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Genome editing technologies enable precise modifications of DNA sequences in vivo
and offer a great promise for harnessing plant genes in crop improvement. The precise
manipulation of plant genomes relies on the induction of DNA double-strand breaks by
sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on
either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While
complete knock-outs and loss-of-function mutations generated by NHEJ are very
valuable in defining gene functions, their applications in crop improvement are somewhat
limited because many agriculturally important traits are conferred by random point
mutations or indels at specific loci in either the genes’ encoding or promoter regions.
Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT)
that enables either gene replacement or knock-in will provide an unprecedented ability
to facilitate plant breeding by allowing introduction of precise point mutations and new
gene functions, or integration of foreign genes at specific and desired “safe” harbor in a
predefined manner. The emergence of three programmable SSNs, such as zinc finger
nucleases, transcriptional activator-like effector nucleases, and the clustered regularly
interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)
systems has revolutionized genome modification in plants in a more controlled manner.
However, while targeted mutagenesis is becoming routine in plants, the potential of GT
technology has not been well realized for traits improvement in crops, mainly due to the
fact that NHEJ predominates DNA repair process in somatic cells and competes with
the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here,
we review recent research findings mainly focusing on development and applications
of precise GT in plants using three SSNs systems described above, and the potential
mechanisms underlying HDR events in plant cells. We then address the challenges and
propose future perspectives in order to facilitate the implementation of precise genome
modification through SSNs-mediated GT for crop improvement in a global context.

Keywords: clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9, crops, double strand
breaks (DSBs), gene targeting (GT), homology-directed repair (HDR), sequence-specific nucleases (SSNs),
transcription activator-like effector nucleases (TALENs), zinc finger nucleases (ZFNs)
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INTRODUCTION

Genome editing has become a powerful tool for functional
genomics research in plants and genetic improvement of
agricultural crops through precise manipulation of plant
genomes. This relies on the creation of targeted DNA
double strand breaks (DSBs) by sequence-specific nucleases
(SSNs) at specified genomic locations, which will stimulate
the cell’s DNA repair machinery. To date, four classes of
SSNs, meganucleases/homing endonucleases which in general
refer to I-SceI or I-CreI, zinc finger nucleases (ZFNs),
transcriptional activator-like effector nucleases (TALENs), and
the clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated protein 9 (Cas9), have been
developed to cleave target genes of interest. Upon induction of
a DNA DSB, the subsequent repair process in eukaryotic cells
predominantly goes through the error-prone non-homologous
end joining (NHEJ) pathway to create random indels, leading to
frameshift mutations and target gene knockout. The presence of a
donor DNA containing sequences homologous to those flanking
the DSB site can greatly increase the chance of a precise DSB
repair through the homology-directed repair (HDR) pathway,
leading to gene replacement or foreign gene cassette knock-
in as intended (Puchta, 2005; Puchta and Fauser, 2014; Voytas
and Gao, 2014; Baltes and Voytas, 2015). Whereas complete
knock-outs and loss-of-function mutations are very valuable
in defining gene functions, deciphering complex metabolite
pathways and becoming routine in plants (Lawrenson et al., 2015;
Ma et al., 2015), their applications in crop improvement are
somewhat limited because many agriculturally important traits
are conferred by the random point mutations or indels at specific
loci in either the genes’ encoding or promoter regions, change of
gene expression levels or insertion of a new gene (Kumar et al.,
2016; Sun et al., 2016). So far, target gene replacement or gene
targeting (GT) has not yet been well established as a feasible
technique in higher plants. The primary barrier is the high
frequency of illegitimate recombination by which DNA integrates
at non-homologous sites (Steinert et al., 2016). NHEJ is the
primary pathway involved in DNA repair process in the somatic
cells, while HDR mainly occurs during S and G2 phases of the cell
cycle (Puchta, 2005). When DNA is introduced into plant cells,
the frequency of illegitimate recombination events are typically
105–107 times higher than that of homologous recombination
(Paszkowski et al., 1988; Lee et al., 1990; Offringa et al., 1990;
Halfter et al., 1992; Hrouda and Paszkowski, 1994; Miao and
Lam, 1995; Risseeuw et al., 1995). As a result, the frequency
of replacement or targeted integration via HDR is much lower
in comparison to random integration (Symington and Gautier,
2011), and reports describing successful gene replacement or
site-specific trait gene integration through SSNs-mediated HDR
in plants are very limited. Several reviews have described the
rapid development and applications of the SSNs system in plants
(Voytas and Gao, 2014; Belhaj et al., 2015; Osakabe and Osakabe,
2015; Kumar et al., 2016; Ma et al., 2016; Schiml and Puchta,
2016; Weeks et al., 2016). Here, we present an overview of the
recent research advances mainly focusing on development and
applications of precise GT in plants using the three recently

developed SSN systems, ZFNs, TALENs, and CRISPR/Cas9
reagents, and the potential mechanisms underlying HDR events
in plant cells as well as the challenges and future perspectives
in implementing precise genome modification through SSNs-
mediated GT for crop improvement.

