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The genus Antirrhinum comprises about 28 species with a center of origin in the Iberian
Peninsula. They show an important diversity of growing niches. We have performed a
comprehensive analysis of scent profiles in eight wild species, Antirrhinum linkianum,
A. tortuosum, A. cirrigherum, A. latifolium, A. meonanthum, A. braun-blanquetii,
A. barrelieri, and A. graniticum. We used also two laboratory inbred lines A. majus,
165E and Sippe50. We identified 63 volatile organic compounds (VOCs) belonging
to phenylpropanoids, benzenoids, mono- and sesquiterpenes, nitrogen-containing
compounds, and aliphatic alcohols previously described in plants. Twenty-four VOCs
were produced at levels higher than 2% of total VOC emission, while other VOCs
were emitted in trace amounts. The absolute scent emission varied during flower
maturation and species. The lowest emitting was A. meonanthum while A. tortuosum
had the largest emissions. Species were clustered according to their scent profiles
and the resulting dendrogram matched the current species phylogeny. However, two
accessions, A. majus Sippe 50 and A. braun-blanquetii, showed development-specific
changes in their VOC composition, suggesting a precise control and fine tuning of scent
profiles. Cluster analysis of the different scent components failed to identify a specific
synthesis pathway, indicating a key role of scent profiles as blends. There is considerable
degree of chemodiversity in scent profiles in Antirrhinum. The specific developmental
stage plays an important role in scent quantitative emissions. The relative robustness of
the bouquets could be an adaptation to local pollinators.

Keywords: floral scent, flower development, anthesis, phylogeny, biodiversity, chemodiversity, Antirrhinum

INTRODUCTION

The interaction between plants and other organisms is thought to be mediated by a complex set
of traits among which the emission of chemical compounds plays a key role. The so-called plant
volatiles are one of the most diverse set of molecules. Plant volatile emission can be classified
according to the source of emission, i.e., leaves, flowers, and roots. And it can also be the result of
certain reactions such as defense against herbivores or parasites. The emission of scent by flowers
is a cue that helps to make floral sexual organs attractive to potential pollinators, but also works in
parasite deterrence (Schiestl, 2010). In most flowers, floral scent is emitted by petals and stamens
(Dudareva et al., 1996; Verdonk et al., 2003; Scalliet et al., 2006). Although over 1700 volatile
organic compounds (VOCs) are described in plants, the actual composition of floral scent is not
fully explored in most plant species (Knudsen et al., 2006).
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Petal and stamen development in Antirrhinum and many
other species is directly controlled by B function organ-identity
genes (Egea Gutierrez-Cortines and Davies, 2000; Causier et al.,
2010). The B function genes in Antirrhinum are the MADS-Box
genes DEFICIENS and GLOBOSA. Their expression is required
in a quantitative manner to attain fully developed petals and
stamens (Bey et al., 2004; Manchado-Rojo et al., 2012). Floral
scent emission is a late process starting shortly before anthesis in a
variety of species (Knudsen et al., 2006), but its quantitative levels
are regulated upstream by the B-function genes (Manchado-Rojo
et al., 2012). Scent production varies after anthesis showing an
increase in production till a point when sharp decreases are
caused by flower aging and/or pollination (Pichersky et al., 1994;
Ruiz-Ramon et al., 2014).

Antirrhinum, a genus native to the western Mediterranean
region, comprises a monophyletic group with approx. 28
species (Liberal et al., 2014), traditionally assigned to the three
morphological subsections or clades: Kicksiella, Antirrhinum, and
Streptosepalum (Rothmaler, 1956; Webb, 1971; Sutton, 1988).
The Antirrhinum flower has an occluded corolla (Vargas et al.,
2010; Guzmán et al., 2015). It is apparently specialized in bee
pollination as bees such as Rhodanthidium sticticum is the
main pollinator of A. microphyllum, (Torres et al., 2003), and
seven types of bees account for over 90% of the pollination
visits in Antirrhinum charidemi, Antirrhinum graniticum, and
Antirrhinum braun-blanquetii (Vargas et al., 2010). Despite the
diversity the composition of the Antirrhinum genus floral scent,
like that of many other plants, is basically unexplored and only
A. majus sp pseudomajus and A. striatum have been analyzed with
detail (Suchet et al., 2010).

