
fpls-07-01790 December 2, 2016 Time: 11:31 # 1

ORIGINAL RESEARCH
published: 02 December 2016
doi: 10.3389/fpls.2016.01790

Edited by:
Ashraf El-kereamy,

University of California Cooperative
Extension Kern County, USA

Reviewed by:
Gavin M. George,

Stellenbosch University, South Africa
Pavel Pospíšil,

Palacký University, Olomouc, Czechia

*Correspondence:
María L. Pérez-Bueno

marisa.perez@eez.csic.es

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 17 August 2016
Accepted: 14 November 2016
Published: 02 December 2016

Citation:
Pérez-Bueno ML, Pineda M,

Cabeza FM and Barón M (2016)
Multicolor Fluorescence Imaging as
a Candidate for Disease Detection

in Plant Phenotyping.
Front. Plant Sci. 7:1790.

doi: 10.3389/fpls.2016.01790

Multicolor Fluorescence Imaging as
a Candidate for Disease Detection in
Plant Phenotyping
María L. Pérez-Bueno*, Mónica Pineda, Francisco M. Cabeza and Matilde Barón

Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín – Spanish Council of
Scientific Research, Granada, Spain

The negative impact of conventional farming on environment and human health
make improvements on farming management mandatory. Imaging techniques are
implemented in remote sensing for monitoring crop fields and plant phenotyping
programs. The increasingly large size and complexity of the data obtained by these
techniques, makes the implementation of powerful mathematical tools necessary in
order to identify informative parameters and to apply them in precision agriculture.
Multicolor fluorescence imaging is a useful approach for the study of plant defense
responses to stress factors at bench scale. However, it has not been fully applied to plant
phenotyping. This work evaluates the possible application of multicolor fluorescence
imaging in combination with thermography for the particular case of zucchini plants
affected by soft-rot, caused by Dickeya dadantii. Several statistical models -based on
logistic regression analysis (LRA) and artificial neural networks (ANN)- were obtained for
the experimental system zucchini-D. dadantii, which classify new samples as “healthy”
or “infected.” The LRA worked best in identifying high dose-infiltrated leaves (in infiltrated
and non-infiltrated areas) whereas ANN offered a higher accuracy at identifying low
dose-infiltrated areas. To assess the applicability of these results to cucurbits in a more
general way, these models were validated for melon infected by the same pathogen,
achieving accurate predictions for the infiltrated areas. The values of accuracy achieved
are comparable to those found in the literature for classifiers identifying other infections
based on data obtained by different techniques. Thus, MCFI in combination with
thermography prove useful at providing data at lab scale that can be analyzed by
machine learning. This approach could be scaled up to be applied in plant phenotyping.

Keywords: Dickeya dadantii, Cucumis melo, Cucurbita pepo, multicolor fluorescence imaging, thermal imaging,
phenotyping, artificial neural network, logistic regression analysis

INTRODUCTION

Plant pathogens are severe constraints to the production yield of crop fields worldwide. Current
agricultural policies are aimed to minimize the use of pesticides and fertilizers through better
targeting, and the integration with cultural control of weeds, pests, and diseases (Maloy, 2005).
The implementation of precision agriculture relies on the development of technologies that allow

Abbreviations: ANN, artificial neural network; BGF, blue and green fluorescence; D, leaf region distant from infiltrated
areas; dpi, days post-infection; F440, F520, F680, and F740, autofluorescence in the blue, green, red and far red spectrum
regions, respectively; HD, high bacterial dose; I, infiltrated area of the leaf; LD, low bacterial dose; LRA, logistic regression
analysis; MCFI, multicolor fluorescence imaging; N, leaf region neighboring the infiltrated area.
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the identification and mapping of constraints in the crop
fields, such as imaging techniques (Mulla, 2013). They can
be used to evaluate the effects of stress on plant metabolism
(Cerovic et al., 1999; Barón et al., 2012, 2016). Consequently,
imaging techniques are powerful non-destructive tools that
have become essential: they provide crucial information for the
decision-making and for the right timing of the procedures to
be applied (Usha and Singh, 2013; Li et al., 2014; Mahlein,
2016).