SSNs-MEDIATED GENE TARGETING IN
PLANTS

Ever since HDR was demonstrated to be feasible in plant cells in
1988 (Paszkowski et al., 1988), various classical GT strategies have
been attempted to achieve HDR in plants (Paszkowski et al., 1988;
Offringa et al., 1990; Zhu et al., 2000; Terada et al., 2002; Okuzaki
and Toriyama, 2004; Shaked et al., 2005; Nishizawa-Yokoi et al.,
2015). The induction of a DSB at a specific locus can significantly
increase the frequency of homologous recombination up to more
than 100-fold (Puchta et al., 1996). By using of a site-specific
synthetic nuclease, meganuclease I-SceI, to induce DSB at the
target locus, HDR events were successfully generated in several
plant species, such as Arabidopsis, tobacco, rice, and tomato
(Puchta et al., 1993, 1996; Beetham et al., 1999; Reiss et al.,
2000; Siebert and Puchta, 2002; Fauser et al., 2012; Kwon et al.,
2012). The emergence of three programmable SSNs, such as
ZFNs, TALENs, and CRISPR/Cas9 has revolutionized the precise
genome modification in a more controlled manner in plants.
Over the last several years, GT has been achieved in higher plants
with a varied degree of success (Table 1). Below, we summarized
the recent research findings in precise GT in higher plants using
the three different SSN systems described above.

GT in Plants Using ZFNs
Zinc finger nucleases, as the first generation of SSNs, were
used to edit plant genomes (Smith et al., 2000; Bibikova et al.,
2002; Lloyd et al., 2005; Zhang et al., 2010; Zhang and Voytas,
2011; Kumar et al., 2015; Petolino, 2015). By fusing the DNA
cleavage domain from the restriction enzyme FokI to the highly
variable DNA binding domain (DBD) of different zinc finger
transcription factors to form different ZFNs, different target
sites in the DNA can be recognized and cleaved (Figure 1A)
(Kim et al., 1996). GT was demonstrated to be feasible in
Arabidopsis and tobacco by inducing a DSB with a ZFN
(Wright et al., 2005; Cai et al., 2009; de Pater et al., 2009,
2013; Townsend et al., 2009; Even-Faitelson et al., 2011; Qi
et al., 2013; Weinthal et al., 2013; Baltes et al., 2014). So far,
only two cases reported the successful GT for integration or
stacking herbicide resistances gene(s) in a crop plant (maize).
For example, simultaneous expression of ZFNs and delivery
of a heterologous donor molecule led to precise targeted
insertion of an herbicide tolerance gene expression cassette at
the inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) locus
in maize (Shukla et al., 2009). Combination of the engineered
ZFNs with modular “trait landing pads” (TLPs) could enable
the site-specific transgene integration and traits stacking in
crop plants (Ainley et al., 2013). For example, an herbicide
resistance gene, phosphinothricin acetyltransferase (pat), along
with TLPs was integrated into maize genome in the first
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TABLE 1 | Gene targeting in diverse plant species by employing different sequence-specific nucleases (SSNs).

Method Plant species Target gene Donor Delivery
method

Homology-directed
repair (HDR) event

Gene targeting
(GT) phenotype

Reference

ZFNs Nicotiana
tabacum

Defective
β-Glucuronidase gene
(GUS):NPTII (transgene)

Restoring GUS
function

Bombardment Yes GUS expression Wright et al., 2005

Arabidopsis
thaliana

PRps5a-gfp/gus
cassette (transgene)

Hpt coding region
replaced by gfp
coding region

Agrobacterium Yes GFP expression de Pater et al.,
2009

Nicotiana
tabacum

Endo-chitinase gene
CHN50

PAT expression
cassette

Agrobacterium Yes Herbicide
resistances

Cai et al., 2009

Nicotiana
tabacum

ALS ALS with mutant
site

Electroporation Yes Herbicide
resistances

Townsend et al.,
2009

Zea mays IPK1 PAT expression
cassette/PAT gene
no promoter

Silicon carbide
whiskers

Yes Herbicide
resistances

Shukla et al., 2009

Arabidopsis
thaliana

Mutated GUS
expression cassette
(transgene)

No donor Agrobacterium Yes GUS expression Even-Faitelson
et al., 2011

Arabidopsis
thaliana

Protoporphyrinogen
oxidase (PPO)