In this work, we present a comprehensive analysis of floral
VOCs in eight wild Antirrhinum species: Antirrhinum linkianum,
A. tortuosum, A. cirrigherum, A. latifolium, A. meonanthum,
A. braun-blanquetii, A. barrelieri, and A. graniticum. We have
also used two laboratory inbred lines, A. majus 165E and Sippe50.
These lines have been used for genetic studies, development of an
Antirrhinum majus genetic map and for genetic transformation
(Schwarz-Sommer et al., 2003, 2010; Manchado-Rojo et al.,
2012, 2014). We identified at least 63 VOCs produced at
one stage after anthesis and before petal senescence. Each
species had a unique blend of VOCs, and tended to show a
robust profile except for two species. The scent profiles allowed
a cluster reconstruction that matched published phylogenies
based on molecular markers indicating a uniqueness of scent
signature for each species that may have implications for local
adaptation.

MATERIALS AND METHODS

Plant Material and Growth Conditions
We obtained eight wild species of Antirrhinum and two
laboratory inbred lines (Table 1). The wild species include
species of subsection Antirrhinum, series Majora: A. barrelieri,
A. cirrhigerum, A. graniticum, A. latifolium, and A. tortuosum
(Mateu-Andres and De Paco, 2005) as well as the two only
members of subsection Streptosepalum, A. braun-blanquetii and

TABLE 1 | Name and origin/supply of Antirrhinum species.

Species name Origin

Antirrhinum barrelieri Boreau Vendrell, Tarragona Province,
and Spain

Antirrhinum braun-blanquetii Rothm. Province of Oviedo, Picos de
Europa, and Spain

Antirrhinum meonanthum Hoffmanns and Link Penacova and Portugal

Antirrhinum latifolium Mill. Ville Franche, Pyrenees, and
France

Antirrhinum graniticum Rothm. Unknown

Antirrhinum. linkianum Supplied by Bot. Garden,
University of Coimbra, Portugal

Antirrhinum cirrhigerum Unknown, Spain

Antirrhinum tortuosum Unknown, Spain

Laboratory lines

Antirrhinum majus L. line 165E Our stocks

A. majus L. line Sippe 50 Supplied by IPK Gatersleben

A. meonanthum (Feng et al., 2009) (Figure 1). We also used
two laboratory inbred lines, A. majus Sippe50 isolated at the
beginning of the 20th century in Germany (Stubbe, 1966) and
A. majus 165E developed at the John Innes Centre (Harrison and
Carpenter, 1979; Sommer and Saedler, 1986). The geographical
distribution of the species surveyed includes the Pyrenees,
northern Spanish coast, Portugal, southern Spanish coast, and
northern Africa (Figure 1). Plants were grown under standard
greenhouse conditions using large pots of 3–5 l to increase
the number of flowers obtained (Weiss et al., 2016). Four
to five plants for each species and line were propagated and
flowers were sampled randomly from these plants for further
analysis.

VOC Collection
Flower samples were taken daily during six days after flower
opening and emitted volatiles were analyzed by dynamic
headspace analysis (Raguso and Pellmyr, 1998). For each
flower developmental stage, three randomly chosen, detached
flowers were placed in 5% sucrose solution in transparent
glass containers. Volatile sampling was performed over a
24-h period in a growth chamber (model E8; Conviron,
Asheville, NC, USA) with a photoperiod of 12:12 light: dark
conditions. Scent components were trapped with Porapak
Q-filled glass syringes in a closed-loop scent collection
system. Trapped volatiles were eluted from the adsorbent
with dichloromethane.

Gas-Chromatography Mass
Spectrometry
Trapped floral volatiles were analyzed by gas chromatography–
mass spectrometry (GC-MS) as described (Dudareva et al.,
2003). Data analysis and volatile identification was performed
with the MSD ChemStation (Agilent Technologies) software.
The compounds were identified by comparing mass spectra
and retention time (RT) data with those of authentic standards
for benzaldehyde, β-myrcene, 2-ethyl-1 hexanol, β-ocimene,
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FIGURE 1 | Origin of Antirhinum species used in the study. (A) Origin of seeds (filled circles) used in this study. For seeds of unknown origin, the area of
distribution according to Vargas et al. (2009) is indicated (empty circle). A. graniticum is widely spread over central Iberian Penisula and the Western coast area, but
absent in the North and East of the Iberian Peninsula (Vargas et al., 2010). (B) Flowers of the studied Antirrhinum species. A 25 cent USA-dollar is photographed for
scale: (A) A. majus line 165E, (B) A. majus line Sippe 50, (C) A. linkianum, (D) A. tortuosum, (E) A. cirrigherum, (F) A. latifolium, (G) A. meonanthum,
(H) A. braun-blanquetii, (I) A. barrelieri, and (J) A. graniticum.

