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The combined availability of whole genome sequences and genome editing tools is
set to revolutionize the field of fruit biotechnology by enabling the introduction of
targeted genetic changes with unprecedented control and accuracy, both to explore
emergent phenotypes and to introduce new functionalities. Although plasmid-mediated
delivery of genome editing components to plant cells is very efficient, it also presents
some drawbacks, such as possible random integration of plasmid sequences in the
host genome. Additionally, it may well be intercepted by current process-based GMO
regulations, complicating the path to commercialization of improved varieties. Here,
we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the
protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit
crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene
in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-
2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore,
efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized
for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate
was analyzed using targeted deep sequencing. Our results demonstrate that direct
delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing
and paves the way to the generation of DNA-free genome edited grapevine and apple
plants.

Keywords: genome editing, non-GMO, DNA-free, CRISPR/Cas9, apple, grapevine

INTRODUCTION

Grape and apple fruit crop plants are a major source of fiber, nutrients, and antioxidants, all
essential for a healthy diet. These crops play a key role in the economy of many developed
and developing countries and considerable efforts are being made to improve commercial traits
using both conventional breeding and genetic engineering. However, growing social distrust
in genetically modified (GM) crops in many countries has resulted in the adoption of very
stringent and costly regulations disciplining the authorization of these crops, with the result
that they have become very difficult or impossible to commercialize successfully (Sprink et al.,
2016). Although genetic transformation of grape and apple crops has been used for the past
two decades to enhance primarily biotic and abiotic tolerance, there are only a few examples of
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field evaluation or commercialization of transgenic plants
worldwide (Kanchiswamy et al., 2015). A transition is needed
toward more efficient and productive use of available genome
sequences to meet growing demands for sustainable and safe
intensification of food production. Here we explore the possibility
of adopting next-generation plasmid-independent CRISPR/Cas9
genome editing approaches to develop improved grape and apple
varieties that will probably avoid current GM regulations, and
thus broaden the utility of this technology, with greater global
acceptance levels. US Department of Agriculture (USDA) does
not impose any GMO regulations to the plants with targeted
mutagenesis generated by self-repair mechanisms, if they are
free from Agrobacterium or any transgenic or foreign genetic
materials; consequently, we assume there is high probability
that CRISPR/Cas9 RNPs could be exempted from current
GMO regulations (Waltz, 2012; Ledford, 2013; Jones, 2015).
Nevertheless, the EU is uncertain to approve them and has
yet to provide information on whether targeted mutation made
by CRISPR/Cas9 or CRISPR/Cas9 RNPs fall outside regulatory
criteria (Waltz, 2012; Jones, 2015).

CRISPR/Cas9 editing tools are efficiently exploited for gene
mutation, repression, activation and epigenome editing in several
model and crop plants, such as Arabidopsis, tobacco, rice,
sorghum, maize, wheat, poplar, tomato, soya bean, petunia,
citrus and recently grape and apple (Nishitani et al., 2016; Ren
et al,, 2016; Song et al., 2016). Meanwhile CRISPR/Cas9 RNPs
DNA-free genome editing tools are successfully demonstrated in
Arabidopsis, tobacco, lettuce, rice, petunia, and recently in wheat
(Woo et al.,, 2015; Subburaj et al., 2016; Zhang et al., 2016).

To date, CRISPR/Cas9 RNPs editing tools have not been
applied to genetic modification of grape and apple crops. Here,
we demonstrate adoption of next-generation CRISPR/Cas9 RNPs
technology for these fruit species to establish an efficient DNA-
free method for the site-directed mutagenesis system. In the
grapevine, PM (Gadoury et al., 2012; Pessina et al., 2016) is
caused by the destructive fungal pathogen Erysiphe necator, an
obligate biotroph infecting all green tissues and berries, resulting
in drastic losses in yield and berry quality. Currently PM can be
effectively controlled by frequent applications of fungicides in the
field. However, the rapid emergence of new fungal strains and
the hazardous effect of fungicides on the environment, combined
with additional costs to growers (which can reach up to 20% of
total production costs), demand the development of sustainable
alternative strategies. Recently, it has been demonstrated that
RNAi-mediated silencing of the susceptible gene (S-gene) MLO-7
significantly increases resistance to PM in the grapevine (Pessina
et al, 2016). Here we targeted MLO-7 for mutagenesis in order
to increase resistance to PM in commercially important cultivar
such as Chardonnay.

