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Crop plants exhibit a wide diversity of defensive traits and strategies to protect
themselves from damage by herbivorous pests and disease. These defensive traits may
be naturally occurring or artificially selected through crop breeding, including introduction
via genetic engineering. While these traits can have obvious and direct impacts on
herbivorous pests, many have profound effects on higher trophic levels, including the
natural enemies of herbivores. Multi-trophic effects of host plant resistance have the
potential to influence, both positively and negatively, biological control. Plant defense
traits can influence both the numerical and functional responses of natural enemies;
these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically
mediated. Case studies involving predators, parasitoids, and pathogens of crop pests
will be presented and discussed. These diverse groups of natural enemies may respond
differently to crop plant traits based on their own unique biology and the ecological
niches they fill. Genetically modified crop plants that have been engineered to express
transgenic products affecting herbivorous pests are an additional consideration. For
the most part, transgenic plant incorporated protectant (PIP) traits are compatible with
biological control due to their selective toxicity to targeted pests and relatively low non-
target impacts, although transgenic crops may have indirect effects on higher trophic
levels and arthropod communities mediated by lower host or prey number and/or quality.
Host plant resistance and biological control are two of the key pillars of integrated pest
management; their potential interactions, whether they are synergistic, complementary,
or disruptive, are key in understanding and achieving sustainable and effective pest
management.

Keywords: host plant resistance, tritrophic interactions, transgenic crops, biological control, herbivore-induced
plant volatiles (HIPVs)

INTRODUCTION TO KEY CONCEPTS

The worldwide population is growing, with projections of 9–10 billion people living on Earth
by 2050 (United Nations, 2004; Lutz and Samir, 2010). Global food demands are increasing
concomitantly, with a need for heightened food security, increased agricultural productivity and
improved water use efficiency of crops. In a global review of factors contributing to losses for eight

Frontiers in Plant Science | www.frontiersin.org 1 November 2016 | Volume 7 | Article 1794

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2016.01794
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2016.01794
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01794&domain=pdf&date_stamp=2016-11-30
http://journal.frontiersin.org/article/10.3389/fpls.2016.01794/abstract
http://loop.frontiersin.org/people/284842/overview
http://loop.frontiersin.org/people/127143/overview
http://loop.frontiersin.org/people/394188/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01794 November 28, 2016 Time: 12:5 # 2

Peterson et al. Host Plant Resistance and Biocontrol

major food and cash crops, animal pests came in second only to
weeds, causing potential yield losses of 17.6% (Oerke and Dehne,
2004). Clearly, crop pests are responsible for significant losses
to agricultural commodities worldwide despite profound efforts
at management. Identification and promotion of sustainable
solutions to these agricultural threats are essential for meeting
future needs. The concepts of Integrated Pest Management
(IPM), first championed by Stern et al. (1959), support practical
efforts to achieve sustainable pest management. IPM has been
described as “the harmonious use of multiple methods to control”
pests, using “a set of decision rules based on ecological principles
and economic and social considerations” (Kogan, 1998). Ideally,
IPM incorporates the use of economic thresholds (Higley and
Peterson, 2009) and a variety of control tactics (mechanical,
physical, cultural, chemical, biological, and host plant resistance)
making it essential to understand the interactions between
different control tactics. Two key approaches for sustainable
pest management have been (1) host plant resistance, the
selection or development (via traditional breeding or genetic
modification) and use of crop plants that possess defensive
traits against herbivores and disease, and (2) biological control,
the use of living organisms that are natural enemies of crop
pests.

The concept of breeding plants to select for heritable traits that
reduce pest impacts has been a part of agricultural production
for over 100 years (Painter, 1951; Smith, 2005) and can be
separated into tolerance and resistance mechanisms (Stout,
2013). Tolerance allows plants to withstand pest injury while
resistance is conferred by plant traits that reduce the extent of
pest injury and can be divided into constitutive or inducible and
direct or indirect plant defenses (Stout, 2013). A constitutive
defense is expressed in a plant regardless of whether it has been
attacked by an herbivore, whereas an inducible defense is only
expressed (or expressed to a greater degree) after attack. Direct
defenses affect the herbivore without a mediating factor, whereas
indirect defenses act via the actions of natural enemies. While
indirect resistance may have the most obvious implications for
biological control, other forms of resistance and tolerance also
impact pest control by natural enemies. Holistic consideration
of all these mechanisms is critical for their successful integration
into pest control schemes.

Biological control programs use natural enemies (predators,
parasitoids, and pathogens) of targeted pests to keep populations
below the economic threshold. Classical biological control is
the importation and establishment of natural enemies to control
exotic pests while augmentation biological control incorporates
the supplemental release of natural enemies. Conservation
biological control involves modification of the environment or
existing agronomic practices to protect and enhance specific
natural enemies already present in the ecosystem (e.g., Landis
et al., 2000; Eilenberg et al., 2001). The maintenance of natural
enemy populations via conservation biological control can be
a practical and sustainable option for low-value and high-
acreage commodities, such as maize and other annual field
crops (Thorbek et al., 2004; Naranjo et al., 2015). The responses
of natural enemies to pest population changes are critically
important and these can be classified as numerical (changes in

natural enemy abundance due to reproduction or aggregation)
or functional (changes in natural enemy behavior) (Hajek, 2004).
Seminal work on functional responses of predators to their prey
items by Holling (1966) demonstrated that rate of prey discovery,
search time, handling time, and predator hunger were important
factors in determining functional response. In the years since
Holling’s research, studies in pest management have frequently
examined how predators respond to prey, documenting the
existence of functional responses in the context of biological
control (e.g., De Clercq et al., 2000; Lee and Kang, 2004; Rutledge
and O’Neil, 2005). Interestingly, some studies also describe
variable responses of predators on different plants using plant-
based defenses such as glandular trichomes and allelochemical
production (De Clercq et al., 2000). These variable responses
therefore highlight the need for careful consideration of the
effects of different plant traits on pest suppression.

The interactions between plants, herbivores, and their natural
enemies are referred to as tritrophic interactions and this
multi-trophic exchange is key to understanding the interactions
between host plant resistance and biological control. Natural
enemies can be considered an extension of plant defense if
plant traits, such as release of herbivore-induced plant volatiles
(HIPVs), draw in these natural enemies. The literature is
replete with examples of natural enemies acting in a top-down
fashion, reducing herbivore populations, thereby providing plant
defense.

The intention of this section is to provide a general
introduction to the key concepts that provide context for the
remainder of this review article. For more in-depth discussion
of these topics, please refer to the many texts that review these
topics (i.e., Painter, 1951; Panda and Khush, 1995; Kogan, 1998;
Bellows et al., 1999; Agrawal, 2000a; Landis et al., 2000; Hajek,
2004; Smith, 2005; Heil, 2008; Radcliffe et al., 2009; van Lenteren,
2012; Stout, 2013; Pedigo and Rice, 2014). This review will focus
on the interactions between biological control and host plant
resistance, addressing the mechanisms and potential outcomes of
interactions, with special attention to genetically modified insect-
resistant crops and case studies for application of host plant
resistance and biological control in cropping systems.

IMPACT OF PLANT TRAITS ON
BIOLOGICAL CONTROL

The mechanisms by which plant defensive traits can affect
biological control can be divided into four major categories:
semiochemically, plant toxin-, plant nutrient-, and physically
mediated interactions. These have been widely recognized as the
major mechanisms by which the three trophic levels interact
(Price, 1986; Thomas and Waage, 1996; Agrawal, 2000a) and will
be reviewed in detail here. Their integration (see Discussion) into
biological control programs is critical as we develop sustainable
solutions for pest management.

Semiochemically Mediated Interactions
Plants produce a wide range of volatile compounds that are
the predominant signals used by arthropod herbivores to
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locate suitable host plants (Schoonhoven et al., 2005). These
volatile profiles can change both quantitatively and qualitatively
following herbivory (Dicke, 1999; Páre and Tumlinson, 1999;
Heil and Ton, 2008), dramatically altering their attractiveness
(or repellency) to herbivores and their natural enemies (Heil,
2014). Feeding, especially by chewing herbivores, results in
mechanical damage to plant tissues eliciting a wound response
thereby creating electrical, hydraulic, and chemical signals (e.g.,
systemin; Kessler and Baldwin, 2002). This action results in
local and systemic release of linolenic acid from plant cell
membranes and is converted by the enzyme lipoxygenase
(LOX) to 13-hydroperoxide, which enters one of two pathways
(Walling, 2000; Kessler and Baldwin, 2002). In one pathway,
13-hydroperoxide may be hydrolyzed by hydroperoxide lyase
to yield ‘green leaf volatiles’ (GLVs; e.g., C6 alcohols and
aldehydes) and these, and other volatiles such as terpenoids,
are often considered indirect defenses because they attract
natural enemies. Alternatively, 13-hydroperoxide can enter
the octadecanoid pathway, resulting in the production of
jasmonic acid (JA), ultimately producing an array of anti-
herbivore defenses including proteinase inhibitors (anti-digestive
proteins), polyphenol oxidases (anti-nutritive enzymes), and a
bewildering diversity of plant-specific toxins (Walling, 2000;
Kessler, 2015; see Plant Toxin-Mediated Interactions). These
inducible defensive chemicals are generally termed direct
defenses in that they directly deter or inhibit feeding by
herbivores.