acetophenone, methyl benzoate, linalool, and methyl cinnamate,
supplemented with information from the NIST11 spectral library.
The relative contribution of volatile compounds was calculated
based on the integrated area of particular peaks relative to
the total integrated peak area for the flower opening stages
I = day 1, II = day 3, and III = day 5. Total volatile amount
was calculated based on integrated peak area of a defined
amount of the internal standard naphthalene. Total amounts are
given as integrated area of peaks normalized to naphthalene/g
fresh weight (FW)−1 24 h−1. Supplementary Figure S1
shows one chromatogram of each species at stage III. The
different volatiles in percentages can be found Supplementary
Table S1.

Cluster Analysis and Principle
Component Analysis of Volatiles
For hierarchical cluster analysis, the relative amounts of the
24 most abundant, major volatile compounds were used. We
considered as major compounds those that accounted for equal or
more than 2% of total amounts in the different flowering stages of
the species or subspecies analyzed. The cluster analysis included
the volatile profiles of flower opening stages I, II, and III as
mentioned above. Clustering of species and developmental stages
was achieved using R version 2.13.1, with Pearson correlation
and average linkage serving as correlation and agglomeration
methods.

Principal component analysis (PCA) was performed with
absolute amounts of all VOCs (Table 2). Each sample collected
was included in this analysis. To satisfy the assumption of
linearity, absolute amounts were log10(n+1)-transformed prior
to PCA. PCA with varimax rotation was performed with
the prcomp command in the stats package in R version
2.13.1.

RESULTS

Phenotypic Space of Scent Emission
The emission of floral volatiles starts at late stages of petal
morphogenesis requiring fully developed petals and anthesis
(Manchado-Rojo et al., 2012; Muhlemann et al., 2012). We
investigated the production of floral scent over a time span of
six days after flower opening and identified a total of 63 based
on NIST 11. There were 63 that matched VOCs previously
identified in plants (Table 2). They belonged to the following
chemical categories: phenylpropanoids, benzenoids, mono- and
sesquiterpenes, nitrogen-containing compounds, and aliphatic
alcohols (Knudsen et al., 1993). Amongst the compounds
identified and found in a variety of plants and in Antirrhinum
were benzenoids such as vanillin, o-acetanisole, methyl salicylate,
anisole or cuminyl alcohol; isoprenes such as alpha pinene or
terpineol. Phenylpropanoids included cinnamyl formate; fatty
acid derivatives as aldehydes including octanal, decanal, nonanal
or alcohols such as octanol or as acids. Flowers also emitted
amines or nitrogen containing compounds such as methyl
nicotinate, indole or indolicine 1,3,5,7-cyclooctatetraene, a non-
classified compound.

We additionally found nine VOCs that had not been described
previously as emitted by plant tissues (Table 3). They could be
grouped into the classic set of benzenoids, phenylpropanoids, and
fatty acid derivatives VOCs.

From the large dataset presented, there were 24 major
compounds comprising more than 2% of the scent emission in
the different species (Figure 2 and Supplementary Figure S1).
Among these we found benzaldehyde, acetophenone, ocimene,
and 2-ethyl 1-hexanol in all the species analyzed, comprising
very different percentages of the scent profile. At the other
side of the spectrum, 1,4-dimethoxybenzene was present only in
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TABLE 2 | List of volatile organic compounds (VOCs) identified in Antirrhinum and known to be biosynthesised by plants.

