'.\' frontiers
in Plant Science

ORIGINAL RESEARCH
published: 12 December 2016
doi: 10.3389/fpls.2016.01838

OPEN ACCESS

Edited by:

Monica Fernandez-Aparicio,
Institut National de la Recherche
Agronomique (INRA), France

Reviewed by:

Paula Martins-Lopes,

University of Tras-os-Montes and Alto
Douro, Portugal

Leonardo Velasco,

Institute for Sustainable Agriculture —
CSIC, Spain

Manuel Miller,

Helmholtz Zentrum Mdinchen,
Germany

*Correspondence:
Mathieu Rolland
mathieu.rolland@anses.fr

Specialty section:

This article was submitted to
Crop Science and Horticulture,
a section of the journal
Frontiers in Plant Science

Received: 27 April 2016
Accepted: 22 November 2016
Published: 12 December 2016

Citation:

Rolland M, Dupuy A, Pelleray A and
Delavault P (2016) Molecular
Identification of Broomrape Species
from a Single Seed by High
Resolution Melting Analysis.

Front. Plant Sci. 7:1838.

doi: 10.3389/fpls.2016.01838

®

Check for
updates

Molecular Identification of
Broomrape Species from a Single
Seed by High Resolution Melting
Analysis

Mathieu Rolland’*, Aurélie Dupuy’, Aude Pelleray? and Philippe Delavault?

" GEVES, Beaucouzé, France, ? Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, Nantes, France

Broomrapes are holoparasitic plants spreading through seeds. Each plant produces
hundreds of thousands of seeds which remain viable in the soils for decades. To
limit their spread, drastic measures are being taken and the contamination of a
commercial seed lot by a single broomrape seed can lead to its rejection. Considering
that broomrapes species identification from a single seed is extremely difficult even
for trained botanists and that among all the described species, only a few are really
noxious for the crops, numerous seed lots are rejected because of the contamination
by seeds of non-noxious broomrape species. The aim of this study was to develop
and evaluate a High Resolution Melting assay identifying the eight most noxious and
common broomrape species (Phelipanche aegyptiaca, Orobanche cernua, O. crenata,
O. cumana, O. foetida, O. hederae, O. minor, and P ramosa) from a single seed.
Based on trnlL and rbcL plastidial genes amplification, the designed assay successfully
identifies O. cumana, O. cernua, O. crenata, O. minor, O. hederae, and O. foetida;
P ramosa, and P aegyptiaca can be differentiated from other species but not from
each other. Tested on 50 seed lots, obtained results perfectly matched identifications
performed by sequencing. Through the analysis of common seed lots by different
analysts, the reproducibility of the assay was evaluated at 90%. Despite an original
sample preparation process it was not possible to extract enough DNA from some
seeds (10% of the samples). The described assay fulfills its objectives and allows an
accurate identification of the targeted broomrape species. It can be used to identify
contaminants in commercial seed lots or for any other purpose. The assay might be
extended to vegetative material.

Keywords: Orobanche, Phelipanche, parasitic weed, molecular diagnosis, HRM, trnL, rbcL

INTRODUCTION

Broomrapes (Orobanche and Phelipanche spp.) are angiosperms in the Orobanchaceae which have
evolved into obligate root holoparasitic plants (Joel, 2009). Devoid of leaves, of chlorophyll as well
as of functional roots, they entirely depend on their host for nutritional requirements (Westwood,
2013). One single broomrape plant can produce hundreds of thousands of extremely small seeds,
between 200 and 300 pum, each weighing around 5 pg and composed of only 200 to 300 cells (Joel,
1987). They are easily dispersed mainly by wind and water, and remain viable in the soils for many
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years until their germination is triggered chemically by exudates
released in the soil by the roots of potential host plants (Lopez-
Granados and Garcia-Torres, 1996, 1999). At the vicinity of host
roots, germinated seeds develop a haustorium that penetrates
host tissues and establish a connection with its vascular tissues.
This connection will constitute the source of the parasite for water
and nutrients. Some species in the Orobanche and Phelipanche
genera, the weedy broomrapes, are able to infect a large range
of plant species, including many important crops. In severe
cases, infection of the host plant can lead in reduction of
crop yields up 100%. This makes broomrapes one of the most
devastating parasitic weeds in the Mediterranean and western
Asian regions but also in many other parts of the world (Parker,
2009). Thus, among these noxious parasitic species are the closely
related Phelipanche ramosa L. and P. aegyptiaca Pers. (synonym
Orobanche ramosa and O. aegyptiaca) (Joel, 2009), O. cumana
Wallr., O. cernua Loefl., O. crenata Forsk., O. foetida Poir.,
and O. minor Sm., while O. hederae Vaucher ex Duby has no
agronomical impact but is extremely common.