Imaging techniques implemented on plant phenotyping
provide complex and large scale spatial and temporal
information, which is very difficult to analyze and interpret
by conventional statistical methods. Another important
contribution to precision agriculture is the development of
mathematical tools that allow monitoring and classification of
plants and fruits by the severity of the disease (Hahn, 2009),
based on advanced statistical methods, as reviewed by Mulla
(2013) and Behmann et al. (2015). Some of these mathematical
tools could be used as classifiers, identifying stressed plants,
or monitoring the evolution of pests. This strategy can also be
applied in the same way on plant phenotyping programs (Fiorani
and Schurr, 2013). The classifiers are mathematical models
that are obtained by machine learning: systems that learn from
data corresponding to different categories or subpopulations
(Hahn, 2009; Behmann et al., 2015; Singh et al., 2016). Successful
models are able to identify what category new data belong to,
thus classifying them accurately. Machine learning includes
a wide range of classifiers, such as ANN and LRA. ANN is a
network inspired by biological neural networks that learn from
input and output data (Hill et al., 1994). On the other hand,
LRA is a statistical method that estimates the probability of
a dichotomous outcome (“healthy” vs. “infected”) based on
one or more independent variables. For this reason, LRA is of
particular interest and widely used in biomedicine (Hosmer
et al., 2013). Independently from the model used, part of
the dataset obtained by experimental measurements (usually
about two thirds of the total set of data) is used for training
the model, and the remaining part is used for its validation.
The goodness of the model is provided by the parameters
sensitivity, specificity, and accuracy. The proportion of samples
predicted to be infected that are actually “infected” is referred
to as sensitivity or true positive rate, while the proportion of
samples that are correctly predicted to be “healthy” is called
specificity, or true negative rate. Accuracy is the proportion of
right guesses, both “healthy” and “infected” samples (Parikh
et al., 2008).

Reflectance and thermography are imaging techniques used
widely in remote sensing and plant phenotyping. On the contrary,
MCFI, otherwise very used in fundamental research on plant
defense responses upon abiotic and biotic stress factors (Cerovic
et al., 1999), has not been developed for its use at large scale. In
the past, MCFI was applied in crop fields for some particular
cases, although no systematic analysis of the images could be
carried out at that time (Heisel et al., 1996; Johansson et al., 1996;
Saito et al., 1998). In later years, advances have been made in its
implementation at large scale (Tremblay et al., 2012; Latouche
et al., 2015).

Multicolor fluorescence imaging is a non-invasive technique
by which UV-excited autofluorescence is collected from plants or
leaves. Fluorescence in the red and far red regions is emitted by
chlorophyll a. In addition, the fluorescence in the blue and green
regions (BGF) is emitted by secondary metabolites, many of them
phenolics related to plant defense (Buschmann and Lichtenthaler,
1998). Therefore, the results serve as an indication of the activity
of plant metabolism.

Imaging of leaf and canopy temperature by thermography has
been widely used in plant phenotyping, mainly to characterize
drought susceptibility (Li et al., 2014). Leaf temperature inversely
correlates with transpiration and stomatal conductance (Jones,
1999), which is tightly regulated by plants as a general mechanism
of defense upon abiotic stress, but also against pathogens
(Melotto et al., 2008). This technique has been used in the study
of infections by virus, bacteria, and fungi, as reviewed by Barón
et al. (2016).

The pectinolytic Dickeya spp. are necrotrophic, Gram-
negative plant pathogens that cause soft-rot disease and black-leg.
A very wide range of plants are host for these species, including
many economically important horticultural and ornamental
plants worldwide (Czajkowski et al., 2011; Mansfield et al.,
2012). Dickeya dadantii is able to infect fleshy, succulent plant
parts, such as tubers, rhizomes, stems, and leaves, causing
localized symptoms, thus limiting the crop yield and quality,
and exerting significant losses in fields and in postharvest.
D. dadantii is particularly pernicious due to its ability to live
as saprophyte, epiphyte, or endophyte (Reverchon and Nasser,
2013), with great capacity for adaptation to new geographic
areas and to new hosts (Reverchon et al., 2016). D. dadantii
can be found in ground water, crop residues, soils, and also
on other plants causing no infection, that would serve as a
reservoirs (Nelson, 2009). It can also be isolated from the
roots of healthy weeds in agricultural fields (Tsror et al., 2010).
On the other hand, it can infect insects, which in turn may
serve as dissemination vectors (Reverchon and Nasser, 2013).
All these features make D. dadantii be among the top 10
most important bacterial pathogens in agriculture, according
to Mansfield et al. (2012). In this scenario, early detection
and appropriate farming practices are essential to minimize
the spreading of infections. Bacteria enter primarily through
hydathodes, stomata, and wounds to invade intercellular spaces.
Once inside the plant tissue, D. dadantii produces and secretes
degradative enzymes, mostly pectate lyases, which catalyze the
hydrolysis of pectin, an essential component of the plant cell
walls (Duprey et al., 2014). The consequent degradation of cell
walls to gain access to nutrients, is the cause of soft-rot, the
typical symptom of maceration (Hugouvieux-Cotte-Pattat et al.,
1996).