Plant emitted volatiles CAS number Retention time (RT) % Probability

Benzenoid – Aldehydes

Benzeneacetaldehyde 122-78-1 10.925 90

Benzaldehyde 100-52-7 9.9076 94

Benzaldehyde, 3-ethyl- 34246-54-3 13.316 95

Vanillin 121-33-5 17.488 90

Benzaldehyde, 4-ethyl- 4748-78-1 13.311 90

3,5-Dimethoxybenzaldehyde 7311-34-4 18.077 98

Benzaldehyde, 4-methoxy- 123-11-5 15.016 94

Benzenoid – Ketones

Acetophenone 98-86-2 11.491 97

4-Acetylanisole 100-06-1 16.721 94

Ethanone, 1-(4-ethylphenyl)- 937-30-4 15.502 97

Benzenoid – Esters

Benzyl Benzoate 120-51-4 22.924 98

Methyl benzoate 93-58-3 11.995 94

Benzoic acid, 3,5-dimethoxy-, methyl ester 2150-37-0 20.246 98

Methyl salicylate 119-36-8 13.934 97

Benzoic acid, 4-methoxy-, methyl ester 121-98-2 17.081 81

Benzoic acid, 2-butoxy-, methyl ester 606-45-1 13.934 97

Benzenoid – Ethers

3,5-Dimethoxytoluene 4179-19-5 15.222 98

1,2,4-Trimethoxybenzene 135-77-3 16.973 94

Anisol 100-66-3 8.086 91

Benzene, 1,3,5-trimethoxy- 621-23-8 17.625 96

Benzenoids – Benzenes

Benzene, 1,3-diethyl- 141-93-5 1.033 97

Benzene, 1,4-diethyl- 105-05-5 11.176 97

Benzene, 1,2-diethyl- 135-01-3 11.291 96

p-Xylene 106-42-3 6.959 95

Ethylbenzene 100-41-4 6.776 94

Benzene, 1,2,3-trimethyl- 526-73-8 9.826 92

Benzene, 1,4-dimethoxy- 150-78-7 13.294 96

Benzene, 1,2-dimethoxy-4-(2-propenyl)- 93-15-2 17.505 98

Benzenoids – Alcohols

Benzyl Alcohol 100-51-6 10.679 95

3-Methoxy-5-methylphenol 3209-13-0 16.120 94

Cinnamyl alcohol 104-54-1 15.891 98

Benzenepropanol 122-97-4 14.547 98

Benzenemethanol, 4-methoxy- 105-13-5 15.502 95

Phenol, 4-(1,1-dimethylethyl)-2-methyl- 98-27-1 14.775 93

Phenol 108-95-2 9.540 74

Isoprenoids–Monoterpenes

Myrcene 123-35-3 9.786 96

Ocimene 3779-61-1 11.002 98

Neo-allo-ocimene 7216-56-0 12.618 96

Linalool 78-70-6 12.058 97

Limonene 138-86-3 10.581 99

α-Pinene 80-56-8 8.476 95

Terpineol 98-55-5 13.849 90

Isoprenoids–Sesquiterpenes

α-Farnesene 502-61-4 19.164 97

Nerolidol 7212-44-4 20.023 95

(Continued)
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TABLE 2 | Continued

Plant emitted volatiles CAS number Retention time (RT) % Probability

Phenylpropanoids – Alcohols

Eugenol 97-53-0 16.784 98

Phenylpropanoids – Esters

Methyl cinnamate 103-26-4 17.219 97

Cinnamyl formate 21040-45-9 16.692 98

Phenylpropanoids –Aldehydes

Cinnamaldehyde 104-55-2 15.308 98

Fatty acid derivatives – Aldehydes

Decanal 112-31-2 14.066 91

Nonanal 124-19-6 12.126 87

Hexanal, 2-ethyl- 123-05-7 8.951 81

Fatty acid derivatives – Ketones

2-Pentadecanone, 6,10,14-trimethyl- 502-69-2 23.833 99

5-Hepten-2-one, 6-methyl- Methylheptenone 110-93-0 9.677 94

γ-Hexenol 928-96-1 6.656 91

Fatty acid derivatives – Alcohols

1-Hexanol, 2-Ethyl, 104-76-7 10.576 90

Phenoxyethanol 122-99-6 14.346 95

Fatty acid derivatives – Acids

Dodecanoic acid 143-07-7 19.885 91

Amines and other nitrogen containing compounds

Indolizine 274-40-8 15.714 86

Indole 120-72-9 15.708 95

Methyl nicotinate 93-60-7 12.807 95

Benzyl nitrile 140-29-4 12.836 96

Diphenylamine 122-39-4 20.915 90

Non-classified

1,3,5,7-Cyclooctatetraene 629-20-9 7.474 70

Retention times are approximated and consistent between all the chromatograms analyzed. % Probability column indicates the existing chances of success in identifying
compounds for a given RT, according to the NIST11 database. Internal standard (Naphthalene, CAS no. 91-20-3) probability is over 95%.

