducing plants from warm climates into
cool climates, it has become important to understand the effects
of LNT stress, which needs substantially more research.

Studies on plant response mechanisms to warming or chilling
temperatures serve a great purpose in understanding agriculture
and natural ecosystems. Increased research efforts have used
manipulated field experiments across the world to investigate
the potential impacts of climate warming on terrestrial plants
and ecosystems (Rustad, 2008). However, the majority of these
previous studies have focused on the increase of daily or monthly
mean temperature, assuming no difference in the impact of
day versus night temperature (Peng et al., 2004). Rustad et al.

Abbreviation: ANT, ambient night temperature; Anet, net CO2 assimilation rate
(µmol m−2 s−1); C, carbon; Ci, intercellular CO2 concentration (µmol mol−1);
ETR, electron transport rate (µmol m−2 s−1); Fv/Fm, Photosystem II (PSII)
efficiency; gs, stomatal conductance (mol m−2 s−1); HNT, high night temperature;
LNT, low night temperature; LAI, leaf area index; LAR, leaf area ratio (cm2 g−1);
N, nitrogen; Jmax, maximum electron transport rate (µmol m−2 s−1); PFTs, plant
functional types; 8PSII, PSII quantum yield; Rd, dark respiration rate (µmol m−2

s−1); RuBP, ribulose-1,5-bisphosphate carboxylase; SLA, specific leaf area (cm2

g−1); TNC, total non-structural carbohydrate (mg g−1); Tr, transpiration rate
(mmol m−2 s−1); Vcmax, maximum carboxylation rate (µmol m−2 s−1).

(2001) conducted a meta-analysis of experimental data from
ecosystem warming studies and found that elevated temperatures
significantly increased above ground productivity by 19%. In fact,
the effects of night temperature are different from that of day
temperature (Xia et al., 2014) and produced a relatively greater
challenge in estimating global change impact on crop yield and
ecosystem functions (Jagadish et al., 2015). Previous studies on
night temperatures have focused either on the effects of HNT
and LNT alone (Friend, 1981; Seddigh and Jolliff, 1984a,b,c;
Koscielniak, 1993; Bertamini et al., 2005) or the mixed effects
of night temperatures and CO2 concentration (Mortensen and
Moe, 1992; Volder et al., 2004; Cheng et al., 2008, 2009, 2010),
light period (Gimenez and Rumi, 1988; Turner and Ewing,
1988; Lee et al., 1991; Verheul et al., 2007), intensity (Bunce,
1985; Mortensen, 1994; Rapacz, 1998; Flexas and Osmond, 1999;
Davies et al., 2002) as well as other environmental factors
(Schoppach and Sadok, 2013) and growth regulators (Shah
et al., 2011; Mohammed et al., 2013; Zhang et al., 2014). These
experiments had been conducted on pineapple (Neales et al.,
1980), peanut (Bagnall et al., 1988; Wang, 2007; Lin et al., 2011)
and shrub-grass ecosystems (Beier et al., 2004). Although the
interest in the influence of night temperatures on many aspects of
plants is growing, studies are scattered and there lacks a synthetic
study on how and to what extent night temperature change
impacts terrestrial plant growth and biomass accumulation. To
accurately predict the effects of climatic change and develop
sound adaptive agricultural systems and land management
practices, it is imperative to understand how night temperature
affects photosynthetic carbon gain, loss and allocation through a
comprehensive analysis of HNT and LNT studies.

Night temperature has both direct and indirect effects on
plant physiology, morphology, growth and yield. HNT and
LNT impact plant physiology in many aspects, of which
photosynthesis is the most severely affected process (Berry and
Bjorkman, 1980; Damian and Donald, 2001; Yu et al., 2002;
Liu et al., 2010, 2011). There was a consistent suppression on
Anet (net CO2 assimilation rate) at LNT for both C3 (Flexas
and Osmond, 1999; Bange and Milroy, 2004; Zhang et al., 2010;
Sao et al., 2013b) and C4 species (Sao et al., 2013a), but a
stimulation for CAM species (Chen et al., 2008; Pollet et al.,
2011). HNT had a positive (Seddigh and Jolliff, 1984c; Prieto
et al., 2009; Darnell et al., 2013), negative (Teragishi et al.,
2001; Mohammed et al., 2013; Narayanan et al., 2015; Peraudeau
et al., 2015), or no effect (Veatch et al., 2007; Ibrahim et al.,
2010; Cheesman and Klaus, 2013) on Anet for C3 species and a
negative (Prasad and Djanaguiraman, 2011) effect for C4 species.
The effect of HNT and LNT on photosynthesis was related
to leaf chlorophyll content (Prasad and Djanaguiraman, 2011),
fluorescence parameters including photochemical efficiency of
PSII (Fv/Fm), PSII quantum yield (8PSII) and ETR (Liu et al.,
2011, 2012; Zhang et al., 2014), nitrogen (N) concentration
(Mohammed and Tarpley, 2009a), gs (stomatal conductance)
(Farquhar and Sharkey, 1982) and enzyme activities related
to carbon fixation (Noctor and Foyer, 1998). Among different
PFTs, a positive correlation between HNT and plant height
was reported (Patterson, 1990; Papadopoulos and Hao, 2000;
Cheng et al., 2009; Lucidos et al., 2013). However, LNT had
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a negative effect on plant height for C3 (Zieslin et al., 1986;
Pressman et al., 2006; Kjær et al., 2008) and C4 species (Uehara
et al., 2009), but a positive effect for CAM species (Serra and
Carrai, 1988). The responses of biomass accumulation to different
night temperature conditions were not identical among different
species. HNT had a positive effect on stem dry weight for
woody plants (Malek et al., 1992; Cheesman and Klaus, 2013), a
positive (Cheng et al., 2008, 2009; Darnell et al., 2013) or negative
(Seddigh and Jolliff, 1984a; Lee and Myeongwhan, 2011) effect
for herbaceous plants. However, LNT had a positive (Lepage
et al., 1984), negative (Kjær et al., 2008; Uehara et al., 2009;
Rehmani et al., 2014) or no effect (Dejong and Smeets, 1982) for
herbaceous plants. Both HNT and LNT resulted in a reduction
in crop yield, such as rice (Ziska and Manalo, 1996; Kanno
and Makino, 2010; Mohammed and Tarpley, 2010; Shi et al.,
2013), winter wheat (Zhang Y. H. et al., 2013; Narayanan et al.,
2015), sorghum (Prasad and Djanaguiraman, 2011) and tomato
(Khayat et al., 1985; Zhang et al., 2010; Qi et al., 2011; Zhang
Y. et al., 2013). Clearly, lessons from previous studies are not
all consistent and sometimes, contradictory. It is essential to
conduct a comprehensive review on the responses of different
plant functional groups to different night temperatures.