In this work, the experimental host-pathogen systems were
cucurbits (zucchini and melon) infected by D. dadantii. The main
aim of this work is to explore the possible application of advanced
statistical methods to data obtained by MCFI, on its own or by
combination with thermography, for early disease detection. For
this purpose, the predictions obtained by ANN and LRA are
compared. The results show the convenience of MCFI in plant
disease detection as a new approach for plant phenotyping.
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MATERIALS AND METHODS

Biological Material and Inoculation
Seeds of zucchini (Cucurbita pepo) v. Negro Belleza and melon
(Cucumis melo) v. Rochet Panal (Semillas Fitó, Barcelona, Spain)
were allowed to germinate in sterile conditions in petri dishes for
1 week at 24◦C. Seedlings were planted in soil and transferred to
a growth chamber under 150 µmol m−2 s−1 photosynthetically
active radiation with a 16/8 h (22/18◦C) light/dark photoperiod
and 65% relative humidity.

Dickeya dadantii strain 3937, formerly Erwinia chrysanthemi
3937, was grown for 24 h at 28◦C in Luria-Bertani (LB) plates
containing 25 µg ml−1 rifampicin. Bacterial suspensions were
prepared in 10 mM MgCl2 by adjusting their optical density at
600 nm to 0.1, which corresponded to 108 colony forming units
per ml. Serial dilutions of the bacterial suspension were carried
out to obtain the two concentrations used for inoculations, high
and low dose (HD and LD, 106 or 104 colony forming units per
ml, respectively).

The second leaf of 3-weeks old zucchini and melon plants
was inoculated by infiltration as described in Pérez-Bueno
et al. (2016) by pressing the LD or HD bacterial suspension
into the abaxial side of the leaf using the blunt end of a
1 ml syringe. Mock-inoculated control plants were infiltrated
with 10 mM MgCl2. Three regions of the leaf were defined:
the infiltrated area (I, accurately outlined using a marker
pen at the moment of the infiltration), neighboring area (N),
and distant regions away from the I area (D), as shown in
Figure 1A for zucchini. Infiltrations were carried out in four
distant areas of approximately 1 mm2 on the second fully-
developed leaf of each plant. Five plants per treatment and
experiment were used. Seven independent experiments were
carried out on zucchini, and measurements were taken at 3, 5,
and 7 dpi, respectively. In the case of melon, four independent
experiments were carried out and measurements were taken at 3
and 7 dpi.

Leaf Thermography
Infrared images of plant leaves were taken in the growth chamber
with a FLIR A305sc camera (FLIR Systems, Wilsonville, OR,
USA) vertically positioned approximately 500 mm above the
leaves according to Pérez-Bueno et al. (2015). The camera collects
320 × 240 pixel resolution images with a thermal sensitivity
<0.05◦C in the spectral range 7.5–13 µm. Thermal images
were collected at midday over the period of study. Average
temperatures were determined for the three leaf areas defined
using the software FLIR Research & Development software
version 3.4. Images, displayed using a false color scale, correspond
to standard experiments.

Autofluorescence by Multicolor
Fluorescence Imaging
Multicolor fluorescence imaging was performed on the adaxial
side of zucchini leaves using an Open FluorCam FC 800-O
(Photon Systems Instruments, Brno, Czech Republic) according
to Pérez-Bueno et al. (2015). Autofluorescence images were

FIGURE 1 | (A) Areas defined for image analysis of mock and
bacteria-infiltrated zucchini leaves: I is the infiltrated area, accurately outlined
using a marker pen at the moment of the infiltration; N is the neighboring area;
and D are distal regions away from the I area. (B) Evolution of symptoms of
zucchini leaves inoculated with D. dadantii at LD or HD.

captured in the blue (F440), green (F520), red (F680), and far
red (F740) regions of the spectrum. The fluorescence ratios
F440/F520, F440/F680, F440/F740, F520/F680, F520/F740, and
F680/F740 were also calculated. Black and white images of both
fluorescence and calculated ratios were displayed using a false
color scale, applied by the FluorCam software version 7.1.0.3.
For each fluorescence parameter and ratio, average values were
calculated for each of the three regions of interest, both for
mock-control and bacteria-infiltrated leaves. Images correspond
to standard experiments.

Data Analysis
All images were analyzed considering the three defined areas
(I, N, and D) separately. For each parameter, mean values were
calculated per area and leaf using the software as described above.
All calculations were performed with Microsoft Office Excel
2010 (Microsoft Corporation, Redmond, WA, USA). Statistical
analysis of data was carried out using Student’s t-test with
SigmaPlot 13.0v (Systat Software Inc., Richmond, CA, USA).