T-DNA harboring an
incomplete PPO
gene

Agrobacterium Yes Insensitive to the
herbicide
butafenacil

de Pater et al.,
2013

Arabidopsis
thaliana

ADH1 ADH1 fragment
with a insertion of
68 bp and deletion
of 12 bp

Agrobacterium Yes N.A Qi et al., 2013

Arabidopsis
thaliana

Quasipalindromic QQR
ZFN recognition sites

Promoter-less hpt
gene

Agrobacterium Yes Hygromycin
resistance

Weinthal et al.,
2013

Nicotiana
tabacum

Quasipalindromic QQR
ZFN recognition sites

Promoter-less hpt
gene

Agrobacterium Yes Hygromycin
resistance

Weinthal et al.,
2013

Zea mays TLPs AAD1 expression
cassette

Bombardment Yes Herbicide
resistances

Ainley et al., 2013

Nicotiana
tabacum

Defective GUS
(transgene)

Restoring gus:nptII
gene
(Geminivirus-based
replicons)

Agrobacterium Yes GUS expression
and kanamycin
resistance

Baltes et al., 2014

TALENs Nicotiana
tabacum

ALS ALS with mutant
site

PEG No N.A Zhang et al., 2013

Hordeum
vulgare

GFP (transgene) Truncated yfp
fragment

Bombardment No YFP expression Budhagatapalli
et al., 2015

Solanum
lycopersicum

Anthocyanin mutant 1
(ANT1)

35S promoter
upstream of the
endogenous ANT1
coding sequence

Agrobacterium Yes Purple plant tissue Cermak et al., 2015

Solanum
tuberosum

ALS1 ALS with mutant
site
(Geminivirus-based
replicons)

Agrobacterium Yes Herbicide
resistances

Butler et al., 2016

Oryza sativa ALS ALS with mutant
site

Bombardment Yes Herbicide
resistances

Li et al., 2016

CRISPR/Cas9 Arabidopsis
thaliana

DGU.US, IU.GUS
(transgene)

No donor Agrobacterium Yes GUS expression Fauser et al., 2014

Arabidopsis
thaliana

ADH1 NptII expression
cassette

Agrobacterium Yes Kanamycin
resistance

Schiml et al., 2014

Solanum
lycopersicum

Anthocyanin mutant 1
(ANT1)

35S promoter
upstream of the
endogenous ANT1
coding sequence
(Geminivirus-based
replicons)

Agrobacterium Yes Purple plant tissue Cermak et al., 2015

(Continued)
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TABLE 1 | Continued

Method Plant species Target gene Donor Delivery
method

Homology-directed
repair (HDR) event

Gene targeting
(GT) phenotype

Reference

Glycine max ALS1 ALS with mutant site Bombardment No N.A Li et al., 2015

Glycine max Genomic sites DD43 on
chromosome 4

Hpt expression
cassette

Bombardment Yes Hygromycin
resistances

Li et al., 2015

Zea mays ALS2 ALS with mutant site Bombardment Yes Herbicide
resistances

Svitashev et al.,
2015

Zea mays Liguleless-1 (LIG1) PAT expression
cassette

Bombardment Yes Herbicide
resistances

Svitashev et al.,
2015

Linum
usitatissimum

EPSPS EPSPS with mutant site PEG Yes Herbicide
resistances

Sauer et al., 2016

Solanum
tuberosum

ALS1 ALS with mutant site
(Geminivirus-based
replicons)

Agrobacterium Yes Herbicide
resistances

Butler et al., 2016

Zea mays ARGOS8 GOS2 promoter Bombardment Yes Improved grain
yield under drought
stress conditions

Shi et al., 2016

Oryza sativa ALS ALS with mutant site Agrobacterium Yes Herbicide
resistances

Endo et al., 2016

Oryza sativa ALS ALS with mutant site Bombardment Yes Herbicide
resistances

Sun et al., 2016

HDR event, obtained plants through HDR.

round of transformation. Then, a second herbicide resistance
gene, aryloxyalkanoate dioxygenase (aad1), flanked by sequences
homologous to the integrated TLPs, along with a corresponding
ZFN expression construct, was precisely targeted to the genomic
locus of previous integrated pat following a second round of
transformation, resulting in a sequential stack. Up to 5% of the
embryo-derived transgenic events contained the aad1 transgene
integrated precisely at the TLP which was directly adjacent to
the pat transgene (Ainley et al., 2013). The ability to stack
multiple trait genes at a single locus by ZFNs-mediated GT
to enable simple inheritance addresses a significant agricultural
challenge.