In addition to species functional groups and night temperature
treatments, experimental design (e.g., treatment duration and
growth facility) may also matter in understanding plant responses
to night temperature change. A significant reduction in rice
yield at HNT was associated with the reduction of N and
non-structural content translocation after flowering in a field
experiment (Shi et al., 2013). In a pot-growing experiment,
yield loss was concerned with decreased dry matter allocation
to grain due to reduced spikelet fertility during the reproductive
stage (Cheng et al., 2009). The variation of Anet deduction due
to HNT and LNT was dependent on experimental durations
(Teragishi et al., 2001; Zhu et al., 2005; Ibrahim et al., 2010;
Sao et al., 2010; Prasad and Djanaguiraman, 2011). However,
the difference between responses to different treatment durations
or to growing facilities is ambiguous. Confirming the effects of
experimental methodology is of key theoretical and practical
significance to help agriculture to choose the right cultivation
practice to mitigate adverse effects caused by HNT or LNT.

A meta-analysis of plant responses to temperature indicated
that CO2 elevation affected plant ecophysiology and growth, with
different magnitudes at different temperature treatments (Wang
et al., 2012). Not only daily temperature, but also the magnitude
of night temperature variation caused different impacts. Elevated
night temperature by 5◦C had a negative effect on Anet and gs but
no effect on intercellular CO2 concentration (Ci) (Mohammed
et al., 2013), while elevated night temperature by 8◦C significantly
increased Anet, gs, and Ci of bell peppers (Darnell et al., 2013).
With more night temperature reduction, the decrease in total dry
weight, number of leaves and leaf area for goatsrue were increased
gradually (Patterson, 1993). Although the effects of different
magnitude of night temperature variation on plant physiology
and growth varied significantly, the comparisons between these
effects are missing and a quantitative review would reveal
the optimal night temperature for different ecophysiological
processes and growth.

The primary objective of this study was to investigate
the effects of high and LNTs on various aspects of plant
responses, including physiological, morphological, and growth
characteristics. Specifically, our objectives were to: (1) assess
the difference and magnitude of HNT and LNT effects on
plant physiology, morphology and yield-related responses.
The physiological characters included Anet, PSII function, gs,
dark respiration (Rd), maximum carboxylation rate (Vcmax),
maximum ETR (Jmax), tissue N and TNC. The morphology
responses included plant height and leaf characteristics (number
of leaves, LAI, SLA and LAR). Yield-related parameters included
dry biomass, number of reproductive organs and yield; (2)
detect differences among different PFTs based on photosynthetic
pathways, growth forms and economic value; (3) investigate
the effect of the magnitude of the night temperature changes
on different responses; (4) tease apart the effect of growth
facilities or treatment durations on affecting these responses.
Accordingly, the specific hypotheses were proposed as: (1)
HNT and LNT would have similar negative effects on plant
physiological performance and growth; (2) LNT would have a
stronger negative effect on C4 species than on C3 species; HNT
would have a stronger negative effect on C3 than on C4 species.
To test these hypotheses, we conducted a comprehensive meta-
analysis of night-temperature manipulated studies published
from 1980 through 2015, using the response ratio lnr as an
estimate of the effect size of night-temperature relative to control
plots.