The large amount of data generated was classified in a database
for each host-pathogen system using Microsoft Access 2010
(Microsoft Corporation). The database was used to train LRAs
and ANNs based on multilayer perceptrons, a type of ANN,
using R (R Core Team, Vienna, Austria). The learning heuristic
used for training the ANNs was resilient backpropagation. The
experimental parameters used to train the ANNs were those
found more informative by the LRAs (Tables 1 and 2). The
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TABLE 1 | Best logistic regression fits for the prediction of healthy and Dickeya dadantii infected zucchini leaves.

Area dpi Dose n Predictors β coeff SE CI (95%) P value AIC

I 7 HD 172 Intercept 1,23 1,06 (−0,93–6,35) 0,209 −225,01

F680/F740 8,14 2,16 (5,02–16,43) 0,000

I 7 LD 172 Intercept 0,29 0,20 (−0,08–0,68) 0,131 −53,78

F440/F520 −0,52 0,24 (−1,00–−0,06) 0,028

F440/F680 0,49 0,27 (−0,03–1,04) 0,065

F680/F740 1,42 0,29 (0,88–2,04) 0,000

I 5 HD 128 Intercept −0,52 0,99 (−4,89–1,49) 0,590 −161,65

F520/F740 −17,00 6,99 (−60,62–−7,35) 0,000

I 5 LD 128 Intercept 0,78 0,33 (0,18–1,5) 0,009 −48,86

F440/F520 3,37 0,75 (2,06–5,06) 0,000

I 3 HD 180 Intercept 1,64 0,56 (0,66–2,95) 0,000 −197,94

T 0,65 0,19 (0,30–1,02) 0,000

F680 1,25 0,35 (0,61–1,98) 0,000

F440/F520 0,04 0,19 (−0,33–0,42) 0,819

F440/F740 1,16 0,36 (0,51–1,91) 0,000

I 3 LD 180 Intercept 0,13 0,17 (−0,19–0,47) 0,422 −25,65

F520 6,28 1,16 (4,34–9,17) 0,000

N 7 HD 172 Intercept 0,20 0,21 (−0,21–0,62) 0,339 −82,91

F440 1,69 0,35 (1,04–2,45) 0,000

F680 −0,91 0,25 (−1,43–−0,45) 0,000

F440/F520 0,13 0,24 (−0,33–0,6) 0,575

F680/F740 1,29 0,29 (0,76–1,9) 0,000

N 7 LD 172 Intercept 0,05 0,15 (−0,25–0,34) 0,763 1,06

F680 0,15 0,15 (−0,15–0,45) 0,333

N 5 HD 128 Intercept 0,34 0,26 (−0,16–0,89) 0,183 −63,70

T 0,56 0,26 (0,07–1,1) 0,024

F440 1,21 0,36 (0,56–1,98) 0,000

F520/F740 1,72 0,36 (1,09–2,51) 0,000

N 5 LD 128 Intercept 0,00 0,18 (−0,35–0,35) 0,998 −4,25

F440/F680 0,45 0,19 (0,10–0,83) 0,012

N 3 HD 180 Intercept 0,15 0,19 (−0,22–0,53) 0,425 −69,48

T 1,19 0,25 (0,73–1,72) 0,000

F440 1,42 0,29 (0,88–2,04) 0,000

F440/F520 −0,56 0,21 (−0,99–−0,15) 0,006

F680 1,14 0,29 (0,60–1,75) 0,000

N 3 LD 180 Intercept 0,05 0,16 (−0,26–0,36) 0,745 −17,43

T 0,52 0,20 (0,15–0,91) 0,006

F440 0,34 0,21 (−0,06–0,76) 0,100

F440/F520 -0,06 0,21 (−0,46–0,35) 0,783

F680/F740 0,75 0,22 (0,35–1,2) 0,000

D 7 HD 172 Intercept 0,09 0,18 (−0,26–0,44) 0,615 −42,43

T 0,68 0,19 (0,32–1,08) 0,000

F440 0,82 0,20 (0,45–1,24) 0,000

F680 −0,62 0,21 (−1,05–−0,22) 0,002

F680/F740 0,90 0,24 (0,46–1,39) 0,000

D 7 LD 172 Intercept 0,05 0,16 (−0,26–0,35) 0,764 −3,54

T 0,39 0,16 (0,07–0,71) 0,015

F520/F740 0,27 0,16 (−0,04–0,6) 0,084

D 5 HD 128 Intercept 0,01 0,19 (−0,37–0,39) 0,970 −17,38

T 0,69 0,21 (0,29–1,12) 0,000

F440/F520 0,01 0,21 (−0,39–0,42) 0,957

F440/F680 0,61 0,22 (0,20–1,06) 0,003

(Continued)
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TABLE 1 | Continued