The enterobacterial phytopathogen Erwinia amylovora causes
fire blight, an invasive disease that threatens the apple and
a wide range of commercial and ornamental Rosaceae host
plants. Although, many studies have identified candidate genes
as suitable targets for increasing fire blight resistance via genetic
engineering, currently no resistant cultivars are commercially
available, due to the social and regulatory hurdles associated with
GMO plants (Singh et al., 2006). Here we selected important

fruit producing apple cultivar Golden delicious to target DIPM-
1, DIPM-2, and DIPM-4, in order to increase resistance to fire
blight disease (Meng et al., 2006). DIPM sequence structures
are closely aligned with leucine-rich repeat receptor-like kinase
receptors from several organisms, and furthermore DIPMs show
direct physical interaction with the disease-specific (dsp) gene
of Erwinia amylovora, which may act as a susceptible factor.
Mutagenesis of DIPM-1, 2, and 4 could provide apple cultivars
resistant to fire blight disease.

We successfully show direct delivery of CRISPR/Cas9 RNPs
to the grape and apple protoplast and efficient mutation of the
targeted candidate genes. Targeted gene mutation, such as indel
(insertion or deletion), was observed in 2 out of 2 specific sites
of MLO-7 in grapevine cultivars and single specific sites of each
DIPM-1, 2, and 4 in apple cultivars.

MATERIALS AND METHODS

Grapevine Protoplast Preparation

Grapevine protoplast was isolated from 15 to 20 days old
embryogenic calli and 15-20 days old in vitro micro propagated
young and healthy leaves. Embryogenic calli or young and
healthy leaves (10-15) were used for protoplast isolation and
transformation. These plant materials were immersed in cell-
wall digestion enzyme solution mix containing macerozyme R-10
(0.1-0.5%) and cellulase R-10 (1-2%) in 20 mM MES, 0.5 M
mannitol, 20 mM KCL, and 10 mM CaCl,. Vacuum infiltration
of plant materials took place with cell-wall digestion enzyme for
20 mins before incubating them at room temperature in a rotary
shaker at 40 rpm for 4 h (embryogenic calli) or overnight (leaves).
After digestion, protoplasts were filtered through Nylon mesh
(75 wM), with the addition of 1:1 protoplast enzyme solution
and W5 washing solution (5 mM glucose, 2 mM MES (pH
5.7), 154 mM NaCl, 125 mM CaCl,, and 5mM KClI), harvesting
the protoplast by centrifugation at 100 x g for 5 mins. The
supernatant was discarded and the protoplast re-suspended in
5 ml of W5 solution. A wide mouthed or point cut pipette tip
was used to slowly transfer the protoplast to 5 ml of sucrose
solution (21%), then centrifuged at 50 x g for 5 mins. A Pasteur
pipette was used to suck the interface protoplast layer (viable and
healthy protoplast), then re-suspended in 25 ml of W5 solution
and incubated at 4°C for 1 h. This was centrifuged at 50 x g
for 5 mins, the supernatant discarded and the protoplasts re-
suspended in MMG solution (0.5 M mannitol, 4 mM MES (pH
5.7) and 15 mM MgCl,). The protoplast was counted using a
hemocytometer and 2 x 10° cells used for each CRISPR RNPs
transformation. At least two biological replications and three
technical replication sets were used to optimize and measure
enzyme concentration and protoplast yield.

Apple Protoplast Preparation

Apple protoplast was isolated from 20 to 25 days old in vitro
micro propagated young and healthy leaves (10-15). The
protocol for apple protoplast preparation was similar to that for
the grapevine, except for the addition of hemicellulase to the
cell-wall digestion enzyme solution (1-2%). The viability and
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density of grape and apple protoplast were determined using
a haemocytometer, by staining the protoplast with fluorescein
diactetate (FDA) as described elsewhere (Lei et al., 2015). At least
two biological replications and three technical replication sets
were used to optimize and measure enzyme concentration and
protoplast yield.