GT in Plants Using TALENs
Over the past few years, TALENs have emerged as the reagent
of choice in genome engineering in plants (Bogdanove and
Voytas, 2011). Like ZFNs, TALENs are chimeric proteins
produced by fusing an engineered DNA-binding domain with
the catalytic domain of FokI endonuclease, which cleaves as
a dimer (Figure 1B) (Christian et al., 2010; Li et al., 2011).
TALENs and ZFNs, therefore, work in a same way in that
two monomers bind opposing strands of DNA separated by
a spacer of an appropriate length, allowing FokI to dimerize
and cleave DNA. One of the advantages of TALENs over
ZFNs is that the DBD can be easily engineered to recognize
virtually any DNA sequence (Miller et al., 2011). So far, TALENs
have been applied successfully for genome editing of a variety
of different plant species, such as Arabidopsis, brachypodium,
tobacco, tomato, rice, barley, wheat, and maize (Mahfouz et al.,
2011; Shan et al., 2013; Zhang et al., 2013; Wang et al., 2014;
Budhagatapalli et al., 2015; Cermak et al., 2015; Butler et al.,
2016; Li et al., 2016), among which, only a few cases reported
the recovery of precisely edited plants in GT experiments

(Table 1). For example, TALENs introduced targeted mutations
in acetolactate synthase (ALS) in 30% of transformed cells in
tobacco protoplast, and the frequencies of targeted gene insertion
reached at 14% (Zhang et al., 2013). The feasibility of precise
modification of a target DNA sequence which resulted in a
predicted alteration of gene function was also demonstrated
in barley, when green fluorescent protein gene (gfp) specific
TALENs along with a repair template were introduced into barley
calli, conversion of gfp into yellow fluorescent protein gene
(yfp) via HDR was achieved in three of 100 calli bombarded
(Budhagatapalli et al., 2015). A strong promoter was inserted
upstream of a gene controlling anthocyanin biosynthesis, precise
modification of the tomato genome was achieved through either
TALENS or CRISPR/Cas9 using geminivirus replicons, resulting
in overexpression and ectopic accumulation of pigments in
tomato tissues (Cermak et al., 2015). The same strategy was
also successful applied in generation of herbicide resistant potato
plants by introducing one point mutation in potato ALS1 gene
through gene replacement (Butler et al., 2016). Recently, through
Agrobacterium-mediated transformation, herbicide resistant rice
plants were recovered by introducing double point mutations in
rice ALS through TALENs-mediated gene replacement with an
efficiency of 1.4–6.3% (Li et al., 2016).

However, it is worth to mention that both ZFNs and
TALENs need tandem repeats in their DNA-binding domains
that engineered to recognize specific DNA sequences in the
genome to generate DSBs. In this case, a new chimeric
protein must be engineered for each new target sequence of
interest (Figures 1A,B). This has been a major hurdle to
the wider application of these two SSNs because engineering
new protein is a very complicate process, non-cost effective,
time-consuming and is not feasible in most laboratories
(Figure 1D).
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FIGURE 1 | Schematic structures, advantages, and disadvantages of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. (A), (B), and (C) are schematic structures of ZFNs, TALENs, and
CRISPR/Cas9 in the process of DNA cleavage, respectively. (D) Advantages and disadvantages of each sequence-specific nuclease (SSN).

GT in Plants Using CRISPR/Cas9
As a third generation of designed SSNs, the emergence of
CRISPR/Cas9 has revolutionized genome editing because of
its specificity, simplicity, and versatility (Cong et al., 2013;