A. braun-blanquetii, nerolidol was found in A. braun-blanquetii
and A. latifolium and 5,9-dodecadien-2-one, 6,10-dimethyl was
found in A. meonanthum and A. graniticum.

The complexity of the different suggested scent profiles in
terms of number of VOCs emitted varied greatly. The most
complex profile was exhibited by A. braun-blanquetii comprising
21 VOC compounds above 2% over at least one of the three
developmental stages analyzed (Figure 2 and Supplementary
Figure S1). In contrast there were five accessions with a much
simpler scent profile such as A. linkianum with 10 major VOCs
followed by A. cirrhigerum, A. majus Sippe50 and A. tortuosum
with 11 VOCs and A. majus 165E with 12.

In summary, the species analyzed appeared to show two
distinct suggested profiles as those with relative low scent
complexity lack irregular terpenes, fatty acid aldehydes and
ketones, and nitrogen containing compounds.

Changes in Total and Relative Emission
of VOCs during Flower Development
We analyzed the scent emission during a period of seven days.
Flowers of all species produced scent during the entire sampling
period. The average emission of scent during the period varied

between species (Figure 3).The lowest emitting species was
A. meonanthum while the species with larger levels of production
corresponded to A. latifolium followed by the two A. majus 165E
and Sippe50 inbred lines.

We analyzed the quantitative changes in emission of the
different compounds throughout development (Figure 4). The
two A. majus inbred lines used for many experiments in plant
development and the wild species A. latifolium and A. barrelieri
produced acetophenone as major volatile. They also showed
comparable levels of methyl benzoate and ocimene emission.
However, they differed in the emission of myrcene by A.
majus 165E and methyl cinnamate by A. majus S.50. The
profile of A. latifolium included ocimene, 3,5-dimethoxytoluene,
benzeneacetaldehyde, and myrcene, while A. barrelieri emitted
ocimene, cinnamyl alcohol, and myrcene.

There were three species, A. linkianum, A. tortuosum, and
A. braun-blanquetii that emitted ocimene as major volatile.
However, the rest of the volatiles were not in common as
A. linkianum produced methyl cinnamate, myrcene, and 2-
ethyl 1-hexanol. The scent profile of A. tortuosum included
myrcene, acetophenone, and linalool while A. braun-blanquetii
showed high levels of cinnamyl alcohol, 3,5-dimethoxytoluene,
and methyl benzoate.
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TABLE 3 | List of new VOCs identified in Antirrhinum and previously
unidentified in plants.

New volátiles CAS number RT Quality

Benzenoid – Ketones

Acetophenone, 2′-hydroxy- 118-93-4 13.311 97

Benzenoid – Esters

Benzenepropanoic acid, methyl ester 103-25-3 15.731 92

Benzenoids – Benzenes

Benzene, 1-(1,1-dimethylethyl)-4-methoxy- 5396-38-3 14.775 94

Benzene, 1-ethenyl-3-ethyl- 7525-62-4 11.766 96

Benzenoids – Alcohols

Phenol, p-tert-butyl- 98-54-4 15.645 97

Phenol, 2,6-dimethoxy-4-(2-propenyl)- 6627-88-9 20.606 97

Benzenethanol 60-12-8 12.338 93

Phenylpropanoids – Esters

Cinnamyl acetate 103-54-8 18.180 97

Fatty acid derivatives – Alkanes

Adamantane, 1,3-dimethyl- 702-79-4 12.378 90

Retention times are approximated and consistent between all the chromatograms
analyzed. % Probability column indicates the existing chances of success in
identifying compounds for a given RT, according to the NIST11 database. Internal
standard (Naphthalene, CAS no. 91-20-3) probability is over 95%.

Finally, three species showed a different VOC as major
compound. The major VOC in A. cirrhigerum was methyl
benzoate, and emitted acetophenone, 3,5-dimethoxytoluene

and ocimene. The scent profile of A. meonanthum was
complex as its debut was dominated by 2-ethyl-hexanol but
was taken over by benzene acetaldehyde. It also emitted
acetophenone, cinnamyl alcohol, benzaldehyde, nonanal, and the
nitrogen containing indole. The main component emitted by
A. graniticum was cinnamyl alcohol, methyl benzoate, benzyl
benzoate, benzaldehyde, and benzeneacetaldehyde.