In vitro sgRNA Cleavage Assay

Commercially available ready to use recombinant Cas9 protein
(160 kDa) and sgRNAs were purchased from ToolGen, Inc.
(Seoul, Republic of Korea). The sgRNAs were designed for
target-specific sites which have higher out-of-frame scores, to
achieve maximum knock out efficiency in the MLO-7 coding
regions of the grapevine and the DIPMI, DIPM 2 and 4 of
the apple and highly efficient sgRNAs are selected via CRISPR
RGEN Tools website' (Bae et al., 2014; Figure 1; Table 1). For
assessment of activity of CRISPR/Cas9 system, in vitro cleavage
assay was performed as described elsewhere (Cho et al., 2013).
Corresponding target sites were amplified by specific primer sets
(Table 2), amplified PCR product (300 ng) is incubated for 60 min
at 37°C with Cas9 protein (25 nM) and sgRNA (25 nM) in 10 pl
NEB 3 buffer (1x). Reactions were stopped with 6 x stop solution
containing 30% glycerol, 1.2% SDS, and100 mM EDTA. Products
were resolved with 1% agarose gel electrophoresis and visualized
with EtBr staining (Figure 3). Purified recombinant Cas9 protein
and sgRNA were used in a ratio of 1:3, 3:1, and 1:1 (in png)
to optimize the highest mutation efficiency during protoplast
transformation. We used same amount of Cas9 protein for 1:3

Uhttp://rgenome.net/

and 1:1 conditions and three times more Cas9 protein for 3:1
condition.

Protoplast Transformation with CRISPR
RNPs

In order to optimize efficient targeted mutagenesis of grapevine
MLO-7 and the DIPM-1, 2, and 4 of apple gene loci, 2 x 10°
re-suspended protoplasts were transformed with Cas9 protein
and sgRNA in a ratio of 1:3, 3:1, and 1:1 (Woo et al, 2015;
Subburaj et al., 2016). Protoplast volume 200 pl (2 x 10° cells)
and RNPs for example 3:1 is Cas9 90 pg (stock 10 pg/pl)
sgRNA 30 pg (stock 10 pg/pl) is used for transformation. Prior
to the transformation, Cas9 and sgRNA were pre-mixed and
incubated at room temperature for 10 mins. The protoplast,
Cas9 and sgRNA mix were mixed and an equal volume of PEG
4000 added, gently but immediately mixing the tube before
aggregation occurred and incubating it for 20 mins at room
temperature. Four hundred microliter or an equal volume of W5
solution were added, mixed and incubated at room temperature
for further 10 mins. An additional 800 wl were added or the
volume of W5 solution doubled, mixed and incubated at room
temperature for further 10 mins. This was centrifuged at 50 x g
for 5 mins, the supernatant discarded and 1 ml of W5 solution
added, followed by incubation at room temperature in the dark
overnight. The lower sediments were collected for genomic
DNA isolation. Three biological replications are performed for
protoplast transformation and isolated genomic DNA from
protoplast transfected cells are further used for targeted deep
sequencing.
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FIGURE 1 | (A) Schematic diagram of the nucleotide sequence of the MLO-7 gene locus of the grapevine with sgRNA target sites. (B) Schematic diagram of the
nucleotide sequence of DIPM 1. (C) Schematic diagram of the nucleotide sequence of DIPM 2. (D) Schematic diagram of the nucleotide sequence of DIPM 4.
Boxes with label under the 5’-3" gray line indicate the position of each sgRNAs.
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TABLE 1 | List of sgRNAs designed to target grape MLO-7 gene locus and
apple DIPM-1, 2, and 4 gene loci.

TABLE 2 | List of primers used for in vitro cleavage assay and targeted
deep sequencing.