Yet, plant responses to herbivory are more complex than
simple wound responses to mechanical damage, which cannot
explain the specificity of some plant responses to herbivores. In
addition to physical damage, herbivores secrete substances that
may modify plant responses. Collectively, these substances are
referred to as herbivore-associated molecular patterns (HAMPs;
Felton and Tumlinson, 2008; Mithöfer and Boland, 2008) and
include substances such as regurgitants and salivary secretions
(Alborn et al., 1997; Musser et al., 2002; Schäfer et al., 2011;
Tian et al., 2012; Louis et al., 2013), and even frass production
(Ray et al., 2015). Behavioral interactions, too, modify plant
volatile production with walking on leaf surfaces (Tooker
et al., 2010) and oviposition (Hilker and Meiners, 2006; Kim
et al., 2012; Hilfiker et al., 2014) having profound effects.
It is therefore unsurprising that plants respond to herbivory
in specific ways that provide informative semiochemical-based
information for both herbivores and their natural enemies. Plants
emit different suites of volatiles, attracting different parasitoid
complexes, depending on the species of herbivore attacking the
plant. Clearly, there is abundant evidence that HAMPs and
behavioral interactions of herbivores with host plants alter plant
defensive responses beyond that of simple mechanical damage
(e.g., Dicke, 1999; Reymond et al., 2000; Kessler and Baldwin,
2002). This highlights a cautionary note when interpreting
findings of the large number of ecological studies using artificial
leaf clippings and hole punches as a proxy for herbivore
damage.

As discussed above, plant volatiles that attract natural
enemies are considered indirect defenses (Vet and Dicke,
1992; Kessler and Baldwin, 2002; Turlings and Wäckers, 2004;

Wäschke et al., 2013). These GLVs, and others produced via
different pathways such as volatile terpenoids (Kessler and
Baldwin, 2002; Dudareva et al., 2013; Kessler, 2015), play a
crucial role in signaling specific information for parasitoids
regarding the status of herbivores and their natural enemies.
The information conveyed in HIPVs can provide information
on the species of herbivore present, the level of herbivory
damage sustained, the developmental stage of the host, and
even whether the herbivore has been previously parasitized.
For instance, tomato plants attacked by tobacco budworm
Heliothis virescens (F.) (Lepidoptera: Noctuidae), but not the
closely related tomato fruitworm Helicoverpa zea (Boddie)
(Lepidoptera: Noctuidae), emit a volatile profile that is highly
attractive to the specialist parasitoid of the tobacco budworm,
Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae) (De
Moraes et al., 1998). Such information conveyed to natural
enemies has profound consequences for the biological control
services afforded by them and maximizes the top-down effect
of such species on herbivorous pests. The quantity of HIPVs
released may reflect the level of herbivory and determine
the level of attractiveness to parasitoids. In studies of Cotesia
glomerata (L.) (Hymenoptera: Braconidae) attacking Pieris rapae
(L.) (Lepidoptera: Pieridae), plants attacked by more herbivores
or induced with higher concentrations of JA (simulating higher
levels of herbivory) were more attractive to C. glomerata
(Geervliet et al., 1998; Bruinsma et al., 2009). Yet, HIPV
production may also influence the plant’s attractiveness to
herbivores. In an interesting study of two chrysomelid beetles
(Gynandrobrotica guerreroensis (Jacoby) and Cerotoma ruficornis
Olivier) attacking wild lima beans [Phaseolus lunatus L. (Fabales:
Fabaceae)], female beetles were repelled by HIPVs produced
by induced plants regardless of level of induction (possibly
reflecting competition and a lack of enemy-free space) whereas
males were attracted by weakly induced plants (possibly
indicating the presence of a mate) but repelled by strongly
induced plants (Ballhorn et al., 2013). The effect of such
changes in herbivore densities on parasitoid foraging decisions
is unexplored. Furthermore, parasitoid species identity may
also influence plant volatile production. Cabbage [Brassica
oleracea L. (Brassicales: Brassicaceae)] produced similar HIPV
profiles when attacked by imported cabbageworm Pieris rapae
(L.) or large cabbage white P. brassicae (L.) (Lepidoptera:
Pieridae) (Poelman et al., 2011). Yet, intriguingly, herbivore
regurgitant characteristics were strongly influenced by the
species of parasitoid developing within the herbivore, which
differentially expressed genes within the plant’s JA-signaling
pathway. Even hyperparasitoids use HIPVs to locate their
parasitoid hosts; the hyperparasitoid Lysibia nana Gravenhorst
(Hymenoptera: Ichneumonidae) was more attracted to P. rapae
hosts attacked by C. glomerata than those attacked by
C. rubecula or unparasitized hosts. Field surveys showed
hosts parasitized by C. glomerata are more likely to be
hyperparasitized than C. rubecula-parasitized hosts and this
preference was due to differences in HIPV profiles elicited by
the oral secretions of P. rapae (Poelman et al., 2012). The
sheer complexity of such semiochemically mediated interactions
demonstrates the need for consideration of the multitude of
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factors influencing pest control, rather than single elements
acting along.

Case study: Maize Volatiles, Western Corn
Rootworm, and Entomopathogenic Nematodes
Domestication can inadvertently alter the volatile profiles of
many crop plants, affecting rates of parasitism. One example is
the production of the sesquiterpene (E)-β-caryophyllene (EβC)
in maize. EβC is emitted in response to above- (Turlings et al.,
1998) and below-ground injury (Rasmann et al., 2005). It serves
as an attractant for natural enemies of maize pests (Rasmann
et al., 2005; Köllner et al., 2008) and provides protection from
herbivores with different modes and sites of attack (Köllner et al.,
2008). Unfortunately, EβC production has been unintentionally
bred out of commercially available North American maize
hybrids, but it is still present in European maize lines and teosinte
(Zea mays ssp. parviglumis) (Degen et al., 2004; Rasmann et al.,
2005). EβC production can be reintroduced by insertion of a
gene from oregano, Origanum vulgare L. (Lamiales: Lamiaceae)
(Degenhardt et al., 2009), demonstrating the ability to genetically
enhance crops to increase natural enemy control of insect
pests.

The most challenging belowground pest of maize production
in North America and Europe is the western corn rootworm
(WCR) Diabrotica virgifera virgifera LeConte (Coleoptera:
Chrysomelidae). Upon injury to the roots, European maize
hybrids induce a strong production of EβC locally and a weak
systemic response throughout root tissues (Hiltpold et al., 2011).
EβC released into the rhizosphere recruits the entomopathogenic
nematode (EPN) Heterorhabditis megidis Poinar, Jackson and
Klein (Rhabditida: Heterorhabditidae). In field studies, maize
hybrids producing EβC had significantly higher rates of
H. megidis infection in WCR larvae and reduced rootworm adult
emergence than non-EβC-emitting hybrids; non-EβC-emitting
maize varieties do not recruit H. megidis when attacked by the
WCR (Rasmann et al., 2005).

Numerous studies have shown the potential of EPNs to
suppress WCR populations (Wright et al., 1993; Jackson, 1996;
Toepfer et al., 2005, 2008; Kurtz et al., 2009; Hiltpold et al., 2012)
but not all EPN species and strains that attack WCR larvae are
attracted to EβC (Hiltpold et al., 2010c; Anbesse and Ehlers, 2013;
Laznik and Trdan, 2013). Heterorhabditis bacteriophora Poinar
(Rhabditida: Heterorhabditidae), for instance, is highly effective
against WCR larvae (Jackson, 1996; Toepfer et al., 2008; Pilz
et al., 2009) but is not attracted to EβC (Hiltpold et al., 2010a,c).
Selective breeding of H. bacteriophora, however, can increase
the attraction of infective juveniles to EβC-emitting maize roots,
thereby increasing WCR mortality (Hiltpold et al., 2010a,b).

Maximizing the expression of HIPVs via bioengineering, while
increasing EPN responsiveness to volatiles, can help enhance
the effectiveness of biological control in crops. However, more
studies are needed to assess the costs, viability and potential risks
of introducing EβC-emitting maize varieties with EPN releases.
The WCR has a high propensity for invasion and adaptation
(Gray et al., 2009) and has already developed resistance to
multiple chemical (Meinke et al., 1998; Ciosi et al., 2009; Pereira
et al., 2015), genetic (Gassmann et al., 2011; Wangila et al., 2015),

and cultural (Levine et al., 2002) management tools. Alternative
control strategies, such as recruitment of entomopathogens using
plant volatiles, must be explored in order to sustainably manage
this critical pest.

Plant Toxin-Mediated Interactions
Of the more than 100,000 identified plant secondary metabolites,
many play roles in direct defense against herbivorous insects
through anti-nutritive, anti-digestive, or toxic compounds.
Many of these defensive chemicals are produced constitutively,
regardless of whether a plant is attacked by herbivores; others
are often inducible via the JA-based signaling pathway described
in Semiochemically Mediated Interactions above (Memelink
et al., 2001; Agrawal, 2011; De Geyter et al., 2012). While
plant anti-herbivore toxins might be expected to exhibit similar
responsiveness as semiochemicals to the damage done by specific
herbivores and the presence of their natural enemies, little
evidence suggests this is the case. Rather, many secondary
compounds are present within only a limited range of plant
families (e.g., the glucosinolates are found almost exclusively
in plants in the Order Brassicales (Halkier and Gershenzon,
2006), furanocoumarins are primarily associated with the families
Apiaceae and Rutaceae (Berenbaum, 1983, 1990)). Specificity
of plant defensive responses to different herbivores (‘specificity
of elicitation’ sensu Stout et al., 1998) seems, for the most
part, to be quantitative rather than qualitative. For instance,
levels of damage caused by different herbivores (Van Zandt
and Agrawal, 2004) or variable damage by unparasitized vs.
parasitized herbivores that results in differential feeding by
herbivores (Ode et al., 2016) may result in the induction of
different plant defensive compounds. While some evidence
indicates that different herbivores can differentially induce plant
defenses (e.g., Stout et al., 1998; Agrawal, 2000b; Poelman et al.,
2008), the effects on higher trophic levels are poorly studied.