Concerning the quantitative changes in emission during
flower maturation, the quantities varied and the variance was
high. This is probably due to temperature changes during flower
maturation. Thus a general pattern of emission cannot be found
for all the species.

Scent-Based Clustering of Antirrhinum
Species and Robustness of Scent
Profiles
To determine whether differences in scent emission between
species are greater than emission differences between
developmental stages within species, we collected volatile samples
for the developmental stages I–III. Suggested volatile profiles for
most of the species presented here, except A. majus line Sippe
50 and A. braun-blanquetii, clustered together for all flower
developmental stages (Figure 5), demonstrating that the profile
of the 24 major volatiles changed less between developmental
stages than between the species. In case of A. majus Sippe 50 and
A. braun-blanquetii, suggested scent profiles of different flower

FIGURE 2 | Heat map with major VOCs (above 2% of total volatiles present in chromatograms) emitted by different species of Antirrhinum. Colors
reflect the maximum level of emission (%) in stages I–III for each species. Key color emission: blue (0%), green (<5%), yellow (<20%), and red (>20%).
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FIGURE 3 | Average emission of VOCs in the different accessions. Quantities are total integrated area normalized to naphthalene/g 24 h−1. Error bars
correspond to standard error.

ages clustered in different branches, indicating variations in the
composition of fragrances during development. This highlights
that sampling several developmental stages is a critical factor if
the volatile profile is to be used for taxonomic interpretation.

The suggested volatile profiles of A. meonanthum and A.
braun-blanquetii, both belonging to subsection Streptosepalum,
build separate clusters from members of subsection Antirrhinum,
with the exception of A. graniticum, which clustered with
A. braun-blanquetii, separate from all other members of
subsection Antirrhinum.

Within subsection Antirrhinum, except for A. graniticum,
species branched into two main clusters. One of these two
branches contained A. linkianum and tortuosum. Within the
second major branch, A. majus and cirrigherum on one side and
A. barrilieri and latifolium on the other side showed a closer
relatedness.

Identification of Associated Odor
Descriptors by PCA
To identify scent compounds that contribute to the variation
in VOC profiles between species, we performed a PCA. We
extracted four components that account for 82% of the variance
in the data (Table 4). The first principal component, which
explains 58% of the variance observed in scent emission
between species, displays negative loadings for acetophenone and
ocimene. The two compounds with the highest correlation to
the second principal component were cinnamyl alcohol and 2-
ethyl-1-hexanol. The third principal component contrasted the
presence of cinnamyl alcohol with that of acetophenone, with a
positive loading for cinnamyl alcohol and a negative loading for
acetophenone. Lastly, the fourth principal component was highly

correlated to methyl benzoate and ocimene. These data reveal
that variance in volatile profiles between Antirrhinum species
is caused by differences in emission levels of VOCs originating
from different biosynthetic pathways, rather than by the presence
of VOCs derived from a single pathway within a species. This
observation suggests a selection for complex profiles rather than
for a specific pathway.

By plotting the principal component scores of each species
(Figure 6), we found that the scores for each species along the
first and second principal component (PC1 and PC2) axis most
display a considerable spread. A. braun-blanquetii and A. majus
Line Sippe 50, for example, have a large variation in scores
along PC1 and PC2, reflecting findings from the cluster analysis.
Indeed, developmental stages for these species did not cluster as
tightly as for other species.

DISCUSSION

In the present study, we have determined the phenotypic space
of scent profiles in eight wild species of Antirrhinum and two
laboratory inbred lines. The species used in the present study
are found in very distant regions of the Iberian Peninsula
and have very different ecological niches. Our data show that
the complexity of scent profiles in the Antirrhinum genus is
remarkable with at least 63 different compounds previously
identified, and an additional set of nine that may require
further studies to verify their presence in plants. The number
of independent major VOCs found is similar to most species
described. Species have been identified with as little as one
compound emitted by Nicotiana africana to 35 in N. bonariensis
during the night (Raguso et al., 2006). Other species such as
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FIGURE 4 | Changes in emission of selected VOCs after anthesis. Stages of development described as stage I, II, and III correspond to 1–2, 3–4, and 5–6
days after anthesis. Quantities are reflected as total peak integrated areas normalized to naphthalene/g 24 h−1. Error bars correspond to standard error. The VOCs
represented here have an emission above 5% of the total amount of emitted VOCs.