Area dpi Dose n Predictors β coeff SE CI (95%) P value AIC

D 5 LD 128 Intercept 0,00 0,18 (−0,35–0,35) 0,999 −0,16

F680 −0,26 0,18 (−0,62–0,09) 0,141

D 3 HD 180 Intercept 0,04 0,17 (−0,29–0,37) 0,810 −42,02

T 1,15 0,20 (0,77–1,56) 0,000

D 3 LD 180 Intercept 0,04 0,16 (−0,28–0,36) 0,800 −19,59

T 0,51 0,20 (0,14–0,9) 0,007

F440 −0,46 0,23 (−0,95–−0,03) 0,035

F680 −6,55 2,50 (−11,94–−2,01) 0,003

f740 7,41 2,67 (2,55–13,16) 0,002

F440/F520 −0,77 0,28 (−1,34–13,16) 0,003

F680/F740 2,90 0,96 (2,55–13,16) 0,000

Area, leaf area; dpi, days post-inoculation; Dose, concentration of bacterial inoculum; n, sample size; Predictors, variables selected by the LRAs; β coeff, coefficients in
the logistic function; SE, standard error; CI (95%), 95% confidence interval; P value, significance level; AIC, Akaike information criterion.

data obtained for around two thirds of all the zucchini samples
analyzed was used for training (n specified in Tables 1 and 2).
The rest, about 33% of the data, was used for validating the
models. On the other hand, to evaluate their performance on
melon samples, the zucchini models were validated with the
whole dataset obtained for melon.

RESULTS

Symptomatology in Zucchini
The symptoms of infection by D. dadantii in the three regions
of interest (Figure 1A) are shown in Figure 1B. In the case of
LD-infiltration, symptoms consisted in chlorosis that developed
progressively from 3 dpi in the I area, followed by the appearance
of small necrotic spots from 7 dpi. N and D areas of LD-
infiltrated leaves showed no symptoms throughout the period of
study.

In the case of HD-infiltrated leaves, I areas showed signs of
maceration within few hours after infiltration, leading to death
of the infiltrated tissue by 3 dpi. N and D areas of HD-infiltrated
leaves developed chlorosis progressively from 7 dpi.

Effect of the Infection on Secondary
Metabolism of Zucchini Leaves
The infection by D. dadantii caused an increase in the BGF.
This increase was restricted to the I areas, and was statistically
significant from 3 or 5 dpi in HD or LD infected leaves,
respectively (data not shown). However, the ratios F440/F740,
F520/F740, and particularly F440/F520 (Figure 2A), showed
changes in the LD leaves prior to the development of symptoms.
The value of F440/F520 significantly decreased (p < 0.001) in I
areas of LD and HD-infiltrated leaves from 3 dpi (Figure 2B),
proportionally to the time post-infection and bacterial dose.
On the other hand, the N and D areas of LD infected leaves
showed statistically significant decreases in F440/F520 at 3 dpi
(p < 0.01). In contrast, among the non-infiltrated areas of HD
leaves, only N areas showed significant differences at 7 dpi
(p< 0.1; Figures 2C,D).

Effect of the Infection on Zucchini Leaf
Transpiration
At earlier stages of the infection (3 dpi), the infection by
D. dadantii caused an increase in the temperature across the
whole inoculated leaves (Figure 3A). In I areas, this increment
was only significant for HD at 3 dpi (0.7◦C, p < 0.1; Figure 3B).
Conversely, the most drastic increase was found in the N and D
areas of HD inoculated leaves, where the temperature increased
up to 2◦C relative to the temperature of corresponding areas in
mock-control leaves (p < 0.001). Moreover, the temperature in
the N and D areas of LD leaves also increased, although to a lesser
extent (0.6–0.7◦C, p < 0.1; Figures 3C,D). Later in the infection
process the temperature of inoculated leaves decreased reaching
control values.