Strategies to control parasitic weeds can be classified in
chemical, cultural, physical, and biological control methods
(Fernandez-Aparicio et al, 2016). Among them, breeding for
crop resistance seems to be the best approach to manage this
issue. However, sources of resistance to most parasitic plants
are either scarce or of complex nature (Perez-De-Luque et al.,
2009). Despite these difficulties, significant success has been
made on some crops. All these approaches allow a control of
the parasitic population or permit resistant crops to grow and
yield on infested soils, however, the eradication of parasitic
weeds remains extremely difficult. Considering that one major
mean of field contamination is through contaminated crop seed
lots, preventive measures have to be taken to avoid spreading
parasite seeds, especially through global scale seed exchanges.
This requires to detect efficiently the possible contaminations
of crop seeds lots by broomrape seed (Dongo et al, 2012).
Visual detection of broomrape seeds in crop seed lots is
conducted by sieving and observation of the obtained residues.
Characterization of broomrape seeds at the species level in
contaminated crop seed lots is important giving the differential
host ranges among broomrape weed species and the capacity of
some broomrape weeds to thrive in non-parasitic weed species.
However, due to their nuanced microscopic morphological
features, this identification is extremely difficult and can only
can be performed by high qualified specialists (Abu Sbaih
and Jury, 1994; Plaza et al., 2004). Molecular tools have been
developed to detect and identify broomrape species from soil
and crop seed batches. Random amplified polymorphic DNA
technique (RAPD) allowed the differentiation between species
such as P. aegyptiaca, P. ramosa, O. cernua, O. cumana, and
O. crenata (Katzir et al., 1996; Paran et al., 1997). This technique
was even used on single seeds (Portnoy et al., 1997), however,
the main drawback of RAPDs is their low reproducibility
(Harris, 1999). Intersimple sequence repeats (ISSR) were latter
used to discriminate closely related species such as O. cumana
and O. cernua (Benharrat et al., 2002). A TagMan assay was
developed on internal transcribed spacers (ITS) with the aim
of detecting and quantifying P. ramosa and O. cumana seeds

in oilseed rape and sunflower seed lots, respectively (Dongo
et al., 2012). Microsatellites were also developed to investigate
intraspecific variations in O. cumana (Pineda-Martos et al,
2014). Due to its monoparental inheritance, plastid genome
has a low intraspecific variability and seems to be an adequate
target for species identification. In the case of Orobanche genus,
a particular attention was paid to the pseudogene rbcL which
showed important sequence divergences among species due to
an evolution under purifying selection (Wolfe and dePamphilis,
1997; Benharrat et al.,, 2000; Manen et al., 2004). Recently, full
broomrape plastid genome sequence was made available (Wicke
etal,, 2013; Cusimano and Wicke, 2015) providing new molecular
markers for species identification.

High resolution melting (HRM) is a technique based on
the real-time measure of double stranded DNA denaturation
at a high resolution. It is suitable for gene scanning and
genotyping (Gori et al., 2012) and allows the detection of genetic
variations such as single nucleotide polymorphisms (SNP),
mutations (Toi and Dwyer, 2008), or methylation (Wojdacz
and Dobrovic, 2007). Used on PCR products during a post-
PCR denaturation, it requires no tube opening, purification,
or product separation. With a minimum manipulation, HRM
minimizes the contamination risk, it is cost efficient, suitable for
high-throughput, and can be performed in-house by laboratories
with no sequencing facility (Reed et al., 2007). This technique
has been extensively used on human tissues (Krypuy et al,
2007; Takano et al., 2008), for clinical or phytopathological
diagnostic and food analysis (Druml and Cichna-Markl, 2014).
It is increasingly used on plant tissues for species and cultivar
differentiation (Mackay et al,, 2008; Jaakola et al., 2010) or
genotyping (Lochlainn et al., 2011).