Unlike indirect defenses (see Semiochemically Mediated
Interactions), direct plant defenses typically have negative effects
on parasitoid fitness (Ode, 2006, 2013) and occur through one of
three, non-mutually exclusive routes. Plant toxins may: (1) reduce
host size, having negative consequences for parasitoids feeding
on such hosts, (2) pass unmetabolized through the herbivore’s
midgut into the hemolymph where they are directly encountered
by developing parasitoid larvae (Campbell and Duffey, 1979;
McGovern et al., 2006; Lampert et al., 2008), or (3) be sequestered
for defense against their own natural enemies (Nishida, 2002;
Ode, 2006; Lampert et al., 2011a). For example, the catalpa
sphinx moth, Ceratomia catalpae (Boisduval) (Lepidoptera:
Sphingidae), sequesters the iridoid glycoside catalpol when it
feeds on the catalpa plant, Catalpa bignonioides Walter (Lamiales:
Bignoniaceae) (Lampert et al., 2010). Interestingly, the parasitoid
Cotesia congregata (Say) (Hymenoptera: Braconidae) appears
to be little affected by concentrations of catalpol, which also
accumulate in the tissues of the parasitoid suggesting the role
of this compound as protection against its own hyperparasitoids
(Lampert et al., 2011a).

Whether parasitoids are adversely affected by plant toxins
depends in large part on the level of host plant specialization
of their herbivorous hosts. The diversity of host plants on
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which a given herbivore develops depends, in part, on its ability
to metabolize or avoid plant defensive toxins (Schoonhoven
et al., 2005). Herbivores feeding on a broader range of host
plants typically possess detoxification enzyme systems capable of
metabolizing a broad array of plant toxins (Krieger et al., 1971;
Li et al., 2004; Ali and Agrawal, 2012). Conversely, herbivores
with specialized diets tend to have more efficient detoxification
enzymes that metabolize the narrower range of plant toxins to
which they are exposed (Wittstock et al., 2004; Mao et al., 2006).
Far less documentation exists regarding the consequences for
parasitoids of developing in generalist vs. specialist herbivores
because few studies have documented the levels of unmetabolized
plant toxins in the hemolymph of herbivores with different
diet breadths. In one study, significantly more xanthotoxin
was passed unmetabolized into the hemolymph of the cabbage
looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), a
generalist herbivore, than was passed in the hemolymph of the
parsnip specialist Depressaria pastinacella (Geeze) (Lepidoptera:
Oecophoridae) (Lampert et al., 2011b). In turn, Copidosoma
floridanum Ashmead (Hymenoptera: Encyrtidae) (a parasitoid
of T. ni) suffered increased mortality and reduced clutch
sizes relative to Copidosoma sosares (Walker) (Hymenoptera:
Encyrtidae) (a specialist parasitoid of D. pastinacella) even
though both herbivore-parasitoid combinations were reared on
the same artificial diets (Lampert et al., 2011b). Other studies
have documented similar patterns (e.g., Barbosa et al., 1986,
1991). Finally, generalist and specialist herbivores of cruciferous
plants are negatively affected by different classes of glucosinolates.
Generalist herbivores are typically susceptible to both indole
and aliphatic glucosinolates, whereas specialist herbivores are
susceptible to just indole glucosinolates (Gols et al., 2008a,b;
Müller et al., 2010; Harvey and Gols, 2011). However, some
specialists are known to sequester glucosinolates, providing
protection against their natural enemies [e.g., the turnip sawfly
Athalia rosae (Hymenoptera: Tenthredinidae) (Müller et al.,
2002) and the specialist aphids Brevicoryne brassicae (L.) and
Lipaphis erysimi Kaltenbach (Hemiptera: Aphididae)] (Francis
et al., 2001; Rossiter et al., 2003; Kazana et al., 2007).
Interestingly, survivorship and body size of unparasitized T. ni
were negatively correlated with concentrations of aliphatic
glucosinolates whereas survivorship and clutch sizes of T. ni
parasitized by C. floridanum were negatively affected by
concentrations of indole (and not aliphatic) glucosinolates (Ode
et al., 2016).

Despite long-running discussions about the potential
(in)compatibilities of biological control and breeding programs
for plant resistance (e.g., Bergman and Tingey, 1979; van Emden,
1991; Bottrell et al., 1998; Cortesero et al., 2000; Poppy and
Sutherland, 2004), surprisingly little is known about the severity
of these incompatibilities. This is primarily a reflection of the
independent paths that host plant resistance and biological
control programs have taken; i.e., IPM is rarely practiced in
reality. Part of the difficulty lies in the fact that when crop
varieties are bred for insect resistance, rarely do we know the
exact mechanism involved. Nonetheless, breeding programs
likely select for plant defensive toxins in many cases, which
likely mediate resistance. When true, we expect that many of

the patterns outlined above will hold. For instance, soybeans,
Glycine max (L.) (Fabales: Fabaceae), with the Rag1 gene are
resistant to soybean aphid Aphis glycines Matsumura (Hemiptera:
Aphididae). Compatibility studies between Rag1 and biological
control agents of A. glycines have shown that these agents are less
effective (e.g., reduced foraging efficiency and survivorship) on
soybean varieties containing the resistant Rag1 gene (Lundgren
et al., 2009b; Ghising et al., 2012; Ode and Crompton, 2013).

Case Study: Cotton, Gossypol and Bt Toxins,
Herbivores, and Natural Enemies
Cotton, Gossypium hirsutum L. (Malvales: Malvaceae), the
most important plant-based fiber used by humans worldwide,
presents an interesting example of the difficulties in breeding for
resistance against multiple insect pests. It is consumed by a large
number of insect herbivores including the boll weevil, bollworm,
pink bollworm, tobacco budworm, armyworms, cotton aphid,
whiteflies, Lygus bugs, and thrips (Matthews and Tunstall, 1994;
Hagenbucher et al., 2013a). Prior to the introduction of Bacillus
thuringiensis (Bt) cotton and more effective IPM approaches,
insecticides were the primary means of pest control. An array
of morphological (e.g., trichomes) and chemical defenses are
produced by cotton and of the chemical defenses, terpenoids
(especially gossypol and related compounds) are the best studied.
Gossypol, present in leaves and seeds, provides resistance to a
broad range of lepidopteran pests (Bottger and Patana, 1966).
As it is also toxic to humans, breeding efforts have selected
for glandless cultivars that produce low gossypol levels, but
these cultivars are particularly susceptible to a range of insect
pests (Jenkins et al., 1966). Recent efforts using RNAi to
produce low gossypol levels in the seeds while maintaining high
levels elsewhere have been successful (reviewed in Hagenbucher
et al., 2013a), but gossypol also has negative effects on some
natural enemies. For instance, Campoletis sonorensis (Cameron)
(Hymenoptera: Ichneumonidae) experiences reduced body size,
reduced survivorship, and increased development time when
developing on H. virescens that had fed on diets high in gossypol
(Gunasena et al., 1989), although this negative effect is by no
means universal across species (e.g., Sun et al., 2011). Similar
to semiochemically induced effects, responses of organisms
to different compounds are specific to the exact plant–insect
interaction.

The recent focus in cotton breeding for insect herbivore
resistance has centered on the development of Bt transgenic
lines expressing Cry-endotoxins that confer resistance against
lepidopteran herbivores. In particular, adoption of Bt cotton
has been credited with the eradication of the pink bollworm
Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae)
in the southwestern United States (Carriére et al., 2003)
and substantial declines of Helicoverpa armigera (Hübner)
(Lepidoptera: Noctuidae) in China (Wu et al., 2008). The
specificity of Cry toxins against lepidopterans and reduced
pesticide use after widespread adoption of Bt cotton has provided
an environment favorable to natural enemies, allowing increased
control of a wide variety of cotton pests (Naranjo, 2011; Lu et al.,
2012). However, Bt has not been without its downsides as damage
by some pests, for example, mirid bugs (Lu et al., 2010), have been
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documented to increase with the widespread use of Bt cotton,
presumably because of competitive release from lepidopterans.
Another complication involves improved success of the cotton
aphid Aphis gossypii Glover (Hemiptera: Aphididae) on Bt
cotton. Suppression of feeding by lepidopteran herbivores on Bt
cotton reduces induction of key defensive terpenoids, such as
gossypol, making these plants much more susceptible to aphids,
which do not induce terpenoids (Hagenbucher et al., 2013b).
Furthermore, induced terpenoids from non-Bt cotton end up
in the hemolymph of the aphids, reducing success of attack by
the parasitoid Lysiphlebus testaceipes (Cression) (Hymenoptera:
Braconidae) (Hagenbucher et al., 2014b). Reduced parasitism
was most likely due to reduced parasitoid acceptance of aphids
feeding on lepidopteran-infested non-Bt cotton. Finally, as
honeydew is an important source of nutrition for foraging
parasitoids, the effect of honeydew from lepidopteran-infested
Bt and non-Bt cotton on two important parasitoids of cotton
pests, L. testaceipes and the whitefly parasitoid Eretmocerus
eremicus Rose and Zolnerowich (Hymenoptera: Aphelinidae)
was compared. While gossypol and other terpenoids were
significantly higher in the honeydew produced on lepidopteran-
infested non-Bt cotton, this did not affect the quality of the
honeydew in terms of its effects on parasitoid longevity or
fecundity (Hagenbucher et al., 2014a).