Feng et al., 2014; Gao and Zhao, 2014; Zhou et al., 2014;
Lawrenson et al., 2015; Ma et al., 2015, 2016; Xie et al.,
2015; Sun et al., 2016). The CRISPR/Cas9 system uses a single
guide RNA (sgRNA) to direct the Cas9 endonuclease to the
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complementary target DNA, and only a new sgRNA is needed
for a new target site of interest whilst the nuclease itself
remains unmodified (Figure 1C) (Jinek et al., 2012; Gaj et al.,
2013). Thus, the CRISPR/Cas9 system surpasses ZFNs and
TALENs, for its simplicity, versatility and high efficiency, and
has been successfully applied in precise genome modification
in many organisms including plants (Figure 1D) (Doudna
and Charpentier, 2014; Ma et al., 2016; Weeks et al., 2016).
However, the majority of these studies in plants reported
genome editing via NHEJ to generate random loss-of-function
mutations or gene knock-outs (Ma et al., 2016). Although
gene replacement or GT could be potentially achieved through
HDR after CRSIPR/Cas9 generates a DSB at specific gene loci,
it remains very challenging to make use of HDR in plants
through CRISPR/Cas9-mediated genome editing (Svitashev et al.,
2015; Sun et al., 2016). The successful gene replacement or
GT has been documented so far in a limited number of
studies in Arabidopsis, rice, maize and flax (Linum usitatissimum)
(Table 1). The CRISPR/Cas9 system can be used as nuclease
for in planta GT in Arabidopsis (Schiml et al., 2014). ALS
is a key enzyme for the biosynthesis of branched chain
amino acids and which is a major target for agriculturally
important herbicides including chlorsulfuron and bispyribac-
sodium (BS). Substitution of proline 165 with serine in the ALS2
gene using either single-stranded oligonucleotides or double-
stranded DNA vectors as repair templates yielded chlorsulfuron
resistant maize plants via CRISPR/Cas9-mediated gene editing.
However, the efficiency of generation of herbicide resistant plants
was very low. Among 1000 calli bombarded, only nine calli
recovered were able to regenerate herbicide resistant plants
(Svitashev et al., 2015). In another parallel experiment with
HDR-mediated gene insertion at an endogenous liguleless-1
gene (L1G) target site in maize, co-delivery of both Cas9-
sgRNA and donor DNA either separately or as a single vector
through bombardment resulted in a frequency of 2.5–4% of
target insertion, respectively (Svitashev et al., 2015). A repair
construct and the CRISPR/Cas9 expression vector targeting the
rice ALS gene were transferred into rice calli either separately
or sequentially through Agrobacterium-mediated transformation,
resulted in herbicide resistant rice plants with the ratio of
GT frequency of 0.323% (Endo et al., 2016). In our previous
study, by using dual sgRNAs in combination with two sources
of DNA repair templates, one released from T-DNA in planta
and the other co-bombarded as free double-stranded DNA, to
promote HDR-mediated ALS gene replacement in rice, multiple
homozygous herbicide resistant rice plants in T0 generation
were successfully recovered via CRISPR/Cas9-mediated HDR
for simultaneous in planta point substitutions of two amino
acid residues, tryptophan 548 and serine 627 in the rice
ALS with leucine and isoleucine (Sun et al., 2016). Maize
ARGOS8 is a negative regulator of ethylene responses. The
maize GOS2 promoter was inserted into the 5’ untranslated
region of the native ARGOS8 gene to replace the native
promoter of ARGOS8 through CRISPR/Cas9-mediated HDR.
Precise promotor replacement at the ARGOS8 locus resulted
in increased grain yield by five bushels per acre under stress
conditions (Shi et al., 2016). An herbicide tolerance trait was also

developed in flax (L. usitatissimum) by precise modification of
the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene
through a co-delivery of CRISPR/Cas9 system and the single-
stranded oligonucleotides (ssODN) template into protoplast
with the frequency of precise EPSPS edited events ranged
between 0.09 and 0.23% (Sauer et al., 2016). Most recently,
through bombardment of a vector harboring the CRISPR/Cas9
system and donor template, glyphosate-resistant rice plants was
generated by CRISPR/Cas9-mediated gene replacement of the
intron region of EPSPS gene at an efficiency of 2.0% (Li et al.,
2016).

THE POTENTIAL MECHANISMS
UNDERLYING HDR INSIDE PLANT
CELLS

In principle, there are three main mechanisms of DSB
repair involving the use of a homologous template: single-
strand annealing (SSA) (Figure 2A), synthesis-dependent strand
annealing (SDSA) (Figure 2B), and the so-called double-strand
break repair (DSBR) model (Puchta and Fauser, 2014). Following
DSB induction in all pathways, single-stranded overhangs are
produced via exonuclease-catalyzed resection. In the case of the
SSA mechanism, both ends of the break carry complementary
sequences. These molecules can then anneal to one another
to form a chimeric DNA molecule with the 3’-overhangs
be trimmed. As a consequence, the sequences flanking the
complementary sequences will be lost (Puchta and Fauser, 2014).
SSA can, in principle, also occur between two DNA molecules
that are not linked. These molecules could be transfected
plasmid DNAs or T-DNAs as well as broken chromosomes
(Puchta and Hohn, 1991a; Tinland et al., 1994; Pacher et al.,
2007). This mechanism is not conservative since all sequence
information between the respective repeats is lost, SSA can
proceed in somatic plant cells as efficient as NHEJ (Knoll
et al., 2012). In the case of DSBR and SDSA, the homologous
repair template can be supplied in cis or trans. Following
the DSB induction, 3’-end invasion of a single strand into
a homologous double strand occurs, resulting in a D-loop
(Figure 2B). Reparative synthesis is initiated using the newly
paired strand as a template. Whereas in SDSA, the genetic
information of a homologous sequence is only copied to one
strand, leading to no loss of sequence information although
the reaction sometimes results in gene conversion (Puchta
and Fauser, 2013), in DSBR, DNA synthesis occurs at both
broken ends, respectively, so that genetic information is copied
from both strands of the homologous sequences, respectively,
thus may lead to a crossover event. DSBR is a prominent
mechanism for meiotic recombination (Osman et al., 2011).
In our previous study with ALS gene replacement in rice,
evaluation of the HDR events demonstrated that while most
of the HDR events faithfully copied the genetic information of
the donor template, some only carried the substitutions at 5′-
end and some harbored the conversion at the 3′-end, and no
crossover detected in our case (Sun et al., 2016). Our result
is in consistence with other GT experiments in which SDSA
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FIGURE 2 | The potential mechanisms underlying double strand break (DSB) repair upon the availability of a homologous template. (A) Single-strand
annealing (SSA) pathway of homology-directed repair (HDR). (B) Synthesis-dependent strand annealing (SDSA) pathway of HDR. Lines in blue indicate the
homologous sequences. Lines in red indicate the foreign sequences.