The objective of this study is to combine the knowledge
recently obtained on plastid genome and the HRM technique
to develop a new application allowing the differentiation of
the seven most noxious and common broomrape weed species
(P. aegyptiaca, O. cernua, O. crenata, O. cumana, O. foetida,
O. minor, and P. ramosa) and the widely distributed O. hederae
species from a single seed. This new application should provide
to laboratories, involved in seed certification, a decision-making
tool to evaluate crop seed lots potentially contaminated by
noxious broomrape species.

MATERIALS AND METHODS

Plant Material

Broomrape seeds (P. aegyptiaca, O. cernua, O. crenata, O.
cumana, O. foetida, O. hederae, O. minor, and P. ramosa) were
either obtained from international collections or collected during
field sampling by GEVES, Syngenta, Terres Inovia, or University
of Nantes. Available data concerning the tested seed lots are
summarized in Table 1.

Single Seed Grinding Procedure and
DNA Extraction

One of the technical challenges associated with the development
of an assay aiming to characterize broomrape single seeds
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2 é 228888 Bossfe == is the ability to obtain enough DNA from seeds weighing
g 5 % % % % 2 _ (‘% 5 B § E _ i an average of 5 png in a reproducible manner. To this end,
2 E|€&£828cs5”"8855=2>" EE each seed was crushed between two microscopy glass slides
4 § OCCEE CSxago c == in presence of 2 pul of ultrapure water and seed tissues
were then collected in a microtube. In order to maximize
. o . the amount of collecte.d DNA, the slides were rinsed with
.% g8 8 g 3 400 pl of PL1 extraction buffer (Macherey-Nagel) and the
E g 38825553353 EE rinse collected in the microtube. Total DNA extraction was
T E g g é s g then performed using the NucleoSpin® Plant II commercial
2 = > @ kit (Macherey—Nagel) following the manufacturer’s instructions
E (filtration columns were not used). A control of the quantity and
S|l 4, ooo quality of the extracted DNA was performed using a NanoVue™
% g 33322 S EEEEEE Spectrophotometer (GE Healthcare).
[7]
[
< Sequencing
£ 4|00 ® o 0 o Thanks to previous studies on plastid genome sequences in
£ § é g § § = § z=zz=zz= g < broomrapes (Wicke et al., 2013; unpublished results), sequences
. corresponding to eight plastid genes (rbcL, rps7, rpsll, rpl36,
rpll6, trnQ, trnL, and rrn23) and one nuclear region (ITS) were
§ é % % % % ;X% % % % % % % —DE % ob.tained for the eight studied spf-:‘cies. SequenFes were aligned
using the default alignment algorithm of Geneious v5.6.4. Two
markers showing significant sequence divergence among the
s s 5 é 855 cs eight species were selected for subsequent HRM experiments:
N 5 5 5L 5% %50 % To design HRM primers and to control the identification
% > 88 § § 5 % 5 28 é 8zz of the species, pseudogenes trnl and rbcL were amplified and
3 93 g 33 558585533 sequenced, respectively, using the primers (i) trnL C (F) and
© 88 g g 388 g E trnL HRM R, (ii) 1F and 1352R (Table 2). Amplification was
% é ,§ § é ,§ § § ~§ performed on 5 pl of single seed total DNA extract, by 1 U of
@ @ 0 gooao™d AmpliTaq Gold® (Life Technologies), in a total volume of 40 .1
at the final concentration of 1X of the appropriate Buffer II,
. o . 0.3 WM of each primer, 1.5 mM of MgCl,, and 0.2 mM of dNTP.
2 § % 2 _ PCR conditions were adjusted as follow, an initial denaturation
2 8 g ‘\t;?u g of 10 min at 95°C, 40 cycles of 30 s at 95°C, 15 s at 58°C, and
§ % % g % % § % % 3 2 % g % % 1 min at 72°C, and a final extension of 10 min at 72°C. After
© -2 g -2 % - 28 é - =227 migration in a 1.5% agarose gel at 180 V for 45 min and ethidium
§ S ,% g © bromide staining, PCR products were visualized under UV light.
< < h Purification and sequencing of the PCR products was provided
by Genoscreen.
o I
g s BEE to 8 T % Primer Design
g g & é S8 .5 ;:“j R L ;{ Obtained sequences were aligned using the default alignment
> o g % g S ;% -Dé S = —Dé g E g 3 algorithm of Geneious v5.6.4 (some alignments are provided
5 28 £33 59 @z < e % as Supplementary Images 1 and 2). Conserved regions and
8 t3 25 2 g 3@ £ % potential markers were identified visually. To achieve HRM
= = - s 2 identification of the species, primers surrounding the selected
;é’ markers were designed using primer 3' with an estimated melting
“ el temperature of 60°C (Table 2). According to the tested species,
,§ § 9 E the designed primers surround fragments of 315-463 bp for trnL
é g8 . 2 § §8 8K é s = § and 345-389 bp for rbcL.
ERE- SicogEisdogosaa s High Resolution Melting Analysis
€ 3 = S E HRM reactions were performed on 5 pl of single seed DNA
o |5 S g extract, in a total volume of 20 pl, using the MeltDoctor Master
% g mix (Life technologies) on a StepOnePlus instrument (Applied
gz 58839232 ¢5%223(3 Uhttp://primer3.ut.ee/
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TABLE 2 | Primers used for amplification, sequencing, and HRM.