Target sgRNA Sequence (5'-3') Target Sequence (5'-3')
MLO-7 RG1 TATGCATTTCTGAGAGTGTTGGG MLO-7 in vitro F; GCAGTGGTTAAAAGGCAGAC
RG2 CACTTGGCACCCTTGTAAAAAGG cleavage assay R; CTTGGTTCTTCCCAAAGCC
RG3 CCAAAGATTTTAAGAACACATGC MLO-7 deep F; CCAAAGGTCTAACCCTTTTC
RG4 T;AAG AACACATGCTCTGAGG sequencing R; GGGAAACACCTTTTTCAGTC
DIPM-1 RG1 CGTCGTTTCAGCTCAACCCGGGG ~— DIPM-1 i vitro For RGT - RC6
RG2 COATTGGCTGGTGAGGTAATTGG cleavage assay F; TTTTAATCTTCAACGTCTCC
— R; TTGCCTGAAAATAAGCCCTC
RG3 AAGCACAGATCCCAGAACGGAGG For RG7 and RG8
RG4 GATCCCAGAACGGAGGGAGGTGG F; TAGTAACCAAAGGGAAGTGG
RG5 CGAGAGCAATTCCAAGGAGCGGG R; TTCAACACTTGCCACATTGC
RG6 TAGCATTGGGACTACGTACAAGG DIPM-1 deep F; GTCTTATGCCTCTTTGCGG
RG7 CATGGATGAGGGACGACGATTGG sequencing R; CTCCAGACTGTATAGCTGAG
R8s TACTGGACTTGOGATOTOREEG SZMézeinaZZ;O IEOEF2§1ACAAATAACCGAGTCTC
v ;
DIPM-2 RG1 ACGGAAGAGAGAGGTTGCGGAGG 9 Y R: ACTATGATGGCGATTAGAGC
RG2 CAGTTTCTAGAAGCTTCGAGCGG For RG2 to RG5
RG3 CTCGTACCCGGGTTGGGCAGAGG F: CAAGGGTACATCAAACGACC
RG4 GGTCGGATGGTGTTCTTCGAAGG R: AAATTTACCGTGGAGAACCC
RG5 CCCGCCTTTCCCCAGCATCTCGG For RG6
RG6 CACGGGGAAGTGTCCCTCCGTIGG F; ACATCCTCTTAGACAAGACC
DIPM-4 RGT AGCGACTACGCGGTCTTTATIGG Ri AGCACAAACGAAAACGAGAG
RG2 GAACAAGCCGGCAAGGGGCTCGG DIPM-2 deep F; CGCTGCTCCTGTACTGCTAC
RG3 ACGATCGCAACGATTGCGCCGGG ;TSE;T‘”Q E; G;ngGCACCGCCﬁGTA
-4 in vitro or
RG4 AAGGTGTACGCEAACAGCGEEEE cleavage assay F; AGAAAAACAAGCCTTTCGCG
RG5 ACGGTACAAACGCGACGGACAGG R: TCCGTACAATTCGTTGTTGG
RG6 GGGGAAAGGAAGCCTAGGGACGG For RG2 to RG6
RG7 GCTGTATTCCGCATGAATCCTGG F; CACCAACAACGAATTGTACGG

Sequences of sgRNA in bold indicate selected sgRNAs used in the study for
transformation. Underiined nucleotides indicate PAM motifs in sgRNA sequences.

Targeted Deep Sequencing

Sequence at the sgRNA target sites were analyzed as described
elsewhere (Woo et al,, 2015). Corresponding target sites were
PCR amplified using the primers listed in Table 2. Amplifications
were performed using Phusion polymerase. Amplified PCR
products were sequenced using the Illumina MiSeq platform
(Quail et al, 2012). Mutations induced by CRISPR RNPs
were calculated based on the indels around the CRISPR RNPs
cleavage sites (3 bp upstream of PAM) using CRISPR RGEN
Tools software®. Three biological replications are performed for
targeted deep sequencing. Average of three biological replications
are used for statistical analysis to determine percentage of indel
ratio.

RESULTS

Protoplast Isolation in Grapevine and

Apple Cultivar

In the grapevine, embryogenic calli provided a higher yield of
up to 3.6 x 10° with 90% viability when using 1.5% cellulase
R-10 and 0.4% macerozyme R-10, with 20 min of vacuum
infiltration followed by 3 h incubation with gentle shaking

2http:/ /rgenome.net/

R; AGTAATAAGCACTCAGCCTC
For RG7

F; TGCAGTTTGAGTCTAATGCG
R; CCTCAATGTTCTTGTACCTC
F; GATGTAATTAAGGGAATCGG
R; CAATCTTGCAATGGCGTGAA

DIPM-4 deep
sequencing

(Table 3). Conversely, leaves gave a lower protoplast yield and
lower viability, with incubation periods of up to 24 h. In
the apple, cell wall digestion with 1.5% cellulase R-10, 0.4%
macerozyme R-10, and 1% hemicellulase provided a maximum
yield of 1.0 x 10° with 80% viability, with 20 min of vacuum
infiltration followed by 24 h incubation with gentle shaking,
compared to the other ranges of various cell wall digesting
enzyme concentrations (Table 1). In the apple, we selected leaves
and avoided callus explants, due to their hard structure and lower
protoplast yield.