Statistical Models for Diagnosis on
Zucchini Infected Plants
Prior to the development of the first symptoms, autofluorescence
and thermography images did not report a pattern that could
be clearly correlated to the infection. However, the numeric
data obtained from these images could be analyzed using
mathematical tools to build statistical models. The values for all
the MCFI parameters measured (F440, F520, F680, and F740) and
those calculated (F440/F520, F440/F680, F440/F740, F520/F680,
F520/F740, and F680/F740), plus the temperature were arranged
on a database by leaf area and dpi. Thus, the data could be used
to fit a LRA per leaf area, dpi and bacterial dose. In this way, the
predictors, informative variables offering a clear contrast between
healthy and infected leaves, were determined. The predictors that
provided the best fits by LRA for each leaf area and dpi are shown
in Table 1. According to the Akaike information criterion (AIC)
and the 95% confidence interval (CI) provided in Table 1, the best
fits were those for I areas, followed by those for N areas. The fits
for HD leaves were in general better than those for LD leaves.

The predictor variables selected by LRAs, for each leaf area
and dpi, were used for training ANNs. The best fits, were those
corresponding to I areas, according to the values of cross-entropy
(CE), steps, AIC, and Bayesian information criterion (BIC),
shown in Table 2.
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TABLE 2 | Artificial neural networks (ANN) models for the prediction of healthy and D. dadantii infected zucchini leaves.

Area dpi Dose n CE Steps AIC BIC Predictors α1 β1 α2 β2

I 7 HD 172 0,02 97 14,04 36,07 F680/F740 −1,66 −9,41 1,68 9,16

I 7 LD 172 68,61 7141 159,22 193,84 F440/F520 −0,64 0,75 −36,64 49,01

F440/F680 0,04 −25,09

F680/F740 1,33 −17,71

I 5 HD 128 0,05 157 14,10 34,07 F520/F740 4,84 8,77 −4,46 −8,12

I 5 LD 128 67,12 5073 148,24 168,21 F440/F520 20,88 32,37 −91,41 93,77

I 3 HD 180 20,54 1705 55,07 77,42 T −17,32 −52,90 18,77 −5,44

F680 −76,26 −33,58

F440/F520 −1,41 −8,35

F440/F740 −59,67 −41,43

I 3 LD 180 90,27 4040 206,54 248,05 F520 4,53 −155,78 1,08 1,76

N 7 HD 172 57,44 3651 140,87 181,79 F440 −6,42 −1,59 21,44 56,65

F680 1,23 −12,28

F440/F520 1,93 35,35

F680/F740 −1,47 4,08

N 7 LD 172 115,42 9241 244,85 266,88 F680 −30,70 26,38 −7,67 5,88

N 5 HD 128 37,01 3264 96,02 127,39 T 28,65 −25,42 43,90 0,87

F440 −1,14 37,38

F520/F740 −60,80 42,60

N 5 LD 128 81,15 1608 176,30 196,26 F440/F680 −91,26 −85,63 −24,12 12,12

N 3 HD 180 69,39 1764 164,77 206,28 T 1,66 −5,05 5,57 60,65

F440 −10,05 17,59

F440/F520 −8,93 −4,90

F680 7,37 27,59

N 3 LD 180 101,70 10235 229,39 270,90 T 7,49 −45,20 2,12 −0,29

F440 73,46 0,20

F440/F520 97,05 0,08

F680/F740 135,29 −0,90

D 7 HD 172 76,23 509 178,47 219,38 T −0,24 −1,84 −1,32 −1,04

F440 −4,14 −2,22

F680 8,67 2,05

F680/F740 −0,46 −0,83

D 7 LD 172 103,88 1892 225,77 254,09 T 32,09 −27,19 −33,71 −15,51

F520/F740 4,36 −74,92

D 5 HD 128 64,66 3710 151,33 182,70 T 27,18 −69,85 −63,79 0,33

F440/F520 9,90 −26,73

F440/F680 −63,79 −52,54

D 5 LD 128 86,22 2079 186,44 206,41 F680 22,01 −30,16 −22,84 7,68

D 3 HD 180 101,14 7110 216,28 238,63 T −0,48 −0,56 76,82 46,41

D 3 LD 180 92,36 23597 218,73 273,01 T 461,05 330,73 −7,96 25,88

F440 362,46 −6,06

F680 21,13 −81,52

F740 0,19 105,41

F440/F520 −73,28 −29,74

F680/F740 −289,81 26,89

Area, leaf area; dpi, days post-inoculation; Dose, concentration in bacterial inoculum; n, sample size; CE, cross-entropy; Steps, number of learning steps; AIC, Akaike
information criterion; BIC, Bayesian information criterion; Predictors, independent variables selected by the LRAs; α1 and α2, intercept of hidden neurons 1 and 2,
respectively; β1 and β2, slope of hidden neurons 1 and 2, respectively. In all cases, all the ANNs had one hidden layer with two neurons, epoch was five and threshold
was 0.01.