Target Name Sequence (5'-3') Source Purpose

trnL trnL C (F) CGAAATCGGTAGACGCTACG Taberlet et al., 1991 PCR and sequencing
trnL HRM R GGGGATAGAGGGACTTGAACC

rbcL 1F ATGTCACCACAAACAGAAAC Manen et al., 2004 PCR and sequencing

1352R CAGCAACTAGTTCAGGRCTCC

trnL trnL-Z1-F CGGTAGACGCTACGGACTTA This study HRM
trnL-Lg-2R ATGGGACTCTATCTTTATTCTC

rbcL rbcL-lg-1-F AACCTGAAGTTCCGCCTGAA This study HRM
rbcL-Z2-R AGTACATCCCAACAGGGGAC

Biosystems) following the manufacturers recommendations.
TrnL pseudogene was amplified using the primers trnL-Z1-F and
trnL-Ig-2R at the final concentration of 0.2 wM, rbcL by the
primers rbcL-lg-1-F and rbcL-Z2-R at the final concentration of
0.15 uM (Table 2). PCR conditions were adjusted as follow, an
initial denaturation of 10 min at 95°C, 45 cycles of 15 s at 95°C,
and 1 min at 60°C, a complete denaturation of 10 s at 95°C, 1 min
at 60°C, and a continuous melt rising from 60 to 90°C with 0.3%
temperature increment every 15 s.

Each extract was run in duplicate, in the presence of the usual
positive, negative and process controls and in the presence of
reference materials used for HRM profiles analysis. One reference
material is required for each HRM profile. These reference
materials were previously prepared by extraction of identified
seeds using the described protocol and control of the species by
sequencing.

Considering the real-time amplification results, only the
samples providing cycle threshold (C;) values below 35 were
considered for HRM results analysis. Analysis of the melting
profiles was performed using High Resolution Melt Software v3.0
(Applied Biosystems).

RESULTS
DNA Extraction from Single Seeds

A simple methodology was developed to crush individual seeds
between two microscopy glass slides and extract total DNA from
this crushed material. For the 50 seed lots tested (Table 1),
extractions and amplifications were performed separately from
two single seeds. DNA concentration of the obtained extracts was
too low to be measured using a Nanovolume spectrophotometer.
For seed lots number 22, 29, 30, and 37, only one of the extracts
allowed a proper amplification. For lots number 7, 12, 15, 31, and
33, respectively, harvested in 2013, 2011, 2014, 1994, and 1987,
it was not possible to obtain any amplification. For these five last
seed lots, single seed extraction was performed on two more seeds
with the similar results. The failure of these seed batches was not
species-specific associated. The viability of the different seed lots
was not assessed.