Targeted Mutagenesis of the Grapevine
and the Apple Using CRISPR/Cas9 RNPs

To identify suitable sgRNAs for targeted mutagenesis, we
designed several sgRNAs for each gene used in the present study
and then cleavage frequencies of each sgRNAs were assessed
using an in vitro digestion assay. All the sgRNAs used in this study
were designed to pair with their corresponding 20 nucleotide
target sites in MLO-7, DIPM-1, 2 and 4 gene loci and to assist
Cas9 to create site-specific double strand breaks (DSBs) at 3 bp
upstream of the PAM motifs (Table 1). As shown in Figure 2,
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sgRNAs in each gene showing the highest cleavage rate were
selected for further study. To target the grapevine MLO-7 gene
locus, we used sgRNA RG4 (Figure 2). Similarly, in the apple
we used three specific sgRNAs for the DIPM-1 (RG2), DIPM-2
(RG4), and DIPM-4 (RG?7) loci (Figure 2), respectively.

Targeted Deep Sequencing to Analyze
the Mutation Efficiency of CRISPR/Cas9
RNPs

In order to detect the mutation efficiency and mutation patterns
at different sites in the grape gene locus MLO-7 and the
apple gene loci DIPM-1, 2, and 4, we employed targeted deep
sequencing of genomic DNA obtained from each protoplast
pool during PCR amplification. Total genomic DNA was
extracted from transformed protoplast, while CRISPR/Cas9
target sites in MLO-7, DIPM-1, 2, and 4 were amplified using
site-specific primers (Table 2). PCR amplified products were
subjected to targeted deep sequencing. Targeted deep sequencing
results showed that there were various number indel mutation
frequencies (%) for each CRISPR sgRNA sample (Table 4).

As shown in Table 4, various mutation patterns including
indels were detected in all the different sgRNA RNPs complex
transformed protoplast samples, whereas no mutations were
detected in sgRNA-only or Cas9-only transformed protoplast
samples. These results demonstrate direct delivery of CRISPR
RNPs to grapevine and apple protoplast, and indel mutagenesis
efficiency of 0.1% and 0.5 to 6.9% for targeted distinct sites of
endogenous MLO-7 and DIPM-1, 2, and 4 via DSBs, respectively.

DISCUSSION

Plant protoplasts constitute a dynamic and versatile system for
CRISPR/cas9 genome editing in plants and has been widely
adopted in several crop species for functional analysis of the traits
concerned, cellular localization, and studies of multiple signaling
cascades (Shan et al., 2013; Xie and Yang, 2013; Zhao et al., 2016).
CRISPR/Cas9 or other genome editing tools mediated protoplast
transfection system has been successfully adopted in Arabidopsis,
rice, wheat, maize, tobacco, lettuce, and petunia (Jiang et al,
2013; Li et al., 2013; Shan et al,, 2013; Wang et al,, 2014; Gao
et al., 2015; Woo et al., 2015; Subburaj et al., 2016), however,

a similar system has not been developed for the grapevine and
apple. In this study, we isolated protoplast from embryogenic
calli and leaves of grapevine and apple cultivar in order to
standardize an efficient protocol for the transient expression
system of CRISPR/Cas9 RNPs. Protoplast isolation, transfection
and transient gene expression system in grape and apple has
been little explored and most of the available methods have
not been updated for two decades (Doughty and Power, 1988;
Patat-Ochatt et al., 1993; Patat-Ochatt, 1994; Reustle et al., 1995;
Zhu et al., 1997; Saito and Suzuki, 1999; Fontes et al., 2010).
Protoplast viability, yield, and efficient transfection depend on
various factors, such as the concentration of cell wall digestion
enzymes, buffer conditions, the osmotic status of protoplasts, the
incubation period, and the type of explants used for protoplast
isolation. In the current study, all these variables were updated
and optimized in order to achieve a better yield. This is the
first report of successful demonstration of CRISPR/Cas9 RNPs
mediated protoplast transformation in grapevine and apple
cultivars. Our method for transient expression of genome editing
tools in the protoplast to target the gene of interest with specificity
and higher efficiency should help grapevine and apple scientists
to analyze the traits concerned in the host plant within a day
or two. Furthermore, future work on regeneration of genome
edited protoplast will provide an opportunity to develop DNA-
free genome edited grapevine and apple fruit crop plants. One
such example is regeneration of apple plants from meristem
derived callus protoplast (Saito and Suzuki, 1999).