MATERIALS AND METHODS

Data Selection
Peer-reviewed journal publications were searched with the key
word “night temperature” on the Web of Science to build a
comprehensive database. The list of papers were then cross-
checked with a list of references cited in review articles that
were relevant to night temperature effects in order to assure
that all articles available for this meta-analysis were included.
Any article published in English from 1980 to 2015 that met
the following two criteria were included: (1) plants were treated
at ANT as a control group, and HNT or LNT as treatment
groups; (2) measurements on physiology, morphology, and yield
were carried out on both control and treatment groups. The
following two criteria were applied to exclude studies: (1) day
and night temperatures were treated at the same time; (2) studies
focused on extreme temperature values, which resulted in the
death of plants. Eventually, 112 papers were selected in this
study (Supplementary Material S1). Data were extracted directly
from the tables in the articles or were obtained by using the
software GetData Graph Digitizer when presented in graphical
formats. In these studies, night temperature was 1–20◦C above
or below ANT, with only four studies more than 20◦C above
or below ANT (Supplementary Figure S2). Response variables
extracted from these articles contained physiological characters
including net photosynthesis (Anet), PSII efficiency (Fv/Fm),
stomatal conductance (gs), dark respiration (Rd), non-structural
carbohydrate content (TNC), tissue nitrogen (N) content (i.e.,
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stem, leaf, panicle, spike, grain, shoot, root, and total N) and
tissue carbon (C) content (i.e., stem, leaf, shoot, root, and total
C), morphological features (i.e., plant height, stem diameter,
internode length, number of leaves, SLA, LAI, LAR) and yield-
related parameters (i.e., dry weight, number of reproductive
organs, days to flowering and yield). For multi-year studies on
annual species, results from different seasons were considered
independent and all observations were included in this analysis.
To ensure the independent nature of the data, we excluded
duplicate results found in different publications. However, our
analyses were not completely independent because individual
papers often provided data with more than one treatment (e.g.,
different HNT or LNT magnitudes) and/or different response
variables. To examine the influence of non-independence of data,
we first averaged those data from the same published study by
PFTs so that only one comparison was used from a published
study for each PFT. Nonetheless, we found that most of the
response patterns were unchanged; therefore, all data were used
in our study.

Categorization of the Studies
Night temperature was categorized into three levels: ANT,
HNT, and LNT. In addition to the response variables and
night temperature categories described above, plant species,
sample sizes, growth facilities and treatment durations under
each temperature treatment were also collected. Following the
categorization of Wang et al. (2012), plant species were classified
based on photosynthetic pathways (C3, C4, or CAM), growth
forms (herbaceous or woody) and economic values (crop or
non-crop). We listed the species, PFTs and associated references
used in this study (Supplementary Table S3). The experiments
conducted in these studies were either indoors (growth chamber
and greenhouse) or field studies. Due to relatively less data in
the field studies, growth facilities used in these experiments were
categorized as two levels of pot size: <10L and >10L. Because
the treatment duration varied from hours to years, we grouped
then into two levels: short-term (hours–days) and long-term
(months–years).

Meta-Analysis Methods
We employed a similar method from Hedges et al. (1999). To
avoid the adverse effects of different units, we used the response
ratio r = Xt/Xc to estimate the effect size of night temperature
treatments, where Xt is the treatment mean and Xc is the
control mean. In order to compare expediently, we calculated
the natural logarithm of the response ratio (lnr). In addition to
the mean value, standard deviation (SD) and sample size (n) for
each individual observation were also collected to calculate the
variance of effect size. Using METAWIN software 2.1 (Sinauer
Associates, Inc. Sunderland, MA, USA), we calculated the effect
size of the targeted variables and used a weighted, fixed-effects
model to evaluate the categorical effects on night temperature
treatments, plant species, pot sizes and treatment durations.
If the 95% confidence interval (CI) of lnr generated by the
fixed-effects model overlapped 0, the temperature treatment
was considered to have no significant impact on the response
variables. If the upper bound of the 95% CI was smaller than 0,

the response was considered significantly negative. Conversely, it
indicated that the treatment had a significantly positive effect on
variables if the lower bound of the 95% CI was greater than 0.
Although total difference among groups was divided into within-
group and between group difference, the significance level of the
latter revealed whether the response was different among groups
(Hedges et al., 1999). The response of plants was considered
significantly disparate between HNT and LNT overall or for
different species, pot size or treatment duration if their 95% CIs
did not overlap. Significance was established at p < 0.05 unless
otherwise noted.

Publication bias of the effect size (lnr) in this meta-analysis was
determined with METAWIN software 2.1 (Sinauer Associates,
Inc. Sunderland, MA, USA). We calculated Spearman’s rank-
order correlation (rs) which indicates the relationship between
the effect size (lnr) and the sample size (Begg and Mazumdar,
1994), and Rosenthal’s fail-safe number which represents the
number of additional studies with a mean effect size of zero
needed to eliminate the significance of a significant effect
(Rosenthal, 1979). Publication bias was significant if p-value of
rs was smaller than 0.05. However, the publication bias may be
safely ignored if the fail-safe number is larger than a critical
value of 5n+10 where n is the number of studies (Rosenberg,
2005).

Statistical Analysis
Original data collected from these studies were arranged into a
database in which the value of response variables was lnr. The
relationship between lnr of all the variables and the magnitude
of night temperature treatments were evaluated by a second-
degree polynomial or linear regression analysis with the R
statistical programming language (R 3.2.2 for Windows GUI
front-end).