Plant Nutrient-Mediated Interactions
The proteins, sugars, lipids, nucleic acids, vitamins, and minerals
contained within plant tissue provide the nutrition necessary
for growth, development, and survival of many insects. In
turn, the nutrients provided by plants to herbivores affect the
nutrients subsequently available to their natural enemies. The
presence, quantity, quality, and availability of these nutrients
varies significantly between plant species and varieties, and can be
affected by season, plant phenology, and other biotic and abiotic
conditions (Fox et al., 1990; Roth and Lindroth, 1995; Walde,
1995; Stadler and Mackauer, 1996).

A key indirect interaction between host plant nutrition and
natural enemies occurs when herbivore growth and development
is delayed by suboptimal plant quality, extending the period
of time when herbivores are vulnerable to attack (Moran
and Hamilton, 1980; Price et al., 1980; Price, 1986; Loader
and Damman, 1991; reviewed in Benrey and Denno, 1997).
An example of this “slow-growth–high-mortality” hypothesis
was reported for the Mexican bean beetle Epilachna varivestis
Mulsant (Coleoptera: Coccinellidae) feeding on soybean. The
spined soldier bug, Podisus maculiventris (Say) (Hemiptera:
Pentatomidae), was better able to control E. varivestis on crop
varieties that lowered the herbivore’s growth rate (Price et al.,
1980), although the exact resistance mechanism was not known.
In addition to a longer period of vulnerability, a slow herbivore
growth rate can be advantageous if the natural enemy’s functional
response is stronger when consuming smaller prey, as tends
to be the case with predators (Price, 1986). Insect pathogens,
in particular, are positively associated with the slow-growth–
high-mortality hypothesis (Schuster et al., 1983; Hamm and
Wiseman, 1986). In one case, S. frugiperda feeding on resistant
maize plants had reduced growth and vigor, making them

more susceptible to infection with nuclear polyhedrosis virus
(NPV) (Hamm and Wiseman, 1986). However, the slow-growth–
high-mortality hypothesis does not hold true for all tritrophic
interactions. For example, Leather and Walsh (1993) found that
pine beauty moth Panolis flammea Denis and Schiffermüller
(Lepidoptera: Noctuidae) larvae were not more vulnerable to
natural enemies when development was delayed by host plant
quality. Some natural enemies, such as parasitoids, may actually
be at a disadvantage when their hosts are smaller and/or of
lower quality, and smaller hosts may also affect the sex ratio and
fecundity of parasitoid populations (Kuo, 1986). It is therefore
important to examine whether the presence of smaller and lower
quality hosts due to suboptimal plant nutrition has a large enough
impact on parasitoids as to affect their ability to suppress pest
populations.

Many natural enemies also engage in omnivory,
supplementing their prey-based diet with plant-provided
resources (reviewed in Lundgren, 2009), particularly during
periods when prey abundance is low. This can allow for more
stable interactions between predators and prey (Agrawal, 2000a)
and may facilitate early season colonization of crop fields and
better pest suppression due to this “lying in wait” of natural
enemies prior to arrival of the pest species (Settle et al., 1996;
Eubanks and Denno, 1999; Athey et al., 2016). Therefore, good
quality plant hosts in the case of omnivorous natural enemies is
essential for a positive relationship between plant and biocontrol.
Plants expressing herbivore defense traits can have direct impacts
on facultatively phytophagous predators but the literature is
lacking in how these interactions will impact the compatibility of
host plant resistance with biological control (Lundgren, 2009).

Some insects are truly omnivorous, having a flexible trophic
strategy that allows them to utilize either plant or prey resources,
with the potential to inflict crop damage if engaging in
phytophagy. For example, the western flower thrips Frankliniella
occidentalis (Pergande) (Thysanoptera: Thripidae) feeds on plant
material and arthropod prey, leading to its role as both a serious
pest (Grazia-Tommasini, 1995; Kirk and Terry, 2003) and a
biological control agent (Trichilo and Leigh, 1986; Wilson et al.,
1996; Agrawal and Karban, 1997; Milne and Walter, 1997).
Furthermore, Agrawal et al. (1999) revealed that the presence
of prey [eggs of the Pacific spider mite Tetranychus pacificus
McGregor (Thysanoptera: Tetranychidae)] reduced feeding by
F. occidentalis on cotton by nearly 50%. However, when cotton
plants were first exposed to feeding pressure by spider mites,
eliciting systemically induced plant defenses that lower host plant
quality, herbivory by F. occidentalis was reduced (Agrawal et al.,
1999). When both induced host plant defenses and T. pacificus
egg prey were available, feeding preference shifted to consume
half the amount of cotton tissue and twice the number of
prey (Agrawal et al., 1999). Thus, host plant quality and prey
availability are important factors for arthropods with omnivorous
trophic tendencies.

Extrafloral nectaries (EFN) are a plant-provided resource that
deserve additional attention because of their role in natural
enemy nutrition. It is hypothesized that the main function of
extrafloral nectar is to recruit predators and parasitoids for
the protection of the plant against herbivores, an example of
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indirect host plant resistance (Bentley, 1977; Koptur, 1992;
Turlings and Wäckers, 2004). Some EFN emit olfactory signals
that are attractive to natural enemies, such as parasitoids
(Lewis and Takasu, 1990; Stapel et al., 1997). By providing
nutritional resources, the presence of EFN can lead to enhanced
herbivore suppression by arthropod natural enemies, such as
ants (Bentley, 1977; Smiley, 1986), spiders (Ruhren and Handel,
1999), predatory mites (Bakker and Klein, 1992), coccinellids
(Stephenson, 1982) and parasitoids (Lindgren and Lukefahr,
1977). Interestingly, some plants produce a consistent low level
of EFN, but increase production in response to herbivory;
in this manner, extrafloral nectaries can be considered both
constitutive and inducible indirect host plant resistance (Wäckers
et al., 2001; Wäckers and Bonifay, 2004; Lundgren, 2009;
Heil, 2015). The applied implications of EFN production
by crop plants is examined in the case study with cotton
below.

Case Study: Extrafloral Nectar-Producing Cotton, Its
Herbivores, and Natural Enemies
The ability of extrafloral nectar to attract natural enemies for
biological control of cotton pests has long been exploited. Cook
(1904, 1905) reported on the practice of indigenous farmers in
Guatemala, who purposely cultivated cotton near nests of the
tropical ant Ectatomma tuberculatum (Olivier) (Hymenoptera:
Formicidae). In addition to feeding on EFN, these ants
attacked boll weevil Anthonomus grandis Boheman (Coleoptera:
Curculionidae) adults. Subsequently, plant breeding efforts in
the mid 1900’s attempted to develop cotton varieties that lacked
EFN, due to the observation that both natural enemies and some
lepidopteran pests, such as P. gossypiella, benefitted from cotton
nectaries (Lukefahr and Griffin, 1956; Lukefahr and Rhyne, 1960;
Bentley, 1983). However, the benefit of a modest reduction
in lepidopteran pests was outweighed by the disadvantage of
reduced natural enemy populations, although this conclusion
was doubted at the time (Rogers, 1985; Schuster and Calderon,
1986). The population of natural enemies in “nectarless” cotton
varieties was up to 35% lower than EFN-producing cotton and the
presence of EFN in cotton had positive impacts on the attraction,
retention, and efficiency of many predators, including chrysopids,
anthocorids, and coccinellids (Schuster et al., 1976). Similarly,
the parasitoid Microplitis croceipes (Cresson) (Hymenoptera:
Braconidae), which attacks larvae of the bollworm H. zea, is
stimulated to stay longer and attack a greater number of hosts in
the presence of nectar (Stapel et al., 1997). Many other examples
exist in the literature, providing clear evidence for widespread
benefits of EFN to parasitoids (e.g., Treacy et al., 1987). Another
functional group of natural enemies, cursorial wandering spiders
such as Cheiracanthium inclusum (Hentz) (Araneae: Miturgidae)
and Hibana futilis (Banks) (Araneae: Anyphaenidae), are
important nocturnal predators of lepidopterous pest eggs in
cotton (Pfannenstiel, 2008) and consume EFN in the field
(Taylor and Pfannenstiel, 2008). Furthermore, Hibana futilis
responds to olfactory cues from extrafloral nectar and engages
in restricted area searching following contact with nectar (Patt
and Pfannenstiel, 2008, 2009) and profound improvements of

survival are evident when provided EFN in the diet (Taylor and
Pfannenstiel, 2009; Pfannenstiel and Patt, 2012).

The majority of modern cotton varieties now produce EFN,
but past breeding efforts illustrate the difficulty in managing plant
traits affecting both pests and natural enemies. Rogers (1985)
recommended that for the case of nectar-producing cotton,
varieties should be developed that produce nectar that is palatable
to beneficial species, but not pests. However, the feasibility of this
suggestion has not been explored. Recommendations to improve
the recruitment of natural enemies to cotton fields include
selecting for varieties with enhanced nectar production. For
example, most cotton leaves bear a single nectary, but some have
three (Cortesero et al., 2000) and a breeding challenge is whether
cotton varieties can be developed with a greater number of
nectaries. It is evident that plant nutrients are critically important
to a diverse array of natural enemies across multiple functional
groups. Integration of this resource into biological control
programs through selective enhancement or provisioning of
additional nectar sources can assist when developing sustainable
solutions to pest management. Clearly, challenges exist when
selectively breeding for plant defense traits (described here and in
other sections), but careful consideration of their integration with
biological control can provide synergistic levels of pest control.

Physically Mediated Interactions
Just as some tritrophic interactions involve both semiochemicals
and toxins, physically mediated interactions do not always
function alone. For example, substances such as resin or latex
physically limit herbivores by trapping or immobilizing them,
while simultaneously delivering various toxins (Konno, 2011),
and glandular trichomes release sticky and toxic compounds
serving as a physical and chemical defense against herbivores
(Levin, 1973; Southwood, 1986; Cortesero et al., 2000).