Species ldentification
For the selected markers trnL and rbcL, respectively, 9 and
11 primer pairs were designed and evaluated for their ability

to provide a suitable assay. Results obtained with the best
primers are reported. HRM primers were first selected according
to their ability to differentiate the eight target species by
providing distinct HRM profiles. Discrimination between species
was possible because of sequence divergences (SNP and indel)
between the amplicons. Targeted species show five different
profiles when considering the high resolution melt curves of
the trnL PCR product (Figure 1A). O. cumana, O. cernua, and
O. foetida are easily identified using this HRM marker since
each of these species is the only one associated with a profile
(respectively, red, orange, and yellow). O. crenata, O. minor, and
O. hederae are associated with the blue profile. They can be then
differentiated from other species but not from each other. The
same goes for species P. ramosa and P. aegyptiaca associated
with the green profile. Among the eight species considered, the
rbcL primers amplify only O. crenata, O. minor, and O. hederae.
PCR products obtained from these three species show distinct
and identifiable HRM profiles (respectively, red, blue, and green;
Figure 1A). Considering the obtained results, an identification
key is proposed to facilitate the analysis of the results (Table 3).
The second primers selection criterion was the consistency
of the profiles between lots belonging to the same species.
Amplification and HRM were performed on single seed DNA
extracts obtained from the 37 (out of 50) available seed lots
belonging to the eight targeted species (Table 1). Figure 1B
presents the aspect of the obtained melting curve for the frnL and
rbcL PCR products. Considering raw (not shown) or derivated
melt curves, profiles obtained from samples of identical species
show some variability. However, for identical profiles, when
considering the aligned melt curves of both trnL and rbcL,
the highest relative standard deviation of measured melting
temperatures is 3.3%. The different profiles presented above are
consistently reproduced between samples of identical species.

Specificity of the Assay

Besides the ability of HRM primers to discriminate among weedy
broomrape species, both trnL and rbcL primer pairs amplified
single seed DNA extracts obtained from additional 13 seed lots
initially identified based on morphological characteristics of adult
plant as belonging to eight wild Orobanche species and three
wild Phelipanche species (Table 1; Figure 1C). Among the 11
wild species, nine showed original non-identified profiles (NI)
which could be easily distinguished from the profiles of the
weedy species. Samples 38 and 39, respectively, declared in

Frontiers in Plant Science | www.frontiersin.org

December 2016 | Volume 7 | Article 1838


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Rolland et al. Molecular Identification of a Broomrape Seed

Marker Derivate curves Aligned melting curves Difference Plot
- 4 . -
A - _Lﬁ,l _D : 5 A\

’\w

trnLL

. e S/

Tenpstae

xsmss8

rbcL

Tenpese) Tengstare)

trnLL

fe—

rbcL

Tenpease)

trnLL

rbcL

e e e b SR e m w m w o m w W e W e E T
Tenpeatue () TenpaatasC)

Tempetae(C

FIGURE 1 | High resolution melting (HRM) analysis of broomrape single seeds for the markers trnL and rbcL. (A) Ability of the assay to differentiate the
targeted species as different profiles (i) trnL marker: red = Orobanche cumana; orange = O. cernua; blue = O. crenata, O. minor, or O. hederae; green = ramosae
clade; yellow = O. foetida; (i) rocL marker: red = O. crenata; blue = O. minor; green = O. hederae. (B) Consistency of the profiles between samples of a same
species. (C) Specificity of the assay, curves in black correspond to the targeted species, while curves in gray correspond to other tested species. Derivate, aligned
melting curves, and difference plots correspond to three representations of the same data: aligned melting curves have been normalized by eliminating fluorescence
variance out of the melt regions; difference plots are achieved by subtracting the normalized fluorescence data of a user-defined genotype from that of each of the
other samples in the HRM analysis.

Frontiers in Plant Science | www.frontiersin.org 6 December 2016 | Volume 7 | Article 1838


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Rolland et al.

Molecular Identification of a Broomrape Seed

collection records as P. purpurea and O. flava were identified as
O. hederae by HRM analysis. Samples 49 and 50 initially declared
in collection records as P. mutelii show the same trnL profile than
P. ramosa and P. aegyptiaca.