The goodness of the fits obtained by LRAs and ANNs
was evaluated for zucchini plants infected by D. dadantii
with new data from samples previously not used for training
the models (Figure 4). In the overall, the models with the

highest accuracy (90–100%) were those ANNs obtained for
I areas of HD-infected leaves. On the contrary, the LRAs
showed higher specificity and sensitivity than the ANNs when
classifying N and D areas. For HD-infected zucchini leaves,
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FIGURE 2 | (A) Standard F440/F520 images of mock-control, LD, and
HD-inoculated zucchini leaves at 3 dpi, and their corresponding RGB images.
Progression of F440/F520 signal in I (B), N (C), and D (D) areas of the leaves
along the period of study. Symbols ∗, ∗∗, and ∗∗∗ stand for p < 0.1, 0.01, and
0.001, respectively.

the LRAs of N areas showed an accuracy ranging from 75 to
92% and for those of D areas the accuracy was 63–83%. In
the case of LD-infected leaves, the models with the highest
accuracy (75–80%) were the ANNs for I areas, especially at 5
and 7 dpi.

Effect of the Infection on the Metabolism
of Melon Leaves and Applicability of
Zucchini-D. dadantii Statistical Models
The effect of soft-rot was assessed on another cucurbit, Cucumis
melo (melon), inoculated with D. dadantii following the same
experimental design described above for zucchini. Symptoms
were similar to those described for D. dadantii-zucchini infected
plants. Moreover, the metabolic changes in melon leaves upon
infection were similar to those found in zucchini.

The suitability of the prediction models generated for zucchini
leaves was assessed for melon by validating the models with
the dataset obtained for D. dadantii-infected melon plants. The
performance of zucchini models on melon plants infected at
HD was very similar to that found on zucchini plants infected

FIGURE 3 | (A) Standard thermal images of mock-control, LD, and
HD-inoculated zucchini leaves at 3 dpi, and their corresponding RGB images.
(B) Evolution of temperature in I (B), N (C), and D (D) areas of the leaves
along the period of study. Symbols ∗ and ∗∗∗ stand for p < 0.1 and 0.001,
respectively.

with LD. The prediction models performed best for I areas,
for which both LRAs and ANNs had values of sensitivity and
specificity of 80–100%, providing a very high accuracy of 95–
100%. However, these values were 50–70% in N and D areas
(Figure 5).

DISCUSSION

Dealing with current problems in agriculture involves the
development of new methodology to evaluate and monitor
crops. Li et al. (2014) and von Bueren et al. (2015) have
reviewed a number of techniques that are currently in use
in vegetation analyses, including several techniques based on
reflectance (RGB imaging, hyperspectral near infrared, multi and
hyperspectral spectrometers), and thermography. Reflectance
and thermography are well established approaches in precision
agriculture (Oerke et al., 2014; Humplik et al., 2015). These
techniques have also been applied to automated high-throughput
analysis for plant phenotyping. In most cases, the screenings
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FIGURE 4 | Sensitivity, specificity, and accuracy of the best fits obtained by LRA and for the best ANN for the I, N, and D areas of zucchini leaves LD
and HD-inoculated with D. dadantii.

FIGURE 5 | Sensitivity, specificity, and accuracy of the zucchini models applied to melon. The best fits obtained for zucchini (by LRA and ANN) were
applied to the corresponding areas of melon leaves LD and HD-inoculated with D. dadantii.
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aimed for varieties resistant mainly to abiotic stress factors such
as drought, heat and cold, salt stress, and nutrient deficiency, as
reviewed by Humplik et al. (2015). A relatively small number
of works have addressed the study of biotic stress, most of
them focused on fungal infections. For example, Baranowski
et al. (2015) reported the analysis of Alternaria infections
in oilseed rape; Calderón et al. (2013, 2015) analyzed olive
trees infected by Verticillium dahliae; the infection of almond
trees with red leaf blotch was studied by López-López et al.
(2016); and powdery mildew on tomato plants was investigated
by Raza et al. (2015). However, other techniques on their
own, or combined, could also be of great help in precision
agriculture and plant phenotyping, as reviewed by Tremblay et al.
(2012).

Thermography provides useful information in the study of
biotic stress. It reflects changes in leaves temperature as a
consecuence of modifications in the stomatal aperture, which
regulates evapotranspiration (Jones, 1999). The activation of
stomatal closure triggered by recognition of pathogen-associated
molecular patterns is a widespread defense mechanism in
vascular plants against bacterial invasion via abscisic acid,
salicylic acid, and jasmonic acid (Melotto et al., 2006, 2008;
Sawinski et al., 2013). The increase of temperature found at 3 dpi
in zucchini seemed to be dose-dependent. It is worth noticing
that the larger differences relative to mock-control values were
found in N and D regions of the leaves, where no symptoms were
visible (Figure 1). This is in agreement with Pérez-Bueno et al.
(2016).