Plant architecture affects the dispersion of herbivores on a
host plant, which may in turn affect searching behavior and host-
finding abilities of natural enemies. For example, the leaves of
winter wheat varieties developed for resistance to Russian wheat
aphid Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae)
remain flat, compared to susceptible varieties whose leaves furl in
response to aphid feeding (Hawley et al., 2003), exposing aphids
to disturbances such as wind, rain, and predators inducing them
to fall from the plant (von Berg et al., 2008). Characteristics that
affect falling behavior of herbivores can affect predation rates as
they experience vulnerability to ground-dwelling predators and
may also face additional challenges from natural enemies as they
attempt to recolonize the plant (Sunderland et al., 1986; Winder,
1990; Winder et al., 1994).

The size and morphology of certain plant structures that
confer resistance to herbivores can affect biological control
by altering where pests feed, how long they are exposed and
how apparent or accessible the pests are to natural enemies,
particularly if plant morphology can delay internally feeding pests
from entering the plant’s tissues. An example would be husk
tightness and length in sweet corn plants conferring resistance to
H. zea larvae attempting to enter the ear and feed on developing
kernels (Cameron and Anderson, 1966; Wiseman and Davis,
1990). Plant structures may also act to hide the herbivore from its
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natural enemies. For example, open-leaf brassica varieties, such
as Brussels sprouts, have higher parasitism on P. rapae compared
to heading varieties, such as cabbage, due to larvae being able
to feed in leaf folds protected from parasitoids (Pimentel, 1961).
Furthermore, the size of plant structures impacts the ability
of parasitoids to oviposit in pests, particularly if larger fruits
allow pests to feed deeper than the parasitoid’s ovipositor can
reach, creating “enemy-free space” and potentially facilitating
host switching by pests (Bush, 1974; Price et al., 1980; Jeffries and
Lawton, 1984; Bernays and Graham, 1988).

The plant surface is a complex microenvironment playing
a critical role in insect–plant interactions, impacting insect
behavior (such as attraction, retention, and host choice),
feeding (such as attachment and accessibility of nutrients),
and dispersal (by impeding insect movement) (Chapman, 1977;
Southwood, 1986). Leaf surface structures that defend the
plant from herbivores, such as leaf toughness, cuticle thickness,
epicuticular waxes, trichomes and spines, can have direct and
indirect effects on natural enemies. An indirect effect can occur
if physical defense traits, such as leaf toughness, delay the
development of herbivores. The extended period of vulnerability
to natural enemies can thereby enhance biological control
(slow-growth–high-mortality hypothesis, see Plant Nutrient-
Mediated Interactions). A common example of direct effects
is when trichomes are physically disruptive to natural enemy
movement. In general, trichomes have more harmful than
beneficial effects on predators, although most of these effects
are sublethal (Riddick and Simmons, 2014a,b). The functional
response or attack rate of predators and parasitoids is typically
lower when their prey or hosts are found on plants with greater
trichome density (e.g., Krips et al., 1999; Kumar et al., 1999;
De Clercq et al., 2000; Stavrinides and Skirvin, 2003; Madadi
et al., 2007; Jalalizand et al., 2012), although the opposite
has been found as well (Koveos and Broufas, 2000). These
interactions have significant implications for pest management;
for example, biological control is possible on glabrous cucumber
varieties, but is seriously hindered on those with dense trichomes
due to the reduction in searching efficiency by the parasitoid
Encarsia formosa Gahan (Hymenoptera: Aphelinidae) attacking
greenhouse whiteflies Trialeurodes vaporariorum Westwood
(Hemiptera: Aleyrodidae) (Hulspas-Jordaan and van Lenteren,
1978). Clusters of trichomes on the underside of plant leaves
can form domatia, commonly used by predatory arthropods
for shelter (O’Dowd and Willson, 1991; Walter, 1996; Agrawal
and Karban, 1997); the positive impact of domatia on biological
control has been well-documented for predatory phytoseiid mites
(reviewed in Schmidt, 2014). In general, arthropods need to be
either quite large (Rabb and Bradley, 1968; Obrycki and Tauber,
1984) or very small (Krips et al., 1999) to move along a leaf surface
unimpeded by physical plant defense structures. The effect of
trichome density on natural enemy movement can be a function
of the relationship between natural enemy size and trichome
spacing (Buitenhuis et al., 2014).

This myriad of physical plant traits clearly has an important
effect on the feeding efficiency of herbivores. However,
integration of plant physical traits with biological control is a
complex issue with characteristics hindering herbivore damage

also affecting (positively and negatively) the ability of natural
enemies to attack pest species. This trade-off is evident in many
examples of physically mediated interactions. In addition to
trichomes, another plant surface characteristic that can impact
natural enemies is the presence and composition of epicuticular
waxes, which will be discussed in the following section.

Case Study: Plant Epicuticular Waxes, the
Diamondback Moth, and Its Predators
Plant epicuticular waxes primarily serve to control water, gas
and solute exchange (Riederer and Müller, 2006). In addition,
these waxes mediate other ecological functions including host
plant resistance against pathogens (Reina-Pinto and Yephremov,
2009) and herbivores (Eigenbrode et al., 1991b; Müller,
2008). The interactions between B. oleracea (cabbage, broccoli,
cauliflower, kale, and others), Plutella xylostella (L.) (Lepidoptera:
Plutellidae), and its predators highlight the interface between
plant waxes and herbivore resistance. Gene mutations yield
B. oleracea cultivars with altered chemical structures and
different crystallization patterns of epicuticular lipids (Macey
and Barber, 1970; Netting et al., 1972; Baker, 1974). As a
consequence, mutants usually have decreased epicuticular waxes
and produce a “glossy” phenotype instead of their normal
wax “glaucous” phenotype (Eigenbrode and Espelie, 1995).
Although information is limited (Verkerk and Wright, 1996),
evidence suggests that glossy plants exhibit resistance against
neonate P. xylostella larvae (Lin et al., 1983; Eigenbrode and
Shelton, 1990; Eigenbrode et al., 1991a) and that physical and
chemical differences influence neonate behavior (Eigenbrode
et al., 1991b). Neonates on glossy varieties disperse further and
faster, spending less time palpating, biting, mining, and spinning
silk (Eigenbrode and Shelton, 1990; Eigenbrode et al., 1991a).
This non-preference behavior causes a lack of establishment,
reduced feeding and increased larval mortality (Eigenbrode and
Shelton, 1990; Eigenbrode et al., 1991a).

Host plant resistance conferred by the glossy phenotype is also
enhanced by predators. Field studies revealed that green lacewing
Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae),
insidious flower bug Orius insidiosus (Say) (Hemiptera:
Anthocoridae), and convergent lady beetle Hippodamia
convergens Guérin-Méneville (Coleoptera: Coccinellidae), all
generalist predators, significantly increased P. xylostella larval
mortality in glossy, but not normal wax, varieties (Eigenbrode
et al., 1995). The reduction in mining behavior renders the larvae
more exposed to predators (Eigenbrode et al., 1995). Predators
also walked faster, spent more time walking, and covered more
leaf area on glossy leaves compared to normal wax varieties
(Eigenbrode et al., 1996). Increased mobility was attributed to
increased traction/adhesion of predators on glossy vs. normal
wax plants. The crystallization and composition of natural waxes
have an impact on how natural enemies, such as H. convergens
and Chrysoperla plorabunda (Fitch) (Neuroptera: Chrysopidae)
attach to the leaf surface, thereby affecting their ability to exert
biological control (Eigenbrode et al., 1999; Eigenbrode and Jetter,
2002).

In summary, this system has multiple pest suppression factors
working together. Plutella xylostella neonates are less likely
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to accept glossy varieties, which increases their mortality and
vulnerability to predation (via decreased mining behavior).
Predators on glossy varieties have a greater ability to walk and
hence, locate and attack prey, due to increased adhesion to the
surface of leaves. Altogether, host plant resistance for P. xylostella
in glossy varieties increases biological control by natural enemies,
and hence overall suppression of this key pest of Brassica plants.

Mechanisms of Plant Trait-Mediated
Interactions: Summary
Plant traits have a profound (and often complex) array of
impacts on herbivores and natural enemies. The examples cited
within each section above for semiochemically, plant toxin-,
plant nutrient-, and physically mediated interactions show the
diversity and gradient of interactions occurring between natural
enemies and HPR and how these can interact synergistically
or antagonistically to suppress the target pest. For instance,
semiochemically mediated traits serve as indirect plant defenses
by impacting signaling pathways and attraction/repellency
between the members of tritrophic interactions. Conversely,
plant toxins act as direct defense against herbivores and this
in turn can alter host suitability for natural enemies. Insect
host/prey vulnerability via the slow-growth–high-mortality
hypothesis can be mediated by plant nutrition. Plant-provided
nutritional resources can also be linked to the success of natural
enemies due to omnivory by predators and/or parasitoids.
Moreover, physically mediated traits are known to function
together with other traits to deter herbivory, but physical
plant defenses are also responsible for increasing or decreasing
herbivores’ vulnerability to natural enemies and trichomes can
have direct negative impacts on biological control by decreasing
natural enemy search efficiency. Manipulation of plant traits
through plant breeding or bioengineering, as well as knowledge
of the ecology and biology of herbivores and natural enemies,
can work together to aid crop protection. In the last two decades,
another control tactic, Bt, has become a staple of the agricultural
landscape throughout much of the world (although notably
less so in Europe). This technology will be discussed below
given its importance in pest control programs throughout the
world.