CRISPR/Cas9 is easy to prepare, scalable and affordable
compared to ZFNs and TALENs. However, the broader
application of plasmid mediated CRISPR/Cas9 to life sciences,
biotechnology and medicine is limited by off-target effects,
unwanted integration of plasmid vectors into the genome and
possible GMO regulations (Hendel et al,, 2015; Zhang et al,
2015). In order to overcome these limitations, we delivered
CRISPR/Cas9 RNPs rather than plasmids directly into the
protoplast cells and showed that RNPs enable efficient genome
editing, while avoiding unwanted integration of plasmid DNA in
the host genome, similar to other recent studies done in human,
animal and plant cells (Figure 3; Kim et al., 2014; Lee et al., 2014;
Liu etal., 2015; Woo et al., 2015; Subburaj et al., 2016).

Recently several groups have demonstrated that CRISPR/Cas9
can induce unwanted mutations in off-target sites, differing from

TABLE 3 | Grape and apple protoplast yield with various concentrations of the cell-wall digestion enzymes from leaves (10—15 healthy leaves) and

embryogenic calli (100 mg).

Plant materials Cultivar Enzyme concentration Protoplast yield
Grapevine cultivar

Leaves Chardonnay Macerozyme R10-0.1%, Cellulase R10-1% 2 x 108 protoplast per ml
Leaves Chardonnay Macerozyme R10-0.15%, Cellulase R10 - 1% 2 x 10° protoplast per ml
Embryogenic calli Chardonnay Macerozyme R10-0.1%, Cellulase R10-1% 4 x 10° protoplast per ml
Embryogenic calli Chardonnay Macerozyme R10-0.15%, Cellulase R10-1% 3 x 10° protoplast per ml

Apple cultivar
Leaves Golden delicious

Leaves Golden delicious

Macerozyme R10-0.15%, Cellulase R10-1%, Hemicellulase—1%
Macerozyme R10-0.15%, Cellulase R10-1%, Hemicellulase-1.5 %

1.8 x 10° protoplast per ml
1.0 x 10° protoplast per ml

At least two biological replications and three technical replication sets were used to optimize and measure enzyme concentration and protoplast yield.
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FIGURE 2 | CRISPR/Cas9 RNPs in vitro digestion assay results of each sgRNAs used in the study. (A) /n vitro digestion of targeted loci at MLO-7 gene.
(B) /n vitro digestion of targeted locus in the DIPM-2 gene. (C) /n vitro digestion of targeted locus in the DIPM-2 gene. (D) In vitro digestion of targeted locus in the
DIPM-4 gene. In each group, non-treated (SgRNA: x; Cas9: x) or Cas9-only (sgRNA: x; Cas9: 0) samples were used as a control. After treatment with Cas9 with
targeted sgRNA (RG1 to RG8 in each group) amplified target genomic DNA was digested and smaller bands were detected in gels after electrophoresis. Groups
showing an intense band after digestion (indicated with black boxes) were selected and used for further experiments.
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on-target sites by up to 5 nt, leading to questions about their
specificity (Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013;
Tan et al., 2015). We and others have proposed various strategies
to improve the on-target specificity of CRISPR/Cas9 (Koo et al.,
2015; Kanchiswamy et al.,, 2016). Synthesis of unique sgRNA
(Cho etal., 2014; Fu et al., 2014; Sung et al., 2014), Cas9 nickases
and web based computer programs to identify unique target

sites (Mali et al., 2013; Ran et al., 2013; Bae et al., 2014) and
CRISPR/Cas9 RNPs (Woo et al,, 2015). In order to facilitate
the highest site-specific mutation frequency in grape and apple
protoplast, we titrated the ratio of Cas9 and sgRNAs, in a similar
way to our previous studies (Hsu et al., 2013; Woo et al., 2015).
In this study, we employed three different Cas9: sgRNA ratios,
i.e., 3:1, 1:1, and 1:3, for protoplast PEG mediated transformation
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TABLE 4 | Mutation rate assay by targeted deep sequencing in MLO-7, DIPM 1, 2, and 4.