may represent the major class of GT events and is probably
a predominant mechanism underlying HDR event as well as
to a combination of HDR and NHEJ events (Puchta et al.,
1996; Reiss et al., 2000; Wright et al., 2005). As the SDSA
pathway is beneficial for genome stability, it seems to be a
predominant pathway responsible for conservative HDR in
somatic plant cells (Puchta, 1998; Osman et al., 2011). So far, a
majority of successful GT experiments employed the DNA repair
template flanked with homologous arms at each end. A positive
correlation was found between the HDR rates and the lengths
of overlapping homology (up to 1200 bp) of the transfected
supercoiled circular or linearized plasmids, with a significantly
decreased HDR rate was observed when the overlap of both
substrates was reduced to 456 bp or less (Puchta and Hohn,
1991b).

CHALLENGES AND FUTURE
PERSPECTIVES

One major obstacle in performing GT for crop improvement is
its low efficiency because repair through NHEJ predominates
in plant somatic cells and competes with the HDR pathway
(Figure 3) (Puchta et al., 1996; Qi et al., 2013). Other

challenges including plant species recalcitrance to tissue
culture and transformation, and thus low frequency of stably
transformed events limit efforts to use genome editing for genetic
improvement in some crop species and genotypes (Figure 3)
(Shrawat and Lorz, 2006; Hiei et al., 2014; for review, please see
Altpeter et al., 2016). Moreover, unintended random integration
of donor template should be identified, suppressed or segregated
because of biosafety concerns in application of these edited crop
plants in a breeding practice (Figure 3) (Altpeter et al., 2016;
Kumar et al., 2016). Consequently, substantial efforts have been
devoted in the last few years to meet the above challenges.

Synchronizing Delivery of SSNs and
Sufficient DNA Repair Templates
In theory, synchronizing the DSB induction by SSNs and delivery
of the HDR template is essential for the occurrence of HDR in
plant cells (Baltes et al., 2014; Schiml et al., 2014; Endo et al.,
2016; Sun et al., 2016). To increase the frequency of HDR-
mediated GT, timing the induction DSBs on the target gene to
coincide with the delivery of sufficient HDR template is crucial
for the successful GT events. Therefore, how to deliver the
SSNs and DNA repair templates for HDR represent hurdles to
the efficient achievement of GT (Figure 3). Protoplasts can be
transformed with both SSNs and DNA repair template at high
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FIGURE 3 | Current challenges and future perspectives in applying SSNs-mediated gene targeting (GT) for crop improvement.

efficiency (Wright et al., 2005; Townsend et al., 2009; Zhang
et al., 2013), however, for most plant species, especially major
cereal crops, regeneration of plants from cultured protoplasts is
still not feasible. An efficient way to supply the pant cell with
a matrix for HDR-mediated DSB repair is to use an incoming
T-DNA from Agrobacterium tumefaciens or transfected plasmid
DNA (Puchta and Fauser, 2015). A sophisticated system, in
planta GT, to enhance gene replacement was first established
in 2012 using the meganuclease I-SceI (Fauser et al., 2012),
then successfully applied in Arabidopsis using the CRISPR/Cas9
reagent by the same group in 2014 (Schiml et al., 2014). It is
based on a transgene carrying both sequences homologous to
the flanking sequences of the target locus and two recognition
sites for a SSN, which also cuts the locus of interest in plant
genome. In planta GT system allows the simultaneous release
of a linear GT vector and the induction of a DSB at the target
locus. Under this strategy, the GT vector can be designed for
the site-specific integration of transgenes or to modify the target
gene/locus in a predefined manner (Puchta and Fauser, 2015).
Considering the low DNA titers delivered by Agrobacterium-
mediated gene transfer, biolistic gene transfer may be superior
for HDR-mediated GT by simultaneously delivery of both SSNs
and DNA repair template and providing larger quantities of
repair template. By using the same strategy, dual sgRNAs in
combination of two sources of DNA repair templates, one
released from T-DNA in planta and the other co-bombarded
as free double-stranded DNA, to promote HDR-mediated ALS
gene replacement, multiple homozygous GT rice plants were
successfully recovered in T0 generation with a highest frequency
up to 10%, whereas only hemizygous lines were recovered after