RESULTS

Significance of HNT and LNT
Across all of the studies, HNT increased Anet, gs, Rd, and tissue N
content on average by 2.56, 11.37, 27.02, and 26.87%, respectively,
decreased Fv/Fm, chlorophyll content, starch, sucrose and
TNC content by 0.98, 8.08, 22.26, 13.77, and 13.97%, but
unaffected Tr (transpiration rate), Ci, PSII quantum yield,
ETR and tissue C content (Figure 1A). LNT had negative
effects on most physiological response variables by different
magnitudes, but increased chlorophyll (4.81%), C (1.11%), starch
(5.73%), sucrose (4.71%) and TNC content (3.32%). HNT
decreased stem diameter and internode length by 1.61%, and
15.97%, which were unchanged by LNT (Figure 1B). HNT
and LNT had an opposite effect on plant height, number of
leaves, SLA, LAI, and LAR (Figure 1B). HNT had positive
effects on total dry weight and number of productive tillers,
negative effects on leaf, stem, and fruit dry weight, number
of reproductive organs, flowering time and yield, and no
effects on above-ground, below-ground dry weight and fruit
size (Figure 1C). LNT decreased leaf (13.69%), fruit (15.18%),
above-ground (6.7%), below-ground (23.8%), and total dry
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FIGURE 1 | Plant (A) physiological, (B) morphological, and (C) yield-related responses to HNT (filled circles) and LNT (open triangle). Each data point represents the
mean ± 95% confidence interval (CI). The number of observations for each variable is given on the right of the graph. Note that N is tissue nitrogen content including
stem, leaf, panicle, spike, grain, shoot, root, and total N. C is tissue carbon content including stem, leaf, shoot, root, and total C.
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weight (55.33%), reproductive organs number (6.82%) and
yield (37.66%), respectively, but had no effects on stem dry
weight, number of productive tillers, anthesis and fruit size
(Figure 1C). Among all the variables, there was publication bias
for chlorophyll content (rs = −0.399, p = 0.02), leaf (rs = 0.346,
p = 0.002), stem (rs = 0.339, p = 0.0006), above-ground
(rs = 0.235, p= 0.006), and below-ground dry weight (rs = 0.22,
p = 0.07), which could not be ignored based on Rosenthal’s
value.

Variable Responses among Plant
Functional Types (PFTs)
HNT stimulated Anet by 3.43% for C3 species, but suppressed
it by 35.57% for CAM species (Figure 2). Note that there were
not enough publications for a summary on C4 species. LNT
suppressed Anet more for C4 species than for C3 and CAM
species. HNT increased plant height differently for C3 and
C4 species by 6.41 and 150%, respectively. For woody species,
Anet, Rd and biomass (stem and below-ground) responded more
positively, while gs and plant height responded less positively to
HNT than for herbaceous species (Figure 3). The LNT effect
on woody and herbaceous species was significant for Anet, gs,
Tr, stem dry weight and plant height. LNT had a less negative
effect on Anet, Tr, and gs but a larger negative effect on stem
dry weight and plant height in herbaceous species than in woody
species.

High night temperature had a greater positive effect for gs and
Rd in crops and Anet in non-crops (Figure 4). Positive effects
of LNT on gs and TNC were significantly greater for non-crops
than for crops. Positive effects of HNT on plant height, number
of leaves and LAR were greater in crops, but the effects on SLA
and LAI were greater in non-crops (Figure 5). LNT decreased
plant height and number of leaves more in crops, but decreased
SLA and LAI more in non-crops. HNT had positive effects on
leaf, stem and total dry weight for crops but negative effects on
non-crops (Figure 6). For below ground, dry weight and number
of reproductive organs, non-crops responded more negatively
to HNT than crops. LNT had positive effects on above-ground
and total dry weight for crops and negative effects for non-crops,
while stem dry weight in crops and non-crops responded to LNT
oppositely. LNT had a greater negative effect on leaf dry weight
and anthesis for crops than for non-crops.

Magnitude-Introduced Uncertainty
Most ecophysiological and growth parameters formed a
quadratic relationship, except for Rd, which responded linearly,
to night temperature treatment (Figures 7–9). Anet, gs, and tissue
N were the highest when NT was 0.675, 5.43, and 2.1◦C above
ambient temperature, respectively (Figure 7). Morphological
parameters, including number of leaves, LAI, SLA, and LAR,
formed downward-opening parabola relationships with night
temperature change, while plant height, on the other hand,
formed an upward-opening parabola relationship with night
temperature change (Figure 8). Yield-related parameters
including leaf, stem, above-ground and below-ground dry
biomass as well as the number of reproductive organs, days

to flowering, fruit size and fruit weight had downward-
opening quadratic relationships with night temperature change
(Figure 9).

Uncertainty Related to the Experimental
Design
Pot size involved in the experiments was a significant factor
influencing the effects on Anet, tissue N, TNC, total dry weight,
number of reproductive organs, and plant height’s responses
to HNT (Figure 10). Plants in smaller pots (<10L) responded
more positively for Anet, N, wt, and plant height to HNT. TNC,
however, responded more negatively at HNT in larger pots. N,
wt, number of reproductive organs and plant height were reduced
more in smaller pots at LNT. Anet was decreased more and TNC
was increased more in larger pots with LNT.

Experimental duration also played an important role in
affecting plant responses to HNT and LNT. HNT increased
respiration less in short-term treatments than that in long-
term treatments, while LNT duration had insignificant effects
(Figure 11). Stomatal conductance was significantly increased at
short-term HNT but decreased at long-term HNT. Compared
with short-term duration, long-term LNT caused more reduction
on Anet and gs. Experimental duration had no effects on the
responses of SLA to HNT or to LNT, but generated different
effects on plant height and LAI at both HNT and LNT. Long-term
HNT increased plant height and LAI more, whereas short-term
LNT reduced plant height more and LAI less. For total dry
weight, long-term HNT and LNT had greater effects than short-
term. Yield was decreased more at short-term HNT and different
durations had no significant effects in affecting yield responses to
LNT.

DISCUSSION

Asymmetric night warming and chilling have long been
acknowledged as a universal phenomenon in recent years and
caused great agricultural, economic and ecological consequences
(Xia et al., 2014). At the leaf and organism level, however,
comprehensive quantitative analysis of the effect of HNT and
LNT on plants ecophysiology and growth remain unclear. In this
study, we collected data from night temperature manipulative
studies and analyzed the changes in ecophysiological and whole-
plant responses due to changes in night temperatures. Overall,
we found that: (1) the significance and degree of the effect
of HNT and LNT and the causes of yield reduction at HNT
and LNT were different; (2) there existed significant variations
among different PFTs in responding HNT and LNT; (3) there
was an optimal night temperature for important processes of
plants physiology and growth; (4) the responses to HNT and LNT
appeared dependent of the experimental designs.