To control the identification made by HRM, sequencing
of the pseudogenes trnL and rbcL was performed on all the
analyzed DNA extracts. Sequences were submitted to GenBank
and are available with accession numbers KX539159-KX539172.
Comparison of the HRM and sequencing interpretations is
presented in Table 1. Concerning the targeted species, results
show a 100% match between interpretations obtained using
both techniques. Furthermore, all the samples identified as
non-target by sequencing are designated as non-identifiable by
HRM. It is interesting to note that identifications performed by
sequencing are not always consistent with primary identification
based on visual criteria. For samples 38 and 39 visually
identified as O. purpurea and O. flava, HRM identifications as
O. hederae are consistent with sequencing results, suggesting
that the HRM identification is correct and that the initial
morphological identification failed. Sequencing confirmed the
visual identity of the samples 49 and 50 as P. mutelii. HRM
profile common to P. ramosa and P. aegyptiaca is therefore
not specific to these two species but also includes close
species.

Reproducibility of the Assay

The HRM profiles obtained with the trnL and rbcL primers can be
considered as complex. Furthermore, reading a melting profile is
performed by an analyst and is somehow subjective. To question
the transferability of the technique, 20 seed lots have been
analyzed by three analysts in two different laboratories (GEVES
and Terres Inovia). Each analyst performed the experiment on
one single seed of each seed lot. Obtained results are shown
in Table 4. For 7 out of the 20 seed lots tested, at least
one extraction did not allow the amplification. When DNA
was properly extracted and amplified, obtained results were in
accordance except in the cases of lots 13 and 16. In one case out
of three, profiles associated with these seed lots of ramosae had
the correct aspect but a different melting temperature and were
noted as non-identified. These differences of melting temperature

TABLE 3 | Correspondence between HRM profiles obtained using the trnL
and rbcL markers and broomrape species.

trnL rbcL Species
Red NA O. cumana
Orange NA O. cernua
Blue Red O. crenata
Blue Blue O. minor
Blue Green O. hederae
Green NA ramosae clade
Yellow NA O. foetida
NI NA or NI Unkn

NA NA or NI Unkn

NA, not amplified; NI, not identified; Unkn, unknown.

were consistently reproduced, however, sequencing of trnL PCR
products showed no difference of sequence between these extracts
and others. Excluding the failure of proper DNA extraction
on some seeds, the reproducibility of the assay (defined as the
percentage of agreements between two identifications performed
on a same seed lot) is 0of 90.9%.

DISCUSSION

Seed producers may face contaminations of their crop seed lots
by seeds of noxious broomrapes. In case of trading, they require
international seed lot certificates provided by official seed testing
stations. This is mainly carried out through analysis of specific
purity of seed lots. However, if this analysis can identify seed lots
containing broomrape seeds, it cannot allow a clear identification
of the parasite species. Indeed, broomrape species identification
can be achieved thanks to seed coat morphological features
observed under microscopy (Joel, 1987; Abu Sbaih and Jury,
1994), but this approach is extremely difficult even for trained
botanists and requires an extensive expertise usually not available
in most laboratories. Molecular markers such as ITS, ISSR, plastid
genes, or RAPD were developed for identification of broomrape
species, but all required large amount of seeds incompatible with
an isolation of few seeds from a specific purity analysis. Thus,
protocols allowing DNA extraction from broomrape single seed

TABLE 4 | Data of reproducibility generated by three analysts on 20 seed
lots, each analyst analyzing one single seed of each lot.

Seed lot Analyst Rep.
number
1 2 3
1 ramosae clade ramosae clade ramosae clade 3/3
2 ramosae clade ramosae clade ramosae clade 3/3
3 ramosae clade NI ramosae clade 1/3
4 ramosae clade ramosae clade ramosae clade 3/3
6 NI ramosae clade ramosae clade 1/3
1 ramosae clade ramosae clade ramosae clade 3/3
13 O. cumana NA O. cumana M
15 NA NA O. cumana 0/0
18 O. cernua NA O. cernua 11
20 O. foetida O. foetida O. foetida 3/3
21 O. foetida O. foetida O. foetida 3/3
24 O. minor O. minor O. minor 3/3
29 O. crenata O. crenata O. crenata 3/3
32 O. crenata O. crenata NA M
35 O. hederae O. hederae O. hederae 3/3
37 O. hederae NA O. hederae il
38 O. hederae O. hederae O. hederae 3/3
44 NI NI NI 3/3
46 NA NI NA 0/0
48 NI NI NA 1N
90.9%