two rounds of BS selection in our Agrobacterium experiments
(Sun et al., 2016). Thus, it would be interesting to investigate
the effects of different delivery methods and parameters on
GT in crop plants. Furthermore, to overcome the challenges of
inefficient transformation and plant regeneration systems in a
majority of crop species or genotypes, intra-genomic homologous
recombination through intra-genomic mobilization by crossing
the SSNs transgenic lines with the transgenic plants harboring
stable integrated donor DNA template, is an alternative effective
strategy not only for GT, but also for gene stacking (Kumar et al.,
2016). In addition, taking advantage of geminivirus replicon, a
GT enhancement of greater than two orders of magnitude has
been achieved (Baltes et al., 2014). A T-DNA construct harboring
the minimal parts necessary for geminivirus replication, a ZFN
and a donor template was used to transform tobacco. After
transformation, the rolling circle replication of the replicon
was initiated at the large intergenic regions (LIRs) that flank
the T-DNA construct, leading to the circularization of the
construct. Thereafter, the ZFN was expressed and induced a
DSB in a defective target gene. GT events occurred using the
supplied correct donor template sequence, copying it via GT
in the target gene and leading to gene restoration, and thus
the donor template was replicated multiple times (Baltes et al.,
2014). Heritable gene replacement was achieved by using this
strategy in tomato at frequencies 10-fold higher than traditional
methods of DNA delivery (i.e., Agrobacterium). Both TALENs
and CRISPR/Cas9 achieved GT with more than two-thirds of
the insertions were precise, and had no unanticipated sequence
modifications (Cermak et al., 2015). This method overcomes the
efficiency barrier that has made GT in plants challenging.
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Manipulating the Enzyme Machinery
Involved in DNA Repair to Enhance GT in
Plants
Once DSB induced, DNA repair through NHEJ predominates in
somatic cells and competes with the HDR pathway. Suppression
of core components of the NHEJ pathway or enhancement
of key elements of HDR machinery can be used to increase
frequencies of HDR (Figure 3) (Puchta et al., 1996; Qi et al.,
2013). Expression of a bacterial RecA gene in plants stimulated
HDR in tobacco (Reiss et al., 2000). During HDR-mediated DSB
repair in eukaryotes, creation of a single-stranded DNA (ssDNA)
overhang via resection of a 5′ end is an initial step. RAD51
can polymerize on this ssDNA to search for a homologous
sequence so that the gapped sequence is then repaired using
another undamaged homologous DNA strand as template (Kwon
et al., 2012). Therefore, the presence of RAD51 is extremely
important for SDSA in Arabidopsis, but not for SSA. The same
is true for the SWI2/SNF2 chromatin remodeler AtRAD54
(Roth et al., 2012). Expression of a yeast RAD54 gene led
to an increase in GT efficiency in Arabidopsis (Shaked et al.,
2005; Even-Faitelson et al., 2011). The fact that expression of
a rice OsRecQl4 (a gene encoding bloom helicase counterpart)
and/or rice exonuclease 1 could enhance intra-chromosomal
HDR was taken as an indication that these proteins might,
in fact, be involved in end resection in plants (Kwon et al.,
2012). Indeed, Arabidopsis plants with a deficit of RECQ4A
showed some deficiency in both the SSA and SDSA pathways
(Knoll and Puchta, 2011). Instead of heterologous expression
of HDR-related proteins, GT efficiency could also be increased
by suppression of proteins involved in NHEJ, which led to
a hyper-recombination phenotype in Arabidopsis (Endo et al.,
2006; Hartung et al., 2007; Knoll and Puchta, 2011; Kwon
et al., 2012; Recker et al., 2014). DNA repair proteins, such
as KU70/80 and Ligase 4 (Lig4) are involved in classic NHEJ,
suppression of KU70 or Lig4 function increased the frequency
of ZFNs-mediated GT 5- to 16-fold and threefold to fourfold
in Arabidopsis ku70 and lig4 mutants, respectively (Qi et al.,
2013). HDR activity in calli with a Lig4 deficiency background
was twofold to threefold higher than that in control calli in
rice. Combination of the induced DSBs via SSNs at a target
gene and suppression of NHEJ-related genes or treatment with
Lig4 inhibitors can be expected to enhance synergistically the
frequency of GT in rice (Endo et al., 2016). However, one obstacle
with the manipulation of the HDR repair machinery is that this
may lead to a destabilization of the genome, as higher HDR
efficiencies can also lead to undesirable recombination events
between repetitive sequence motives that are abundantly present
in plant species with larger and complex genomes (Steinert et al.,
2016).