Petunia (Kondo et al., 2007) have a range of scent components
between 10 and 21, similar to the one found in the current study.
The diversity of compounds produced in Antirrhinum is large but
500 VOCs have been described in studies in roses demonstrating

the possibility of being a highly complex trait (Knudsen et al.,
2006).

The most common volatiles found in between 71 and 52%
of all plant families are, in decreasing order, limonene, ocimene,
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FIGURE 5 | Cluster analysis based on scent profiles of the different Antirrhinum species sampled at different flower developmental stages.

TABLE 4 | Principal component loadings for the four principal components explaining more than 80% of the variance.

Compound PC1 (58.32%) PC2 (10.90%) PC3 (7.20%) PC4 (5.89%)

Benzaldehyde −0.158 −0.245 −0.118 0.064

Benzeneacetaldehyde −0.113 −0.227 −0.156 0.079

Methyl benzoate −0.328 −0.150 0.089 −0.659

Cinnamaldehyde −0.043 −0.151 0.153 −0.062

Cinnamyl alcohol −0.226 −0.469 0.589 −0.081

Methyl cinnamate −0.111 −0.147 −0.170 0.109

Acetophenone −0.487 0.316 −0.395 −0.396

3,5-Dimethoxytoluene −0.271 −0.042 0.147 0.060

Indole −0.090 −0.284 −0.099 0.061

1-Hexanol, 2-ethyl- −0.191 −0.367 −0.381 0.214

Nonanal −0.059 −0.169 −0.176 0.063

a,β-Ocimene −0.537 0.277 0.235 0.423

β-Myrcene −0.310 0.252 0.034 0.187

α-Farnesene −0.061 0.003 −0.065 0.155

The variance explained by each component is indicated in parentheses. Only compounds with a loading ≥| 0.15| in at least one component are shown. Loadings with
highest correlation to individual components are in boldface.

myrcene, linalool alpha-pinene, benzaldehyde, ß-pinene, methyl
2-hydroxybenzoate also known as methyl salicylate, benzyl
alcohol, 2-phenyl ethanol, caryophyllene, and 6-methyl-5-
hepten-2-one (Knudsen et al., 2006). The compounds found in
most Antirrhinum species thus fall within the major VOCs found

in flowering plants. The main VOCs found in all the Antirrhinum
accessions analyzed were benzaldehyde, acetophenone ocimene
and the fatty acid derivative 2-ethyl 1-hexanol indicating a
common set of VOCs in the species analyzed. Highly ubiquitous
compound such as benzyl alcohol was clearly forming a separate
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FIGURE 6 | Principal component analysis (PCA) of Antirrhinum species based on emitted volatiles. The two axes represent principal components 1 and 2,
which explain 58.32% and 10.90% of the total variance, respectively.

group of accessions that either did or did not produce this specific
compound (Figure 2). The only common scent compound we
did not find was caryophyllene (Knudsen et al., 2006), and
others such as the commonly found limonene, or alpha and beta
pinene were detected only in trace amounts. Other compounds
found less often but still generally found in plants included
indole. Altogether the major VOCs found in Antirrhinum are
a good representation of the different biosynthetic pathways
found for scent VOCs in the plant kingdom. This is in sharp
contrast to well established models such as Arabidopsis that
produces sesquiterpenes as major VOCs (Tholl et al., 2005), or
Petunia producing mainly phenylpropanoids (Hoballah et al.,
2007; Bombarely et al., 2016).

The scent profile of flowers of a specific plant can change
in response to the physiological stage of the flower, including
flower age (Pichersky et al., 1994; Dudareva et al., 1998),
pollination status the circadian rhythm or temperature (Sagae
et al., 2008; Cna’ani et al., 2014). We found that all the
species analyzed except two, A. meonanthum and A. latifolium,
displayed an increase in emission followed by a decrease after
5–6 days after anthesis. Moreover, A. majus Sippe 50 and
A. graniticum also had a major VOC showing a trend increasing
towards the end of the flower lifespan. As the compounds
showing this trend were very diverse including acetophenone,
ocimene, 2-ethyl hexanol, indole, cinnamyl alcohol, and methyl
cinnamate, we cannot conclude that it is a single pathway
that is differentially regulated during flower aging. Our results
indicate that there must be a common mechanism of control
involved in the quantitative control of scent emission linked
to flower aging, and this mechanism is subject to changes as
found for individual components that differed in the emission
kinetics.