GENETICALLY MODIFIED CROPS AND
INTERACTIONS WITH BIOLOGICAL
CONTROL

Transgenic genetically modified (GM) crops have been
engineered to incorporate genes derived from another
species that confer nutritional or agronomic benefits, such
as resistance to insect pests, viruses, herbicides, or protection
from environmental conditions (e.g., low water availability).
Among insect-resistant GM crops, Bacillus thuringiensis
(Bt) crops are the most common and express insecticidal
proteins derived from a naturally occurring soil bacterium.
The insecticidal mode of action occurs when Bt toxins bind to
receptors on the midgut lining of susceptible insects, causing

lysis of epithelial cells on the gut wall, perforations in the
midgut lining, cessation of feeding, and death by septicemia.
Bt toxins target a narrow spectrum of pest insects that possess
specific physiological traits (i.e., gut pH and toxin receptor
sites in the midgut), and thus pose less direct toxicity risk to
non-target species than broad-spectrum insecticides (Marvier
et al., 2007; Wolfenbarger et al., 2008; Naranjo, 2009; Duan et al.,
2010; Peterson et al., 2011). Commercialized Bt crops include
maize, cotton, and soybeans that are protected against a suite of
coleopteran and lepidopteran pests. The planting of Bt crops has
increased dramatically since their introduction in the mid-1990’s;
for example, in the United States, the percentage of Bt maize
was only 1% of the total crop grown in 1996 but 81% of all
maize grown in 2015 (United States Department of Agriculture
National Agricultural Statistics Service, 2015). The ecological
interactions between insect-resistant GM crops and biological
control are complex and have been addressed in numerous
comprehensive reviews (e.g., Obrycki et al., 2004; Lundgren
et al., 2009a; Hilbeck and Otto, 2015). Two major categories
for how GM crops influence biological control, proposed by
Lundgren et al. (2009a), are discussed below: (1) toxicity-based
pathways, including natural enemy consumption of toxic plant
or prey foods; and (2) crop-induced changes to the environment,
including unintended alterations to the crop plant and a decrease
in prey quality and/or density that alter functional and numerical
responses as well as the community ecology of natural enemies.

Many natural enemies consume plant-provided non-prey
foods (see Plant Nutrient-Mediated Interactions) and when
these plant-provided resources are GM crops, they are likely
to contain Bt toxins. The expression of transgenic proteins
is influenced by many biotic and abiotic factors, including
environment, geography, crop phenology and genetics, and
the specific transgenic event and protein expressed (Fearing
et al., 1997; Duan et al., 2002; Grossi-de-Sa et al., 2006; Obrist
et al., 2006a; Lundgren et al., 2009a). Most Bt crops employ a
constitutive promoter that expresses Bt proteins throughout the
life of the plant in nearly all tissues. Natural enemies that engage
in facultative phytophagy of these plants are therefore likely to be
exposed to the Bt toxins. Despite this exposure, laboratory feeding
assays and field studies do not report negative impacts (Pilcher
et al., 1997; Armer et al., 2000; Lundgren and Wiedenmann, 2002;
Geng et al., 2006; Ludy and Lang, 2006; Obrist et al., 2006b;
Torres et al., 2006; Li et al., 2008), most likely due to the high
specificity of Bt proteins against target pests and the lack of
necessary physiological conditions in non-target arthropods. It
is therefore unlikely this pathway has a significant impact on
biological control in transgenic crops.

Natural enemies may be exposed to Bt toxins by consuming
or parasitizing prey/hosts that have fed on GM crops, a pathway
similar to plant toxin-mediated interactions (see Plant Toxin-
Mediated Interactions). One factor mitigating the exposure of
natural enemies is that for crop pests that are highly susceptible
to Bt toxins, ingestion of a very small amount of toxin elicits
lethal effects. Exposure to natural enemies can be greater if
the herbivore consuming a GM crop plant is only partially
susceptible to the toxin and therefore consumes a greater quantity
of plant tissue. Many herbivores do contain transgenic toxins
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(e.g., Harwood et al., 2005; Meissle et al., 2005; Obrist et al., 2005,
2006b; Peterson et al., 2016), but accumulation in higher trophic
levels is uncommon (Dutton et al., 2002; Obrist et al., 2006a;
Paula and Andow, 2016). While tritrophic transfer of Bt proteins
has been documented, it is at low levels (e.g., Harwood et al., 2005,
2007; Meissle et al., 2005; Zwahlen and Andow, 2005; Obrist et al.,
2006a; Wei et al., 2008; Chen et al., 2009; Meissle and Romeis,
2009; Peterson et al., 2009, 2016; Tian et al., 2010; Han et al.,
2015). Early studies reported that some predators had negative
sub-lethal effects from exposure to Bt-containing prey (Hilbeck
et al., 1998a,b; Ponsard et al., 2002) but it was subsequently
revealed that this was the result of reduced prey quality rather
than direct exposure to Bt toxins (Romeis et al., 2004; Torres and
Ruberson, 2006).

The most likely action by which GM crops could influence
natural enemy fitness and fecundity is through a reduction in
prey quality and/or prey density. Numerous studies have shown
that consumption of Bt-containing plant tissue negatively affects
the growth and development of herbivorous species, thereby
impacting their natural enemies (e.g., Lövei and Arpaia, 2005;
Hilbeck and Schmidt, 2006; Romeis et al., 2006; Lawo et al.,
2010; Garcia et al., 2012; Tian et al., 2014; Han et al., 2015).
For example, Hilbeck et al. (1998a) reported that the generalist
predator C. carnea experienced reduced larval survival and longer
development time when fed a diet of European corn borer (ECB),
Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), that had
consumed Bt corn. However, generalist predators are capable of
preferential feeding on healthy prey (Ferry et al., 2006) and are
able to shift their dietary preferences to consume the mixture
of nutrients required for optimal fitness (Mayntz et al., 2005;
Raubenheimer et al., 2007; Marques et al., 2015). Therefore,
generalist predators may be able to compensate for reduced
quality of select prey due to Bt toxin consumption, having a
negligible impact on biological control. For entomopathogens,
species that are specialists of Bt-targeted pests are likely to
see population reductions, whereas generalists will continue to
persist in Bt crop fields (Obrycki et al., 2004). Parasitoids often
do not have the flexibility to select hosts unaffected by Bt toxins
and are therefore more likely to be adversely affected (Bernal
et al., 2004; Marvier et al., 2007; Wolfenbarger et al., 2008;
Bernal, 2010). Specialist parasitoid populations are reduced due
to a lack of suitable hosts and may also suffer direct mortality
if they are developing inside of a host that suffers mortality
due to ingestion of Bt toxins (Agrawal, 2000a). For hosts that
are only partially susceptible to Bt toxins, reduced host quality
can result in sublethal effects on parasitoids (e.g., Bernal et al.,
2002; Baur and Boethel, 2003; Vojtech et al., 2005; Ramirez-
Romero et al., 2007; Walker et al., 2007), but host-mediated
impacts of Bt crops on parasitoids are not universal and vary
depending on the plant, host, and parasitoid. For example, the
soybean looper Chrysodeixis includens (Walker) (Lepidoptera:
Noctuidae) is moderately susceptible to the Bt toxins expressed
in transgenic cotton and exhibits slower development time and
lower prepupal weight (Baur and Boethel, 2003). Parasitism by
Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) on
these hosts results in longer larval development time, reduced
adult longevity, and reduced egg production. However, when

C. floridanum parasitizes loopers that have fed on Bt cotton, wasp
pupal development time and adult longevity are unaffected, but
fewer adults are produced per host (Baur and Boethel, 2003),
revealing the difference in effects between species. In addition to
development time, natural enemy size can be reduced if feeding
on lower quality prey or hosts; smaller size in insects can result in
reduced fecundity and dispersal capacity (Honěk, 1993; Kazmer
and Luck, 1995), further delaying natural enemy population
growth (Lundgren et al., 2009a).

The majority of interactions discussed above operate at
the scale of a single crop field or smaller. However, some
effects of the proliferation of GM crops are observed at the
landscape or community scale. For example, Bt maize has
been associated with area wide suppression of ECB in the
midwestern United States (Hutchison et al., 2010). Despite
reduced ECB populations that confer economic benefits to
growers planting non-Bt maize, management of this pest is still
critical for seed corn, popcorn, and other crops not protected
by Bt toxins. Therefore, suppression of ECB due to biological
control by natural enemies such as the specialist parasitoid
Macrocentrus grandii (Goidanich) (Hymenoptera: Braconidae)
and the entomopathogenic microsporidian Nosema pyrausta
(Paillot) (Microsporidia: Nosematidae) is a valuable service.
Despite the large reduction in ECB populations, infection
dynamics of N. pyrausta have not significantly changed (Lewis
et al., 2009), although parasitism rates by M. grandii were lowest
when ECB hosts were found in small aggregations (White and
Andow, 2005). Therefore, the area wide suppression of Bt-
targeted prey or hosts does not always affect the interactions of
pests with their natural enemies.