NA, not amplified; NI, not identified; Rep, reproducibility defined as the percentage
of agreements between two identifications performed on a same seed lot (absence
of amplifications have been excluded of the calculation).
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were developed (Portnoy et al., 1997; Osterbauer and Rehms,
2002) and used with RAPD markers (Katzir et al., 1996). Seeds
of five different species could be identified using these methods:
P. aegyptiaca, P. ramosa, O. cernua, O. cumana, and O. crenata.

The protocol developed in this study is the first work
describing the application of HRM curve analysis for
differentiation of broomrape species. Compared to previous
technologies, the proposed protocol and markers allow to extend
the identification spectrum since it was able to differentiate
between eight species, the five above mentioned plus O. foetida,
O. hederae, and O. minor. The sequences of the root parasitic
plants used in this study present variation generating divergences
in the HRM patterns. Deletions, insertions, and several SNPs are
responsible for the differences in the observed melting curves
between the different species amplicons. The two plastid genes,
rbcL, and trnL, have been already used as HRM markers for
identification of plants (Madesis et al., 2012; Osathanunkul et al.,
2015).

By using the HRM technology and by targeting plastid
sequences, it was then possible to develop a simple, reliable, and
cost effective assay to identify the seven main weedy species of
broomrape potentially found in crop seed lots. In addition, it
allows discrimination between these weedy species and 12 species
lacking agronomic interest. The high level of divergence between
species in the targeted sequences provided more complex profiles
than for HRM assays targeting SNP (Toi and Dwyer, 2008) or
microsatellites (Mackay et al., 2008). However, in most cases,
DNA extracted from single seeds allowed a proper amplification
and profiles could be identified by the analyst by comparison with
the reference materials introduced in each experiment. On 45
amplified samples, the assay provided results perfectly matching
with sequencing. The technique was used by several analysts
in two laboratories using different HRM-capable real-time PCR
machine and visual analysis of the HRM profiles. In these
conditions, the technique shows a reproducibility of 90%. This
rate of reproducibility is higher than the one received with RAPD
markers, known to be weakly reproducible when employed in
different laboratories with different PCR apparatus (Jones et al.,
1997). The described assay will make then reliable identification
much easier for any diagnostic or research purpose. It is also a fast
close tube method not requiring post-PCR manipulation such as
DNA gel electrophoresis like in RAPD analysis.

However, the success of the developed assay depends
on the concentration and/or quality of the extracted DNA.
Indeed for some seed lots it was not possible to reach the
minimal concentration and/or quality from some tested seeds
or even from any of the tested seeds. HRM technique also
requires homogenous DNA extract compositions among samples
to compare. Composition may indeed impact the melting
temperature of the amplification products. By extracting DNA
from single seeds, extracts are relatively homogeneous. However,
during the evaluation of the reproducibility, some profiles
showed the expected melting profile but with a different melting

temperature. In a seed lot, heterogeneity of the seeds may
therefore occasionally be an issue for profiles comparison.

Using the identified plastid targets, it was not possible to
differentiate the species of the taxonomically difficult ramosa
aggregate (P. mutelii, P. ramosa, and P. aegyptiaca) referred to
as ramosae clade. Further development of the assay by adding a
third marker could provide the ability to differentiate species in
the ramosa aggregate. If a species identification is necessary after a
ramosae clade or a N1 result, the product obtained after the HRM
amplification and denaturation can be used for sequencing as any
regular PCR product.

The development of an assay able to identify broomrape
species from single seeds allows testing of seeds found in
commercial seed lots but also identification of mature plants
from the field. Broomrape seeds are indeed a material easy to
collect and transport, it can be stored at room temperature for
many years. For the identification of plants at early stages (before
the presence of seeds), the assay can be extended to vegetative
material.
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