Plant Responses to HNT and LNT
Consistent with our hypothesis, both HNT and LNT had a
negative effect on plants yield, with a greater negative effect
at LNT, probably due to a greater night temperature reduction
for LNT treatments (Supplementary Figure S2). HNT and LNT
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FIGURE 2 | Photosynthetic rate (Anet) and plant height responses to HNT (red) and LNT (blue) in C3 (circles), C4 (triangles), and CAM (stars) species.
Each data point represents the mean ± 95% CI. The number of observations for each variable is given on the right of the graph.

are considered great threats to plants production, especially for
crops (Hall, 2000; Maali and Heidarvand, 2010). The impacts of
temperature change on plant yield have been assessed directly
through greenhouse (Cheng et al., 2009; Mohammed and Tarpley,
2009a,b; Kanno and Makino, 2010; Zhang et al., 2010; Qi et al.,
2011) and field experiments (Peng et al., 2004; Nagarajan et al.,
2010; Shi et al., 2013; Zhang Y. H. et al., 2013). The long-term
effect of climate change on crops was also estimated through
crop-growth models, such as CERES (Ritchie and Otter, 1985;

Jones et al., 1986), ORYZA2000 (Bouman and Laar, 2006),
and CropSyst (Stockle et al., 1994). Warming stress triggered a
significant loss of crop yield worldwide, particularly in nations
such as China (Li et al., 2004), Japan (Hasegawa et al., 2009),
Philippines (Peng et al., 2004), as well as nations in south
and southeast Asia (Welch et al., 2010). The deduction of
yield was often associated with the decrease in the number of
panicles (Peng et al., 2004), grain maturity (Suzuki and Moroyu,
1962; Ziska and Manalo, 1996) and final grain weight (Morita,

FIGURE 3 | Plant physiological, morphological and yield-related responses to HNT (red) and LNT (blue) in woody (circles) and herbaceous (triangles)
species. Each data point represents the mean ± 95% CI. The number of observations for each variable is given on the right of the graph.
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FIGURE 4 | Plant physiological responses to HNT (red) and LNT (blue) in crops (circles) and non-crops (triangles) species. Each data point represents
the mean ± 95% CI. The number of observations for each variable is given on the right of the graph.

FIGURE 5 | Plant morphological responses to HNT (red) and LNT (blue) in crops (circles) and non-crops (triangles) species. Each data point represents
the mean ± 95% CI. The number of observations for each variable is given on the right of the graph.

2005; Kanno and Makino, 2010), spikelet number per plant
(Morita et al., 2002, 2004; Peng et al., 2004) and spikelet fertility
(Cheng et al., 2009; Mohammed and Tarpley, 2009a, 2010),
accelerative respiration rates (Mohammed and Tarpley, 2010),
grave membrane leakage (Mohammed and Tarpley, 2009b), lower
pollen germination (Mohammed and Tarpley, 2009a), and poor
assimilates and N translocation to grains (Morita, 2005; Cheng
et al., 2009; Kanno and Makino, 2010; Shi et al., 2013).

We found that the negative effect of HNT on yield was
associated with a reduction in number of reproductive organs,
fruit dry weight, and time for flowering. The reproductive process
was regarded as most susceptible to heat stress (Prasad et al., 2006;
Jagadish et al., 2007, 2008, 2010), with limited pollen viability as
the major cause of yield reduction (Yoshida et al., 1981; Ziska
and Manalo, 1996; Jagadish et al., 2010; Zhang et al., 2010;
Zhang Y. H. et al., 2013; Fang et al., 2013; Rehmani et al., 2014).
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FIGURE 6 | Plant yield-related responses to HNT (red) and LNT (blue) in crops (circles) and non-crops (triangles) species. Each data point represents the
mean ± 95% CI. The number of observations for each variable is given on the right of the graph.

Decreased seed yield and lower seed-set under HNT were also
reported in wheat (Prasad et al., 2008), rice (Mohammed and
Tarpley, 2009b), cowpea (Ahmed et al., 1993), and tomato (Peet
and Bartholemew, 1996). Low temperature is one of the most
important abiotic stresses for plant growth, development, energy
distribution (Xiong et al., 2002; Oufir et al., 2008), and yield
(Kasuga et al., 1999; Lang et al., 2005). The negative effect of LNT
on yield in this study appeared to be associated with a decline in
the number of reproductive organs, fruit dry weight, as well as
above-ground, below-ground, and total dry weight. Clearly, the
mechanisms for the negative effect of HNT and LNT on plant
yield were different (Figure 1). The negative effect of LNT on
plant yield was primarily related to the negative effect of LNT on
the total biomass accumulation, but the negative effect of HNT
on plant yield was caused mostly by the reduced allocation of
biomass to reproductive organs, as the total biomass was even
stimulated by HNT. HNT had been shown to cause no change,
or indeed an increase, in total biomass accumulation in crop
plants such as rice (Ziska and Manalo, 1996; Cheng et al., 2009),
sorghum and sunflower (Manunta and Kirkham, 1996), tobacco
(Camus and Went, 1952), and cotton (Königer and Winter,
1993).