Multicolor fluorescence imaging has offered several
parameters as good markers of infection in the zucchini-
D. dadantii system. A vast number of phenolic compounds
produced by the plant secondary metabolism are part of the
defense response. These compounds emit BGF upon excitation
with UV light (Cerovic et al., 1999; Dixon, 2001). According
to the findings here reported, F440 and F520 of I areas
significantly increased when compared to the mock-controls
at 3 (HD) or 5 dpi (LD). Both F440 and F520 also increased
in N and D areas of infected leaves. These results point to
an enhancement on plant secondary metabolism in response
to infection (Buschmann and Lichtenthaler, 1998; Cerovic
et al., 1999). Moreover, F520 increased to a higher extent than
F440, causing the decrease in their ratio F440/F520. This ratio
showed statistically significant differences at 3 dpi in the three
regions of interest. At later timepoints, the same trend was
observed although no significant differences could be found
out of the I areas. However, these results were consistent in all
the experiments carried out. A decrease in F440/F520 values
have been previously reported in relation to long-term stress
conditions, under which the accumulation of particular green
fluorescing compounds could be induced (Buschmann and
Lichtenthaler, 1998).

For a long time, MCFI has been used in fundamental
research to study the effects of a variety of stress factors in
plant metabolism. BGF is well known to be influenced by
the nutrient content in soil. Several authors reported changes
in BGF related to alterations in the phenolics content in
plants upon treatments with low or high nitrogen, depending

on the species (Heisel et al., 1996; Langsdorf et al., 2000).
MCFI has also been used in a number of works analyzing the
effect of pathogens in their hosts. Viral infections in model
plants have been analyzed by Pineda et al. (2008) and in crop
plants by Chaerle et al. (2007) and Montero et al. (2016).
Some bacterial and fungal infections have been studied by this
technique (Granum et al., 2015; Pérez-Bueno et al., 2015, 2016).
Currently, the use of this technique on proximal sensing is
limited to the use of few available devices (Cerovic et al., 2012;
Latouche et al., 2015). These devices have proved useful in
the assessment of flavonoids content in grapes or kiwifruit,
and in the detection of the nitrogen status for several species
(Julkunen-Tiitto et al., 2014). However, the devices available up
to date are not imaging sensors, which limits their applicability
in field measurements and plant phenotyping programs. To
our best knowledge, this work is the first one using data
provided by MCFI in combination with thermal imaging to
obtain statistical models able to identify infected plants at lab
scale.

Data obtained from healthy and infected zucchini leaves
by MCFI and thermography were used to train LRAs and
ANNs. These models were validated for zucchini healthy and
infected samples, achieving in some cases high values of accuracy,
particularly for I areas. It is worth noticing that zucchini models
also showed a very high accuracy for the classification of I areas
of melon leaves. Other authors have addressed the detection
of other infections by statistical models. Thus, infection by
huanglongbing in citrus could be detected by support vector
machine classification trees (Sankaran et al., 2013) and blight
diseases on tomato leaves by extreme learning machine (Xie et al.,
2015) with an accuracy ranging from 70 to 100%, respectively.
On the other hand, several diseases in cucurbits have been
analyzed by a combination of thermal, chlorophyll fluorescence
dynamics, and hyperspectral imaging (Berdugo et al., 2014). In
that work, a general linear model was able to classify plants
infected with two different viruses and one fungal pathogen
with an accuracy of 85–100%. Moreover, Rumpf et al. (2010)
reported a support vector machine classifying beetroot leaves
infected with three different fungi with an accuracy of 65–100%,
based on measurements with a non-imaging spectroradiometer.
The accuracy of the models in this work is comparable to those
found in the literature, although none of them made use of
MCFI.

The results here reported show the potential application
of MCFI, in combination with thermography, particularly to
classify infiltrated (symptomatic) areas as “healthy” or “infected.”
The automatic detection of symptomatic areas has been carried
out by other authors using image processing (Al-Hiary et al.,
2011; Tian et al., 2012; Pujari et al., 2015). This pre-analysis
of images was applied by Huang (2007) to isolate symptomatic
areas caused by bacterial diseases in Phalaenopsis seedlings
prior to their classification by mathematical models. Such
an approach could constitute a possible strategy to scale up
the use of MCFI to crop fields or phenotyping. Further
development of the technique would be desirable in order to
facilitate its applicability in plant phenotyping and breeding
programs.
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