Enriching GT Events Using
Positive-Negative Selection System
Positive-negative selection (PNS) is an alternative approach
to enrich HDR-mediated GT events; it can eliminate NHEJ
effectively by expression of a negative-selection marker gene
(Figure 3) (Shimatani et al., 2015). The single copy Waxy

locus was targeted for classical GT (knock-in) using a PNS
vector carrying the hygromycin phosphotransferase gene (hpt)
for positive selection followed by the effective transcriptional
stop signal of the maize transposon En/Spm, which was
positioned between the Waxy homologous sequences, and one
negative selection gene DT-A (diphtheria toxin A-fragment
from Corynebacterium diphtheriae) flanked with the homologous
sequence at both ends (Terada et al., 2002). Since then, the
endogenous rice genes at more than 10 loci have been targeted
(Terada et al., 2007; Yamauchi et al., 2009; Moritoh et al.,
2012; Ono et al., 2012; Ozawa et al., 2012; Dang et al.,
2013; Osakabe et al., 2014). Using a combination of neomycin
phosphotransferase II (nptII) and an antisense nptII construct,
a universally applicable PNS system for GT in plants was
established, although negative selection with this system is
relatively less efficient compared with DT-A (Nishizawa-Yokoi
et al., 2015). It is worth to note that although this strategy
has been only documented in classical GT experiment, it is
expected that combination of SSNs-mediated GT with PNS
strategy may facilitate the enrichment and recovery of GT events
in plants.

Toward Successful Implementation of
Precise Genome Modification through
SSNs-Mediated GT for Crop
Improvement
Over the last several years, genome manipulation has been
revolutionized by the development of three types of SSNs for
the control induction of DSBs and thus offers a great promise
for harnessing plant genes in crop improvement. However, only
a handful of studies reported the precise modification of an
endogenous gene for knock-in or target gene replacement in
crop plants due to the fact that GT has not been established as
a feasible technique in a majority of laboratories. To establish
a routine GT system in crop plants, synchronization of DSB
induction and delivery of sufficient DNA repair template is
crucial for successful GT (Schiml et al., 2014; Endo et al.,
2016; Sun et al., 2016). Virus replicon-based GT could also
be a good choice to provide sufficient donor template (Baltes
et al., 2014; Cermak et al., 2015). For crop species recalcitrant
to transformation and regeneration, intra-chromosome HDR
will be an effective alternative strategy (Kumar et al., 2016).
Furthermore, suppression of core components of the NHEJ
pathway or enhancement of key elements of HDR machinery can
be used to increase frequencies of GT (Puchta et al., 1996; Qi et al.,
2013; Puchta and Fauser, 2015). In addition, to date, most of the
GT events reported in plants were either herbicide resistant genes
or selectable marker genes in which positive selection for GT is
much easier such that precise insertion or gene replacement of
the donor in the target locus conferred resistance to selection and
avoidance of random integration of the donor (Table 1). The PNS
selection system might be an attractive strategy to increase the
GT efficiency of non-selectable target genes through enrichment
of the DSB-induced GT events. Moreover, most recently, a new
RNA-guided genome engineering tool, the CRISPR/Cpf1 system,
was reported to have properties different from those of the
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CRISPR/Cas9 systems in that the CRISPR/Cpf1 system has a
single RNA-guided endonuclease lacking tracrRNA, 5′ T-rich
protospacer adjacent motif (PAM), and a staggered DSB with
4 or 5-nt overhang in contrast to the blunt ends generated
by Cas9 (Zetsche et al., 2015). This structure of the cleavage
product could be particularly advantageous for facilitating NHEJ-
based gene insertion into the plant genome because the DNA
insert could be designed to integrate into the genome in a
proper orientation (Zetsche et al., 2015). Specifically, Cpf1 could
provide an effective way to precisely introduce DNA into the
genome via NHEJ mechanism in somatic cells in which genome
editing via HDR mechanisms is especially challenging (Chan
et al., 2011). At last, regeneration and transformation efficiency,
and issues of regulation must also be taken into consideration
when selecting a transformation strategy for a given crop species
(Altpeter et al., 2016). Both the CRISPR/Cas9 array and the donor
templates could be tagged by fluorescence proteins and tracked
and eliminated following segregation in the progeny to avoid
the random integration of donor fragments and obtain Cas9-
free lines (Gao et al., 2016). However, this tagging strategy will
only feasible for the integrations of intact constructs. For the
integration of fragmented SSN expression cassettes or GT donor
molecules, genome-wide sequencing would solve this problem

and should not be a major cost issue for sequenced organisms;
especially if these developed new varieties will be commercialized
in the future. Nonetheless, combination of the different strategies
discussed above will be expected to make GT more efficient in
crop plants (Figure 3). And it is tempting to propose that in the
long run, precise genome modification through SSNs-mediated
GT will greatly facilitate crop improvement by fully exploiting
the agronomic traits important alleles within a gene pool or even
beyond species boundaries.
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