The balance between photosynthesis and respiration controls
plant growth. Several recent meta-analyses of plant responses
to increasing temperature had highlighted how plants may be
particularly vulnerable to increases in both HNT and LNT
(Lin et al., 2010; Way and Oren, 2010). In contrast to the
prediction that Anet is constrained at both LNT and HNT (Berry
and Bjorkman, 1980), HNT increased Anet by 2.56% and LNT
decreased Anet by 8.73% among the plants included in this
study (Figure 1A). The positive effect of HNT on Anet could be
associated with the increment of gs and tissue N, instead of PSII
quantum yield and ETR (Figure 1A). HNT increased gs of two
rice genotypes (Shah et al., 2011) and wheat (Lu et al., 1998).

HNT enhanced nitrogen soil mineralization (Sardans et al., 2008;
Patil et al., 2010) and therefore increased leaf N concentrations
(Rustad et al., 2001), which was closely related to photosynthetic
capacity (Mae, 1997; Llorens et al., 2003). The loss of chlorophyll
owing to HNT has been reported in many crops (Reynolds et al.,
1994; Guo et al., 2006). The negative effect of LNT on Anet was
associated with the negative effect on gs, PSII function (8PSII,
ETR, and Fv/Fm), ribulose-1,5-bisphosphate carboxylase (RuBP)
inactivation and leaf N (Figure 1A), consistent with other studies
(Allen and Ort, 2001; Huang and Guo, 2005; Bertamini et al.,
2007). Photosystem II has been regarded as the most sensitive to
LNT (Huang et al., 2010), as LNT induced PSII photoinhibition
and caused reversible inhibition of photosynthetic capacity
(Dongsansuk et al., 2013; Zhang et al., 2014).

Our meta-analysis indicated that dark respiration (Rd) was
increased with HNT but was decreased with LNT. Increased
dark respiration in HNT was reported in rice (Mohammed and
Tarpley, 2009b) and Stipa krylovii Roshev (Chi et al., 2013a,b) at
leaf scale and in rice (Cheng et al., 2009), lettuce, tomato, soybean
(Frantz et al., 2004), and cotton (Loka and Oosterhuis, 2010)
at organism scale. Different from the hypothesis proposed by
Peng et al. (2004) that HNT increased biomass loss by enhancing
respiration, our study concluded that HNT increased total
biomass but LNT decreased the total, above-ground and below-
ground biomass. Total biomass was stimulated by HNT in rice
(Cheng et al., 2008, 2009), Ficus insipida and Ochroma pyramidale
(Cheesman and Klaus, 2013), Rosebay rhododendron (Starrett
et al., 1993), panicum (Patterson, 1990) and soybean (Hewitt
et al., 1985). Studies in natural systems have seen impacts on plant
phenological development. For example, the large herbaceous
perennial, Phytolacca americana (Phytolaccaceae) demonstrated
no difference in biomass accumulation but had flower set faster as
a result of HNT (Wolfe-Bellin et al., 2006). Studies in temperate
North America demonstrated that HNT in urban environments

Frontiers in Plant Science | www.frontiersin.org 9 November 2016 | Volume 7 | Article 1774

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01774 November 22, 2016 Time: 16:13 # 10

Jing et al. Night Temperature and Plant Ecophysiology

FIGURE 7 | Correlations between the magnitude of NT treatment and
the response ratio of (A) net photosynthetic rate (Anet); (B) stomatal
conductance (gs); (C) dark respiration rate (Rd) and (D) tissue nitrogen
content (N). Each point represents response ratio (lnr) to HNT or LNT.
Regression function, variation coefficient and p-value are presented in the
middle of each graph. Different lines indicate X = 0 (red line), x-value when y is
the maximum, crossing points of y = 0 (green line) and regression
relationships. Note that N is tissue nitrogen content including stem, leaf,
panicle, spike, grain, shoot, root, and total N.

increased growth rates in seedlings of Quercus rubra (Searle et al.,
2012). Similarly, changes in Rd of non-photosynthetic tissues
(Saveyn et al., 2008), or a change in carbon-use efficiency (Hansen
et al., 2009), could contribute to increased growth rate under
HNT.

The balance between photosynthesis and respiration also
controls carbohydrate accumulation, which is essential for
plant growth and development (Azcón-Bieto and Osmond,
1983; Guy et al., 1992). The processes of photosynthesis and
respiration responded independently to temperature and are
linked by leaf carbon status (Turnbull et al., 2002). TNCs
including starch and sucrose responded differently to HNT
and LNT. Although HNT stimulated both photosynthesis and

respiration, carbohydrate content was significantly decreased,
probably due to the imbalance of the stimulation of HNT
on Rd and Anet. Leaf carbohydrates synthesized during the
daytime were observed to be consumed more quickly during
warmer nights because of enhanced leaf respiration, which
depletes foliar carbohydrates and may produce a rebound
effect of compensatory stimulated photosynthesis during the
following day. Evidence supporting this hypothesis has been
reported in both greenhouse and field experiments (Beier
et al., 2004; Lin et al., 2010). Turnbull et al. (2002) found
that leaf starch concentration, soluble sugar and total non-
structural carbohydrate declined significantly with the increase
of nocturnal temperature. However, no compensatory effect was
found between respiration and photosynthesis under nocturnal
warming in Mediterranean grassland (Xia et al., 2014). Further
investigation is required to discover whether the compensatory
effect between respiration and photosynthesis under night
warming is related to other environmental conditions, such
as water and nitrogen availability. LNT increased carbohydrate
content via a lesser negative effect on Rd than on Anet, which
was approved in many studies (Siminovitch and Briggs, 1953;
Steponkus and Lanphear, 1968; Guy et al., 1980; Kaurin et al.,
1981; Miao et al., 2009). The increased carbohydrate content
posed a negative effect on the day-time photosynthesis at LNT.