In addition to transgenic Bt crops, other herbicide-resistant
and insecticidal GM crops are commercially available or under
review by governmental agencies. The adoption of herbicide-
tolerant crops that confer resistance to herbicides such as
glyphosate, glufosinate, and 2,4-Dichlorophenoxyacetic acid (2,4-
D) has been rapid. In the United States, 89% of corn and upland
cotton and 94% of soybeans planted in 2015 had GM herbicide-
tolerance traits (United States Department of Agriculture
National Agricultural Statistics Service, 2015). Furthermore,
herbicide-tolerant canola, alfalfa, and sugar beets are currently
being grown in the United States, albeit in reduced frequency.
This adoption has led to changes in the agricultural landscape,
including reduced within-field plant diversity (Heard et al., 2005;
Culpepper, 2006; Pleasants and Oberhauser, 2013), potentially
affecting natural enemies and conservation biological control.
The potential consequence of GM herbicide-tolerant crops on
biological control is addressed in detail by Lundgren et al.
(2009a). Transgenic insecticidal traits other than Bt have been
studied; for example, potatoes, rice, maize, sugarcane, wheat,
and other crops have been engineered to express snowdrop
lectin GNA, a protein produced by the common snowdrop plant
Galanthus nivalis (Asparagales: Amaryllidaceae) that expresses
anti-hemipteran properties (Gatehouse et al., 1996; Sudhakar
et al., 1998; Wang et al., 2005; Zhangsun et al., 2007; Duan et al.,
2015). However, negative impacts of snowdrop lectin on natural
enemies have been reported (Birch et al., 1999; Sétamou et al.,
2002a,b,c; Horgervorst et al., 2006; Li and Romeis, 2009). The
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next generation of transgenic insecticidal crops in the commercial
pipeline utilizes RNA interference (RNAi), where small double
stranded RNA molecules expressed in the plant selectively silence
targeted genes in herbivores that feed on the plant (Siomi and
Siomi, 2009). For the western corn rootworm (WCR), silencing
the DvSnf7 gene using genetically modified RNAi maize induces
mortality of this pest (Baum et al., 2007; Bolognesi et al.,
2012) but the interactions between RNAi crops and biological
control are not fully understood. While the reported spectrum
of insecticidal activity of DvSnf7 RNAi is limited to a subset
of species related to the WCR (Bachman et al., 2013), further
risk-assessment is clearly required. The potential hazards of GM
RNAi crops to natural enemies include off-target gene silencing,
silencing of the targeted gene in non-target organisms, immune
stimulation, and saturation of the RNAi machinery; however,
these interactions may be highly complex and difficult to predict
(see reviews by Lundgren and Duan, 2013; Casacuberta et al.,
2015; Roberts et al., 2015). Consequently, understanding the
potential effect that GM crops have on natural enemy-pest
dynamics will allow for better integration of this technology with
biological control services. Genetically engineered biotech crops
undoubtedly afford significant levels of pest suppression; research
on the compatibility of this approach with biological control is
critical to address the long-term integration of both approaches.

DISCUSSION

Top-Down vs. Bottom-Up Control of
Herbivorous Populations
As emphasized throughout this review, IPM ideally integrates
a range of approaches to reduce damage caused by insect
pests. Two of these approaches, HPR and biological control,
are essentially forms of bottom-up and top-down control of
herbivore populations. Whether breeding for increased plant
resistance and the use of biological control are compatible
and complementary approaches depends, in large part, on the
mechanisms involved in HPR and the effects they have on
biological control agents. Plant breeding for increased toxicity
to herbivores will likely have negative effects on any biological
control agents of these herbivores, whether due to direct ingestion
of plant toxins or the effects of reduced host or prey size. In this
respect, the array of interactions described in the Plant Toxin-
Mediated Interactions and Plant Nutrient-Mediated Interactions
sections are expected to apply here. An increasing number of
studies have demonstrated that HPR has negative consequences
for biological control agents through reduced body size or
survivorship of individual natural enemies, raising the concern
that such approaches are incompatible. Perhaps true in some
circumstances, this is not always the case. Even if these control
tactics negatively interact, the net effect in suppressing pest
populations may be greater than use of either strategy alone.
While rarely done, studies evaluating the joint effects of HPR
and biological control efforts on pest population dynamics are
essential to design effective and sustainable IPM strategies to
minimize pest damage. Conversely, efforts to increase HPR
by selecting for varieties that increase production of volatiles

attractive to biological control agents are clearly compatible
with biological control approaches. These interactions have been
discussed in the Semiochemically Mediated Interactions and
Case study: Maize Volatiles, Western Corn Rootworm, and
Entomopathogenic Nematodes sections. Too often, however,
little is known about the mechanisms underlying plant resistance
to herbivory.

In turn, parasitoids can reduce herbivore pressure allowing
for increased plant yields. Parasitoids, especially solitary species,
can reduce damage done by herbivores, resulting in direct yield
benefits to the plant; even gregarious parasitoids, which often
induce increased feeding by individual herbivores, can reduce
long-term population sizes of herbivores. Indeed, the widespread
success of many insect biological control programs speaks to
the ability of parasitoids (and predators) to have positive effects
on plant production and yield. An underappreciated facet of
this interaction between parasitoids and plant fitness/yield is the
potential for parasitoids to reduce the likelihood of evolution of
herbivore resistance to plant resistance traits. This is discussed
further in section “Biological Control Can Reduce the Likelihood
of Resistance Evolution.”

Considerations for the Use of Volatiles to
Recruit Biological Control Agents
Most studies involving HIPVs are undertaken in laboratory and
greenhouse settings, with fewer studies conducted on the efficacy
of HIPVs as host–plant resistance mechanisms in cropping
systems at the field scale (Orre et al., 2010; Simpson et al.,
2011a,b). Our understanding of arthropod responses to chemical
compounds is still evolving, but efforts in developing HIPV
strategies for crops are already in place via baiting/lures (Kaplan,
2012) or via bioengineering (Degenhardt et al., 2003, 2009).
However, efforts to increase natural enemy efficacy by increasing
plant attractiveness via HIPVs cannot ignore potential side
effects. Extensive reviews of the challenges and the future of
HIPV use in pest management have been published (Dicke,
2009, 2015; Alba et al., 2012; Kaplan, 2012; Heil, 2014) and
there are many unknown factors and risks associated with the
use of HIPV-based pest management tactics. Cropping systems
are often considered low-diversity environments because of
monocultural practices but in reality there are a multitude of
organisms in any given field emitting and receiving chemical
cues. We know that HIPVs targeted to attract natural enemies
also attract herbivores, plant parasites, and members of the fourth
trophic level. Releasing HIPV technology without examining the
ecological factors present may render the technology ineffective.
Several studies have shown that application of synthetic elicitors
such as methyl jasmonate (MeJA) to induce elevated plant volatile
production can also attract herbivores (Ballhorn et al., 2013)
as well as hyperparasitoids (Kaplan, 2012; Heil, 2014), both
outcomes that would be counterproductive to the potential for
increased rates of parasitism by primary parasitoids. Additional
spatio-temporal considerations must be understood to apply this
technology in a large field setting. Moreover, it is unclear how the
intentional use of HIPV technology impacts the net-efficiency of
the HIPV-emitting crop. For example, the use of synthetic green
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leaf volatiles and MeJA to induce increased HIPV production in
field grown maize did not result in increased parasitism rates by
parasitoids of S. frugiperda (von Mérey et al., 2011, 2012). An
essential question that needs additional exploration is whether an
increase in biological control due to HIPV-emission will equate
to increased crop yields.

Biological Control Can Reduce the
Likelihood of Resistance Evolution
Pesticide resistance is listed as the third most serious threat
to global agriculture (behind soil erosion and water pollution)
(Pimentel, 2005). Resistance is a pest population’s decreased
response to a pesticide or control agent (including plant defense
traits) as a result of previous exposure (McKenzie, 1996) and
over 540 arthropod species have developed resistance to at
least one pesticide (Arthropod Pesticide Resistance Database,
2016). The evolution of resistance to GM crops is of particular
concern. For example, the WCR developed resistance to Cry3Bb1
Bt proteins with cross-resistance to mCry3A within 8 years
of commercial release in the U.S. (Gassmann et al., 2011;
Wangila et al., 2015). The impacts of resistance are often
severe and far-reaching: they can lead to economic losses and
increased pesticide usage. Delaying or preventing adaptation
to pesticides, insecticidal GM crops and host plant defense
traits can be achieved through the adoption of an integrated
resistance management plan, and biological control can play
a large role in these efforts. The impact of biological control
on the rate of evolution of pest resistance is dependent upon
whether natural enemies disproportionately attack resistant
prey/hosts (thereby slowing resistance evolution) or susceptible
prey/hosts (thereby accelerating resistance evolution) (Gould
et al., 1991). In a high-dose/refuge strategy, such as that used for
Bt crops, susceptible pests developing in refuges are frequently
found at higher densities than resistant pests feeding on high-
dose plants. Therefore, if natural enemies preferentially attack
hosts found at higher densities (positive density-dependent
mortality), the rate of resistance evolution will be faster than
if natural enemies prefer less dense hosts (inverse density-
dependent mortality) or are unaffected by host density (density-
independent mortality) (Heimpel et al., 2005). For example,
Coleomegilla maculata De Geer (Coleoptera: Coccinellidae)
exhibits inverse density-dependent predation on the egg masses
of the Colorado potato beetle Leptinotarsa decemlineata Say
(Coleoptera: Chrysomelidae), decreasing the rate at which this
pest develops resistance to Bt potatoes (Arpaia et al., 1997).
However, the introduction of alternative prey can alter feeding
patterns of this generalist predator, thereby affecting its influence
on resistance evolution (Mallampalli et al., 2005).

Natural enemies can enhance resistance management for plant
defense traits by inflicting mortality on those pests that have
developed resistance (Liu et al., 2014). In oilseed rape Brassica
napus L. (Brassicales: Brassicaceae) expressing Bt toxins, for
example, the parasitoid Cotesia vestalis (Halliday) (Hymenoptera:
Braconidae) dies with their host if developing inside a Bt-
susceptible P. xylostella larva, but does not suffer negative effects
when parasitizing Bt-resistant caterpillars (Schuler et al., 1999).