Number of Reads
(more than minimum

Target gene Sample name

Number of insertion mutations

Indel ratio
(average, %)

Number of deletion mutations

frequency)
1 2 3 1 2 3 1 2 3

MLO-7 (RG4, grape) sgRNA only 56302 52455 54565 0 0 0 0 0 0 0.00
Cas9 only 9924 10123 10001 0 0 0 0 0 0 0.00

Cas9: sgRNA, 1:1 51558 52015 52206 0 0 0 49 55 64 0.10

Cas9; sgRNA, 1:3 56546 55432 56421 2 4 6 71 74 69 0.10

Cas9; sgRNA, 3:1 67286 64532 66876 42 57 68 10 12 9 0.10

DIPM1 (RG2, apple) sgRNA only 58020 57987 58911 0 0 0 2 0 1 0.00
Cas9 only 53727 54455 55432 0 0 0 5 7 8 0.00

Cas9: sgRNA, 1:1 60903 60467 60787 0 0 0 16 22 13 0.00

Cas9; sgRNA, 1:3 65674 64678 65632 0 0 0 15 19 22 0.00

Cas9; sgRNA, 3:1 61565 62639 60166 0 0 0 4150 4500 3989 6.70

DIPM2 (RG4, apple) sgRNA only 22397 22565 22001 0 0 0 0 0 0 0.00
Cas9 only 16021 17089 17345 0 0 0 0 0 0 0.00

Cas9: sgRNA, 1:1 17847 18945 17923 447 565 472 140 167 178 3.30

Cas9; sgRNA, 1:3 17965 17456 17989 80 74 92 2 4 5 0.50

Cas9; sgRNA, 3:1 17005 17233 17565 291 300 267 271 288 298 3.30

DIPM4 (RG7, apple) sgRNA only 20239 20679 20899 0 0 0 0 0 0 0.00
Cas9 only 32096 32198 32345 0 0 0 0 0 0 0.00

Cas9: sgRNA, 1:1 42871 43211 43001 691 701 719 2253 2300 2310 6.90

Cas9; sgRNA, 1:3 22055 22100 22189 0 0 0 555 567 590 2.50

Cas9; sgRNA, 3:1 30240 31000 30319 0 0 0 1835 2000 2187 6.10

in the grape and the apple. We determined that the 3:1 ratio for
MLO-7 in the grapevine, the 3:1 ratio for DIPM 1, the 1:1 and
3:1 ratio for DIPM 2 and the 1:1 ratio for DIPM 4 in the apple
resulted in highest mutation frequency. Here, we showed the
critical advantage over plasmid mediated genome editing delivery
by titrating the Cas9:sgRNA ratio to achieve maximum mutation
frequency (Liu et al., 2015; Kanchiswamy et al., 2016).

This study demonstrated direct delivery of CRISPR/Cas9
RNPs to grape and apple protoplasts and site-directed mutation
of the grape gene locus MLO-7 and the apple gene loci DIPM-1,
2,and 4.

CONCLUSION

We demonstrated efficient targeted mutagenesis in the grapevine
gene locus MLO-7 and the apple gene loci DIPM-I, 2,
and 4, using direct delivery of CRISPR RNPs. Although
the mutation efficiency was found to vary with the targeted
gene locus and the ratio of Cas9 and sgRNA, mutation
patterns and frequency assays showed CRISPR RNPs to be
an effective strategy for targeted mutagenesis of gene loci in
grape and apple protoplasts. This method has already shown
improved features compared to plasmid-mediated genome
editing in humans, animals and plants, such as higher efficiency,
significantly reduced off-target effects and more rapid editing
activity after delivery (Liu et al, 20155 Woo et al, 2015;
Kanchiswamy, 2016; Kanchiswamy et al., 2016). Furthermore,
in plants, the new varieties obtained with this approach

may be deregulated from current GMO legislations, as the
Cas9 protein-guide RNA complexes will rapidly decompose in
regenerating cell cultures. Further studies are now required to
optimize plant regeneration from CRISPR RNPs transformed
protoplast to explore the applications of this technology at field
level.
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