Plants adapt to climate stresses via multiple strategies, such
as the adjustments of phenology and morphology (Wahid et al.,
2007). Leaf morphology was particularly sensitive to HNT as leaf
expansion often reached its peak during the night (Schurr et al.,
2000; Pantin et al., 2011). HNT had positive effects on SLA, LAR,
number of leaves and LAI. When exposed to HNT, the expansion
of leaf area and plant height benefited capturing more light for
photosynthesis (Seddigh and Jolliff, 1984c; Darnell et al., 2013).
Elevated water temperature, in addition to air temperature, can
also stimulate leaf expansion and elongation (Tsunoda, 1964;
Cutler et al., 1980). Kanno et al. (2009) attributed the positive
effect of HNT on plant biomass to an increase in leaf area in
rice plants, which was found in tomatoes and Galega officinalis
(Hussey, 1965; Patterson, 1993) as well. LNT, on the other hand,
suppressed plant height, number of leaves, LAI, SLA, and LAR,
corresponding to the previous studies (Cockshull, 1979; Dejong
and Smeets, 1982; Patterson, 1993; Kjær et al., 2007, 2008; Kjaer
et al., 2010).

Variable Responses among Plant
Functional Types (PFTs)
Previous studies indicated that increased daytime temperature
had stronger effects on Anet of C3 species than C4 species (Wahid
et al., 2007). No consistent results for HNT effect on Anet were
found due to insufficient data for C4 species. However, we did find
that LNT decreased Anet more in C4 species than in C3 species,
which was closely associated with relatively more reduction of gs,
ETR, Vcmax, and Jmax for C4 species (Figure 2; Supplementary
Figure S4). Low temperature effects on C4 photosynthesis have
been frequently examined (Long, 1998). C4 photosynthesis has
been suggested to be inherently sensitive to chilling because of
the cold lability of the C4 cycle enzymes (Long, 1983; Sage, 2002;
Sage and Kubien, 2007).
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FIGURE 8 | Correlations between the magnitude of NT treatment and the response ratio of (A) plant height; (B) number of leaves; (C) leaf area index (LAI);
(D) specific leaf area (SLA); (E) leaf area ratio (LAR). Each point represents response ratio (lnr) to HNT or LNT. Regression function, variation coefficient and p-value
are presented in the middle of each graph. Different lines indicate X = 0 (red line), x-value when y is the maximum, crossing points of y = 0 (green line) and
regression relationships.
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FIGURE 9 | Correlations between the magnitude of NT treatment and the response ratio of (A) leaf dry weight; (B) stem dry weight; (C) above-ground dry
weight; (D) below-ground dry weight; (E) number of reproductive organs; (F) days to flowering; (G) fruit dry weight and (H) fruit size. Each point represents response
ratio (lnr) to HNT or LNT. Regression function, variation coefficient and p-value are presented in the middle of each graph. Different lines indicate X = 0 (red line),
x-value when y is the maximum, crossing points of y = 0 (green line) and regression relationships.

High night temperature stimulated Anet in woody plants
but suppressed it in herbaceous plants. The same pattern
was found in stem biomass. Though studies have reported a
greater warming-induced stimulation in woody biomass than
in herbaceous biomass (Lin et al., 2010), the result that woody
plants were more favored under night warming than herbaceous
plants has not been reported. The stimulation of HNT on stem
biomass is greater than that on below-ground biomass for woody
species, however, for herbaceous species, HNT had no effect on
leaf- or below-ground biomass, yet suppressed stem biomass
significantly. Our results imply that more resources will be
allocated to aboveground growth, and therefore above-ground
competition for resources, such as light, will be more important
for woody species under night warming (Suding et al., 2005;
Lin et al., 2010). In ecosystems where herbaceous and woody
plants coexist, a greater biomass stimulation of woody than of
herbaceous species may increasingly suppress growth, especially
above-ground growth, of herbaceous species via a shading effect
(Castro and Freitas, 2009). LNT also had a positive effect on
woody stem biomass, which might be related to a stronger

suppression in Rd than Anet. The negative effect of HNT on Anet
for herbaceous plant was caused primarily by damage to PSII
efficiency (Fv/Fm) (Figure 3). LNT decreased Anet more in woody
plants than in herbaceous plants, along with a greater decrease
of Fv/Fm and gs in woody plants, which was consistent with
previous studies (Sao et al., 2010, 2013b; Liu et al., 2011). It is
important, however, to note that more research is needed on the
effect of night temperature on plants biomass allocation, since the
publication bias on this effect could not be ignored in this meta-
analysis. Low sample sizes for some functional groups used in this
analysis (e.g., C4 and woody species) require that some results
in this analysis be interpreted with caution. Nevertheless, results
from these under-represented groups demonstrate that further
study of these groups is critical for this untested hypothesis in
the future.

Teasing apart the variations of the responses among crops and
non-crops is important to guide future research in agricultural
practice and genetic engineering. HNT had a positive effect on
Anet for non-crops but had no effect for crops, while HNT
had a positive effect on Rd for both crops and non-crops. Due
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FIGURE 10 | Plant physiological, morphological and yield-related responses to HNT (red) and LNT (blue) grown in <10 L pots (circles) or >10L pots
(triangles). Each data point represents the mean ± 95% CI. The number of observations for each variable is given on the right of the graph. Note that N is tissue
nitrogen content including stem, leaf, panicle, spike, grain, shoot, root, and total N.