Susceptible P. xylostella are killed within 5 days of feeding on
Bt plants and consumption of Bt leaves is significantly reduced
for susceptible larvae than resistant larvae. Consequently, the
parasitoid C. plutellae is more attracted to Bt-resistant hosts, as
plants with greater feeding damage release more HIPVs, which
are attractive to the parasitoid (Schuler et al., 1999). Additionally,
natural enemies can slow the evolution of resistance if they
increase the fitness costs associated with resistance to crop traits
(Raymond et al., 2007) but alternatively may amplify selection for
resistance if they attack susceptible prey or hosts more frequently
(Gould et al., 1991). For example, susceptible H. virescens feeding
on Bt tobacco Nicotiana tabacum L. (Solanales: Solanaceae)
took longer to develop, exposing them to greater parasitism
by Campoletis sonorensis, and had higher movement rates,
increasing risk of infection by the entomopathogenic fungus
Nomuraea rileyi (Farlow) Samson (Johnson and Gould, 1992;
Johnson et al., 1997a,b).

As described, biological control can influence the rate of
resistance evolution via top-down influence. However, the
manner in which host plant resistance traits are implemented
can also have an effect on the evolution of resistance through
bottom-up selection. The durability of plant resistance traits is
affected by a multitude of factors that influence selection pressure
on herbivorous pests, such as planting of a monoculture of
resistant plants vs. mixtures or refuges of non-resistant plants,
the mechanism and efficacy of the resistance traits, and the use
of pyramiding multiple resistance traits (Stout, 2013). To achieve
the greatest durability of plant defense traits, and therefore a more
stable and sustainable pest management strategy, both top-down
and bottom-up methods for delaying evolution of resistance by
arthropod pests should be employed.

How Can We Integrate Host Plant
Resistance and Biological Control?
Historically, developers of HPR and biological control programs
have worked independently, seeking to find “single-solution
approaches to pest problems” (Thomas and Waage, 1996).
Communication between such disparate groups such as plant
breeders and natural enemy ecologists may not be inherently
high. In reality, there are at least four distinct groups that
should come together to better integrate plant defense traits
and biological control: (1) HPR researchers (including plant
breeders), (2) biological control researchers, (3) ecologists
studying community and tritrophic interactions, and (4)
extension professionals who are implementing IPM programs
and working directly with producers and their advisors (Thomas
and Waage, 1996). How can these fields and groups be
brought together? Currently, plant breeding for HPR includes
the selection of plant traits with the goal of enhancing direct
defenses against herbivorous pests, with little consideration for
enhancing plant traits that could improve indirect defenses
through the action of natural enemies against pests (Cortesero
et al., 2000). Evaluating the impacts of plant resistance
characteristics on common natural enemies in the assessment
of plant varieties during breeding for HPR would aid in
bringing these two methods together. Additionally, fundamental
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ecological literature and applied host plant resistance literature
have suffered from a lack of integration, an observation that
has persisted for nearly 30 years (Kogan, 1986; Stout, 2013).
An adherence by the host plant resistance community to the
three traditional categories of resistance: antibiosis, antixenosis
and tolerance (Painter, 1951) may also account for the lack of
consideration of the third trophic level (Stout, 2013). Induced,
indirect host plant resistance, such as what is seen when herbivore
feeding or oviposition on plants triggers the attraction of
natural enemies, does not fit into the three traditional categories
proposed by Painter (1951). To further our understanding of
the interactions between plant defense traits and biological
control, experts that can conduct research using natural history,
molecular and genetic tools, and field experimentation must be
brought together (Agrawal, 2000a).

Practical Implementation of Host Plant
Resistance and Biological Control in
Integrated Pest Management
A successful IPM plan must account for the ecology and
biology of the targeted pest(s), environmental factors, and
agricultural management. It must be localized; a one size fits
all approach will never be effective, yet area wide suppression
programs encompassing large regions are sometimes necessary
(Schellhorn et al., 2015). This is a significant challenge in making
prescriptions. An HPR-biological control combination targeting
the same pest may work in one region, but not another. Similarly,
this combination may work for one type of pest, but not another,
even within the same field. While HPR and biological control
are two of the key pillars of IPM, other essential management
tactics include cultural control and chemical control. Another key
management tactic is the “stimulo-deterrent diversion” or “push-
pull” strategy. Host plant resistance traits can contribute to the
“push” component, while biological control by natural enemies
may be enhanced by concentration of pests due to the “pull”
component (Eigenbrode et al., 2016). Finding a compromise
between the strategies of host plant resistance and biological
control may prove to be advantageous for selecting management
strategies that maximize pest suppression and minimize the
likelihood of resistance by reducing selection pressure on pests.
For example, glandular pubescence was bred into commercial
potato clones for defense against aphids and leafhoppers (Tingey,
1982). In the absence of natural enemies, aphid populations
are the lowest on plants with high trichome density; however,
when natural enemies are present, biological control is greatest
on plants with intermediate trichome density (Obrycki et al.,
1983). Therefore, plants with intermediate trichome density were
recommended for potato IPM due to their partial resistance to
aphids, compatibility with natural enemies, and reduced risk
for development of pest resistance (Obrycki et al., 1983). The
concept of pairing a partially resistant crop plant with biological
control was proposed by van Emden (1988) as two of the three
components of a “pest management triad” for aphid control (the
third being use of selective insecticides to cause mortality of pests
but not natural enemies). Cortesero et al. (2000) identified leaf
domatia, trichomes (in intermediate density), plant signaling via

volatiles, and extrafloral nectaries as the most promising plant
defense traits for positive synergy with biological control.

Plants experience a wide range of biotic associations (both
beneficial and antagonistic) above- and belowground that
interact in complex ways (Bezemer and van Dam, 2005; van Dam
and Heil, 2011). Herbivory and pathogen pressures experienced
belowground can influence above ground interactions between
plants, herbivores, and higher trophic levels (e.g., Soler et al.,
2007, 2012). Approaches that use beneficial root associates
such as arbuscular mycorrhizal fungi and rhizobacteria can not
only increase root production and have benefits on yield and
aboveground growth, they can stimulate aboveground defensive
chemistry providing protection against aboveground herbivores
(Gehring and Bennett, 2009; Orrell and Bennett, 2013).

Any recommendations that are given to maximize the
compatibility of host plant resistance and biological control
must also consider other important agronomic and practical
factors, such as water availability and water use efficiency,
fertilization and nutrient availability, weed management, and
disease management. However, multiple goals can sometimes
be achieved by the adoption of a single practice. For example,
indirect host plant resistance, pathogen resistance, and biological
control can be simultaneously supported in the case with leaf
domatia on grape leaves: both predatory and fungivorous mites
use these structures for protection and their presence can
decrease incidence of arthropod pests and powdery mildew, a
major disease of grapes (Agrawal, 2000a; Norton et al., 2000). For
crop producers, agronomic traits other than insect resistance, and
ultimately yield, will be the deciding factors for variety or hybrid
selection. For crops where the seed market is dominated by
transgenics, there may be less choice for the farmer; often only the
highest yielding hybrids are chosen for transformation; in order
to have the Bt or herbicide resistance traits desired, a smaller
pool of varieties are available. Plant breeding often focuses on
enhancing agronomic traits, such as drought tolerance, with
higher yields as a major driving factor. Therefore, breeding
for resistance to arthropod pests may not be the highest
priority. Many plant defense traits have been inadvertently lost
or weakened through domestication and selective breeding to
enhance yields (Brattsen, 1991; Loughrin et al., 1995; Pickett
et al., 1997; Rasmann et al., 2005; Chen et al., 2015a,b). Often,
indirect defenses that rely upon the attraction or provisioning
of natural enemies have also been lost, although efforts have
been made to restore these plant traits, such as EβC-production
due to an oregano transgene in maize to attract nematodes
to attack rootworm larvae (see Case study: Maize Volatiles,
Western Corn Rootworm, and Entomopathogenic Nematodes)
or artificial domatia added to commercial cotton plants, which
increased the abundance of certain predators (Agrawal et al.,
2000). Wild relatives of cotton do have leaf domatia (Fryxell,
1978) and molecular mapping has been used to identify the
genes that affect pubescence in cotton (Wright et al., 1999),
allowing for the selective expression of pubescence at the leaf
vein axils (domatia) that could positively affect natural enemies
and biological control in cotton. Looking back to wild relatives of
domesticated plant species could be informative for discovering
plant defense traits capable of controlling pest species.
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Host plant resistance and biological control are both well-
suited for adoption in developing countries due to their low cost
and lack of need for specialized equipment. The costs of HPR are
often built into the price of seed (and may be a one-time expense
if farmers can harvest and plant their own seeds subsequently).
Biological control may be completely free, if natural control
or conservation biological control is used. However, the use
of entomopathogens may require application equipment. These
biological control methods are in contrast to other types of
management, such as chemical control, which may require the
use of expensive equipment that is not accessible to farmers in
developing countries. A review of these considerations can be
found in Thomas and Waage (1996). Finally, HPR and biological
control are compatible with the ecological intensification theory
of agricultural production, which focuses on the conservation
and promotion of biodiversity to support ecosystem services in
cropland (Geertsema et al., 2016).

CONCLUSION

In one of the first reviews to address the interactions between
host plant resistance and biological control for pest management,
Bergman and Tingey (1979) stated that “interactions between
plant resistance and arthropod predators and parasites remain
poorly known.” Since that time, a large body of literature has

addressed this important question. However, we will need to
continue to explore the dynamic interactions between host plant
resistance and biological control as these tritrophic interactions
are impacted by changing global conditions, such as climate.
It is now clear that the mechanisms by which plant defense
traits and natural enemies interact are complex and may be
synergistic, disruptive, or anywhere on the continuum between.
Each is clearly a powerful tool for suppressing herbivore
populations and continued efforts to utilize these methods in IPM
are essential for environmentally and economically sustainable
global crop production. This review provided synthesis for
the many facets of these interactions and encompassed the
many critical implications these interactions have for agriculture
today.
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