The diversity among the major compounds was strong
enough to allow a phylogenetic reconstruction. There are several
phylogenies described for the genus Antirrhinum, including
reconstructions based on chloroplast genes such as combined
psbA-trnH/trnT-trnL/ trnK-matK/trnS-trnG sequences (Carrio
et al., 2010), trnS-trnG/trnK-matK (Liberal et al., 2014) statistical
parsimony networks of plastid haplotypes trnS-trnG and trnK-
matK (Vargas et al., 2009), the nuclear CYCLOIDEA gene (Gübitz
et al., 2003), and AFLP nuclear markers (Wilson and Hudson,
2011). All the aforementioned studies show A. meonanthum and
A. braun-blanquetii are on a single clade while the rest of the
species analyzed in the current study cluster together. Our data,
show clustering of A. menonanthum and A. braun-blanquetii,
while the other species form a different clade. Thus we can
conclude that the complex scent profiles and both chloroplast and
nuclear markers show a similar separation. A current hypothesis
is that a multilocus under selection pressure maybe responsible
for the complex phylogeny of Antirrhinum (Wilson and Hudson,
2011). Indeed the major local pollinators have been analyzed for
three different Antirrhinum species and they are different (Vargas
et al., 2010). Amongst the species studied, two are present in our
work, i.e., A. braun-blanquetii and A. graniticum. However, we
do not have evidence about a co-evolution or selection of the
different scent profiles found in the different species and local
pollinators, and they could be the result of a combination of
selection and genetic drift. Variation between the different species
is not based on single pathways but appears to occur at the aroma
level, i.e., at the level of combination of components. As the levels
of monoterpenes in A. meonanthum and A. graniticum are nearly
absent, it remains to be determined if these changes are the result
of single mutations affecting regulatory elements or key enzymes
in the biosynthesis pathway.
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The number and type of VOCs found in the Antirrhinum
species analyzed indicated that there are several biosynthetic
pathways that in parallel give rise to the scent blends identified.
An important question raised is if the different profiles
identified are the result of differences in biosynthetic pathways
or rather result from the combination of components. As
compounds belonging to a single pathway maybe correlated
they would obscure statistics. Our data show that this is not
the case. The first two compounds accounting for 58% of the
variance correspond to the benzenoid acetophenone and the
terpenoid ocimene, indicating that the major compounds do
not belong to single pathways. This was corroborated with
the other compounds that showed significant effects shared
by cinnamyl alcohol, a benzenoid and 1-hexanol-2-ethyl, a
fatty acid derivative. Altogether the PCA analysis indicates
that the different scent profiles identified are not the result
of changes in regulatory pathways or changes in one specific
type of scent compound, suggesting a scent structure based
on blends in Antirrhinum. This is not always the case as
scent profiles with major components belonging to distinct
pathways have been identified (Majetic et al., 2007). Our
results do not exclude the possibility of finding other species
where changes in regulatory genes or key enzymes will cause
changes in complete VOC biosynthesis pathways. Indeed the
only Antirrhinum wild species described so far A. majus. Ssp
pseudomajus and A. majus ssp striatum differ in the emission
of three benzenoids (Suchet et al., 2010), indicating a complex
scenario in terms of scent profiles and differences between
species.

Our data show that in general the Antirrhinum genus tends
to have a robust scent profile. The fact that A. braun-blanquetii
and A. majus Sippe 50 display modified scent profiles with aging
indicates a genetic component establishing the complete scent
profile. In this case it is not the effect of a single master activator as
scent was produced by both species. As a pathway of regulatory

genes plays a key role in control of scent production in Petunia
(Klahre et al., 2011; Van Moerkercke et al., 2011; Spitzer-Rimon
et al., 2012), activation of floral scent production in Antirrhinum
at anthesis may be controlled by several non-redundant genes.
Our results also suggest that the use of scent profiles for
phylogenetic analysis may require sampling at different ages or
developmental stages in order to define profiles that may or may
not resolve distances. The richness of volatiles and the marked
differences between the different species open the possibility to
study the genetic structure of scent as a trait, and its use in
evolutionary studies. The robustness of scent profiles may be seen
as a signature and it may help in creating fidelity to pollinators.
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