FIGURE 11 | Plant physiological, morphological and yield-related responses to HNT (red) and LNT (blue) for different treatment durations (circles,
short-term; triangles, long-term). Each data point represents the mean ± 95% CI. The number of observations for each variable is given on the right of the graph.

to different responses of Anet and Rd to HNT between crops
and non-crops, TNC was decreased in crops but unchanged
in non-crops. Accordingly, HNT stimulated leaf-, stem-, total
dry biomass for crops but decreased leaf-, stem-, below-ground,
total dry biomass for non-crops. Similarly, crops better adapted
to LNT than non-crops, as LNT had a positive effect on total
dry biomass for crops but negative for non-crops. The fact
that crops coped with HNT and LNT better than non-crops
could imply an improved stress-tolerant ability for improved
crops through breeding, genetic engineering, and management
practices. Changes in HNT and LNT could influence vegetation

dynamics and ecosystem structure through shifting competitive
interactions among different functional groups in natural or
agricultural systems.

Uncertainties
The magnitude of night temperature treatment did have an
impact on most of the parameters that were investigated
in the study. The negative effects of HNT and LNT on
plants ecophysiological parameters (Anet, gs, and tissue N),
morphological parameters (SLA, LAI, and LAR), and yield
related parameters (above-ground and below-ground biomass,
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fruit size and dry weight) were more evident with the increasing
magnitude of HNT and LNT treatment (Figures 7–9). Consistent
with the results discussed before, plant peak physiology and
growth mostly occurred at night temperatures higher than the
ambient, especially for leaf growth. Plant height, on the other
hand, was even stimulated by HNT and not much affected by
LNT. Whether plants at HNT tend to be thinner and taller
requires further investigation. In all cases, photosynthesis shows
an optimum temperature that roughly corresponds to the middle
of the non-harmful range and drops off with an increased slope
as temperatures rise above the thermal optimum.

It is essential that potential confounding factors be considered
in a meta-analysis, which synthesizes results from a large number
of studies conducted under a variety of growing conditions on
different plant species. In our analysis, studies in plant responses
to other environmental stresses (e.g., drought, low nutrients, light
deficiency, or elevated ozone) were excluded. In addition to the
variation caused by PFTs, different experimental design can be
also responsible for the inconsistent responses (Mohammed and
Tarpley, 2009a,b; Nagarajan et al., 2010; Cheesman and Klaus,
2013; Rehmani et al., 2014). Here we focused on the effects of
pot size (<10L vs. >10L) and treatment duration (short vs. long
term) on plant responses. Responses of plant growth under HNT
and LNT may vary with time because thermal sensitivity of plants
may differ among growth stages. Long-term LNT treatment had
a stronger negative effect on Anet than short-term treatment,
whereas HNT treatment of different durations had no significant
effect on Anet. On the contrary, Rd was increased greater in long-
term HNT but not different between different LNT durations.
Several studies had reported the long-term acclimatization of
dark respiration on tropical trees (Atkin and Tjoelker, 2003;
Cheesman and Klaus, 2013). Total biomass responded differently
between different treatment durations of HNT and LNT, though
no significant experiment duration effect was found in above-
and below-ground dry matter. Plant growth and yield were
decreased less at long-term HNT, which might be related to plant
acclimation ability (Hare et al., 1998; Wahid et al., 2007). Pot
size significantly altered the responses of Anet, non-structural
carbohydrates and total biomass to HNT and LNT. Small pots
constrained below-ground growth along with more limitation on
above-ground growth (Thomas and Strain, 1991; Loh et al., 2003;
Climent et al., 2011), given that a skimpy supply of nutrients and
water which might induce strong nutrient or water inhibition
(Walters and Reich, 1989).

CONCLUSION

We found that both HNT and LNT had a negative effect on
plants yield, with the HNT effect primarily related to reduced
biomass allocation to reproductive organs, flower development
and seed maturation and the LNT effect more related to
a negative effect on total biomass. HNT accelerated plants
ecophysiological processes, including photosynthesis and dark
respiration, while LNT slowed these processes. The responses to
LNT and HNT varied significantly among different PFTs. HNT
stimulated photosynthesis in C3, woody and non-crop species,

but inhibited it in herbaceous, and had no effect in crops. LNT
caused more reduction of Anet in woody than in herbaceous
species but decreased it for both crops and non-crops with no
significant difference. Both experimental settings and durations
had significant effects in plants responses to night temperature
change. Long-term HNT led to a relatively smaller loss of yield
while the response of yield to LNT was unchanged by different
treatment durations. The magnitude of night temperature did
have an impact on most of the parameters that were investigated
in the study. Plants peak physiology and growth mostly occurred
at night temperatures higher than the ambient, especially for
leaf growth. Our results suggest that the diurnal variations in
vegetation responses to night temperature changes are important
for understanding the changes in vegetation photosynthetic
activity and growth in future climates. Such diurnal variations,
however, have rarely been incorporated into current modeling
studies on vegetation responses to global warming—which are
overwhelmingly based on daily or growing season mean air
temperature and will not capture the response of vegetation to
asymmetric diurnal temperature changes. New field experiments
with different elevated temperatures during day vs. night, and
across different seasons, are urgently needed for different plant
functional groups. Such experiments will shed new light on
the ecophysiological effects of night-time temperature change
during different seasons, and can be used to improve the
performance of current land surface models. The functional
type specific response patterns of plants to night temperature
changes are critical for obtaining credible predictions of the
changes in food production, carbon sequestration and climate
regulation.
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